E Sarrouy 
email: emmanuelle.sarrouy@centrale-marseille.rr
  
Phase driven modal synthesis for forced response evaluation

Abstract A new definition is proposed for the Nonlinear Normal Modes, close to the one developed by Bellizzi & Bouc [START_REF] Bellizzi | An amplitude-phase formulation for nonlinear modes and limit cycles through invariant manifolds[END_REF]. Theses NNMs are the used to evaluate the forced responses using a modal phase parametrization rather than the classical forcing frequency parametrization.

The basic dynamic equation considered for nonlinear dynamics writes

Mü + C u + Ku + f nl (u, u) = f e (t) (1) 
where f nl gathers nonlinear forces while f e denotes a periodic external forcing. Damped nonlinear normal modes (dNNMs) are the solutions of Eq. ( 1) when the forcing f e is nullified [START_REF] Shaw | Normal Modes for Non-Linear Vibratory Systems[END_REF]. Several methods to compute these solutions where proposed. The one exposed and used here is close to the amplitude and phase parameterization described by Bellizzi and Bouc [START_REF] Bellizzi | An amplitude-phase formulation for nonlinear modes and limit cycles through invariant manifolds[END_REF]. Displacements u and velocities v have the same dependency to an amplitude α and a dimensionless time τ than in [START_REF] Bellizzi | An amplitude-phase formulation for nonlinear modes and limit cycles through invariant manifolds[END_REF] but the amplitude decay function η and the pseudo circular frequency ω only depend on amplitude here:

u(t) = α(t)ψ u (α(t), τ (t)), v(t) = α(t)ψ v (α(t), τ (t)), α(t) = η(α(t))α(t), τ (t) = ω(α(t)) (2)
Once injected in Eq. ( 1), and adding v = u condition leads to

αψ v (α, τ ) = η(α)αψ u (α, τ ) + α (D α ψ u (α, τ )η(α)α + D τ ψ u (α, τ )ω(α)) (3a) M (η(α)αψ v (α, τ ) + α (D α ψ v (α, τ )η(α)α + D τ ψ v (α, τ )ω(α))) + C (αψ v (α, τ )) + K (αψ u (α, τ )) + f nl (αψ u (α, τ ), αψ v (α, τ )) = 0 (3b)
Instead of seeking for the various quantities as a power series in α and a Fourier series in τ which leads to a very large system of equations, a "point-by-point" approach is preferred in the α dimension: a branch is defined by successive points gathering

α (i) (modal amplitude), Q u (i) (Fourier coefficients for ψ u (i) ), Q v (i) (Fourier coefficients for ψ v (i)
), η (i) (modal amplitude decay function) and ω (i) (modal circular frequency). While D τ • = ∂ • /∂τ quantities can be evaluated exactly via Fourier series derivation, D α • = ∂ • /∂α is evaluated using a linear interpolation between the previous and the current points. The two necessary normalization conditions are defined by

ψ u (α, 0) T Mψ u (α, 0) + ψ u (α, π/2) T Mψ u (α, π/2) = 1 (4a) ψ u (α, 0) T Mψ u (α, π/2) = 0 (4b)
Lastly, points on the branch are index by their (discrete) arclength s (i) :

s (i) = s (i-1) + α (i) -α (i-1) 2 + η (i) -η (i-1) 2 + ω (i) -ω (i-1) 2 + Q u (i) -Q u (i-1) 2 + Q v (i) -Q v (i-1) 2 1/2
(5) Once a dNNM is calculated, it offers a first understanding of the structure as well as a rough prediction of its behavior when forcing is introduced. It can also be used to compute the forced response effectively using modal synthesis. Let us assume that f e (t) = f e 0 cos(ωt). Using a dimensionless time τ = ωt and denoting u τ (τ ) = u(t), • = d • /dτ , Eq. ( 1) becomes

ω 2 Mu τ + ωCu τ + Ku τ + f nl (u τ , ωu τ ) = f eτ (τ ) (6) 
Then, u τ is naturally sought as

u τ (τ ) = ũ(s, τ + φ) (7) 
where the 2 unknowns are s which defines the location on the dNNM branch and φ, the phase with respect to the excitation as in the linear case.

Equations used to find these 2 unknowns are 

r(τ ) = ω 2 Mu τ + ωCu τ + Ku τ + f nl (u τ , ωu τ ) -f eτ (τ ) (9) 
This system can be solved using any continuation method in the variables ω, s, φ.

Another approach is to consider that, as in the linear case, φ will vary from 0 to -π with a continuous decrease along the frequency function response (FRF). Hence, the FRF can be computed by solving for ω and s only for discrete values of φ ∈] -π, 0] avoiding the use of a continuation scheme. This approach was applied to compute the first mode and the FRF around this first mode for the 2-dofs example used by Touzé and Amabili [START_REF] Touzé | Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures[END_REF] and return very accurate results as illustrated in Figure 1 for which reference results are HBM results with up to 5 harmonics. This phase parameterization can be very interesting in the stochastic case to link points of different realizations as explained in [START_REF] Sarrouy | Phase driven study for stochastic linear multi-dofs dynamic response[END_REF] for the linear case.
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 1 Figure 1: Illustration: modal synthesis around first mode for a 2-dofs system.

  ) ũ(s, τ + φ) dτ = 0 and 2π 0 r(τ ) (ωũ (s, τ + φ)) dτ = 0(8)with r(τ ) being the residue of the dynamical equation (6):