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Abstract 35 

Epilepsy is characterized by unpredictable recurrent seizures resulting from 36 

hypersynchronous discharges from neuron assemblies. Increasing evidence indicates that 37 

aberrant astrocyte signalling to neurons plays an important role in driving the network 38 

hyperexcitability. Purinergic signalling is central in neuron-glia and glia-glia interactions 39 

and dysfunctions in communication pathways involving purinergic receptors have been 40 

reported in various CNS pathologies, such as Alzheimer disease, stroke, major 41 

depression, schizophrenia, and epilepsy. In the present review we will first discuss the 42 

mechanisms by which astrocytes influence neuronal activity. We will then review in more 43 

details recent evidence indicating that dysregulation of astrocyte purinergic signalling 44 

actively contributes to the appearance of abnormal neuronal activity in epilepsy. 45 

 46 

Keywords: calcium signalling, cytokine, microglia, gliotransmission, inflammation,  47 

 48 

Main points 49 

 Purinergic signalling is a key signaling pathway in glia-glia and neuron-glia 50 

interactions.  51 

 Purine-driven gliotransmitter release from astrocytes perturbs excitation/inhibition 52 

balance and favours the appearance of epileptiform activity. 53 

  54 
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Introduction 55 

Our knowledge of astrocyte functions evolved tremendously during the last decades, 56 

adding to the classical view of supportive cells for neurons the concept that astrocytes 57 

integrate neuronal and synaptic activities and, in turn, directly influence these activities 58 

through the release of gliotransmitters. In physiological conditions, these “metabolic” and 59 

“information processing” functions usually operate on a time scale ranging from 60 

milliseconds to hours or even days, when considering brain development and hormonal 61 

cycles, and are fundamental for brain functions, including cognitive functions (Araque et 62 

al., 2014; Attwell et al., 2010; Dallérac & Rouach, 2016; Khakh & Sofroniew, 2015; 63 

MacDonald, Robb, Morrissey, Beall, & Ellacott, 2019; Pellerin et al., 2007; Rusakov, Bard, 64 

Stewart, & Henneberger, 2014; Mirko Santello, Toni, & Volterra, 2019; Theodosis, Poulain, 65 

& Oliet, 2008). The continuous and progressive discovery of key roles played by 66 

astrocytes in regulating brain functions has also advanced our understanding of the roles 67 

of these cells in the pathogenesis of neurological and psychiatric diseases, including 68 

Alzheimer’s disease, cerebral ischemia, multiple sclerosis, Huntington’s disease, major 69 

depressive disorder and epilepsy (Cresto, Pillet, Billuart, & Rouach, 2019; Halassa, Fellin, 70 

& Haydon, 2007; Patel, Tewari, Chaunsali, & Sontheimer, 2019; Rossi & Volterra, 2009; 71 

Steinhäuser, Grunnet, & Carmignoto, 2016; Verkhratsky & Parpura, 2016). 72 

Epilepsy is a pathological condition affecting more than 1% of the population worldwide 73 

(Beghi, 2016; Hesdorffer et al., 2011). It is characterized by repeated and recurrent 74 

seizures altering physiological brain functioning and being responsible for the development 75 

of comorbidities such as neurological deficits. According to the International League 76 

Against Epilepsy, epilepsies should be classified as focal, generalized or combined focal 77 

and generalized, with six, non-exclusive, subgroups of etiology (structural, genetic, 78 

infectious, metabolic, immune or unknown), selected because of their potential therapeutic 79 

consequences (Scheffer et al., 2017). Many of these epilepsies result from an acute insult 80 

(e.g. stroke, trauma, infection) that triggers progressive modifications of the brain that lead 81 

to the occurrence of spontaneous recurrent seizures. Epileptogenesis corresponds to the 82 

gradual remodelling of a formerly healthy brain into a spontaneously seizing one. The 83 

latent phase separating the initial insult from the appearance of the first spontaneous 84 

seizures can last months or even years. It is followed by the chronic phase during which 85 

recurrent spontaneous seizures occur. For a long time, it has been thought that alteration 86 

in the excitation / inhibition balance, which is at the basis of seizure generation, was the 87 
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only mechanism involved in the pathogenesis of epilepsy. Consequently, anti-epileptic 88 

drugs (AEDs) developed in the last decades mostly aimed at correcting this perturbed 89 

balance between excitatory and inhibitory neurotransmission. These pharmacological 90 

interventions can, in the best scenario, control seizures but they cannot cure the disease. 91 

Furthermore, about one third of the patients are refractory to pharmacological treatments 92 

and this ratio reaches 2/3 of the patients when considering mesial temporal lobe epilepsy 93 

(MTLE), the most frequent and severe form of focal epilepsy in adults (Asadi-Pooya, 94 

Stewart, Abrams, & Sharan, 2017). There is therefore an obvious and urgent need for the 95 

development of new AEDs. In this context, the increasing evidence that brain functions 96 

and dysfunctions rely on an integrated interplay between neurons and glial cells, and in 97 

particular astrocytes, opens new routes for the identification of promising non-neuronal 98 

targets that could lead to the development of new AEDs. Dysfunction of several astrocyte 99 

signalling pathways can contribute to hyperexcitation of neuronal networks and 100 

progression of seizures (Steinhauser and Boison, 2012; Devinsky et al., 2013; Patel et al 101 

2019). In particular, purinergic signalling is a key signalling pathway in glia-glia and 102 

neuron-glia interactions and recent evidence indicates that this pathway contributes to the 103 

deregulation of neuronal activity in epilepsy (Engel, Alves, Sheedy, & Henshall, 2016; 104 

Rassendren & Audinat, 2016).  105 

In a first section, we will briefly review the physiological functions of astrocytes that can 106 

impact on neuronal and synaptic activities, highlighting astrocyte dysfunctions that have 107 

been identified in pathological conditions and in particular in epilepsy. In the following 108 

sections, we will discuss more extensively how deregulation of ATP signalling in astrocytes 109 

can contribute to epileptogenesis and ictogenesis (i.e. the acute process generating 110 

seizures).   111 

1. Astrocytes: function and dysfunction in health and disease 112 

1.1. Astrogliosis: an adaptive reactive phenotype 113 

The role of astrocytes in pathologies of the central nervous system (CNS) is widely 114 

associated with reactive phenotype developed by astrocytes in response to a rupture in 115 

CNS homeostasis. This process called astrogliosis is particularly evident in epileptic 116 

syndromes associated with hippocampal sclerosis (HS) that is characterized by a glial scar 117 

(Thom, 2014). Astrogliosis involves changes at the molecular, cellular and functional levels 118 

(Dossi, Vasile, & Rouach, 2018). The degree of alterations observed in reactive astrocytes 119 
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varies according to the type of insult inducing the reaction and to the possibility of 120 

reversion of the damage (Anderson, Ao, & Sofroniew, 2014; Sofroniew, 2009). 121 

Transcriptomic analysis of reactive astrocytes has disclosed the occurrence of two broad 122 

phenotypes: a pro-inflammatory phenotype A1 having detrimental effects (Lian et al., 123 

2015; Liddelow et al., 2017; Zamanian et al., 2012) and an immune-suppressive 124 

phenotype A2 with protective functions (Anderson et al., 2016; Liddelow & Barres, 2017). 125 

Although the specific phenotype of astrocytes in different forms of epilepsy has not yet 126 

been firmly established, different studies point rather toward a deleterious A1 phenotype. 127 

For example, in epilepsy models, the release of Interleukin-1beta (IL-1) and High Mobility 128 

Group Box1 by astrocytes induces the activation of IL1R/TLR signalling pathways that 129 

favours the induction and maintenance of seizure activity (Maroso et al., 2010; Vezzani, 130 

French, Bartfai, & Baram, 2011). However, it should be pointed out that in most cases the 131 

population of astrocytes has been considered as a whole without taking into consideration 132 

a possible diversity of the astrocyte reactivity (e.g. lesion vs peri-lesional area). One 133 

important and still debated question is whether astrocyte reactivity is a cause or a 134 

consequence of seizures. In favour of a causative role, astrocyte-specific deletion of genes 135 

(tuberous sclerosis complex 1 or Beta 1 integrin) or mutation of an astrocyte-specific gene 136 

(GFAP) induce astrogliosis and the occurrence of spontaneous seizures (Messing, 137 

Brenner, Feany, Nedergaard, & Goldman, 2012; Ortinski et al., 2010; Robel et al., 2015). 138 

On the other hand, there were no sign of astrogliosis in non-lesional epileptogenic cortical 139 

areas of patients with focal cortical dysplasia (Rossini et al., 2017). Moreover, in a guinea 140 

pig model of temporal lobe epilepsy with hippocampal sclerosis (HS-MTLE; unilateral, 141 

intra-hippocampal kainate), astrogliosis and cell damage were observed only in the 142 

injected, and not in the contralateral, hippocampus despite the occurrence of epileptiform 143 

activities in both hippocampi (Noè et al., 2019). The latter two examples suggest 144 

dissociation between the occurrence of seizure and astrogliosis, as seen with the classical 145 

marker GFAP. However, they do not exclude the contribution of astrocytes to the 146 

functional remodelling that occurs during epileptogenesis and to the generation of 147 

seizures, especially in view of the many functions of astrocytes by which they influence the 148 

excitability of neuronal networks. 149 

Another important aspect of astrocyte function that is affected by gliosis is their close 150 

interaction with brain vasculature that they contact with their endfeet. Astrocytes in 151 

physiological conditions contribute to the maintenance of blood-brain barrier (BBB) 152 
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structure by increasing the expression of tight junction proteins occludin and claudin-5 and 153 

by inhibiting the expression of chemokines and leukocyte adhesion molecules, which 154 

would favour BBB disruption (Andreone, Lacoste, & Gu, 2015; Zhao, Nelson, Betsholtz, & 155 

Zlokovic, 2015). Modifications of astrocyte phenotype during astrogliosis could contribute 156 

to BBB impairment that occurs in epilepsy through disruption of tight-junction coupling, 157 

increased expression of adhesion molecules on endothelial cells determining an increase 158 

of pro-inflammatory cytokines and the extravasation of leukocytes in brain parenchyma 159 

(Marchi, Granata, & Janigro, 2014; van Vliet, Aronica, & Gorter, 2015). Furthermore, BBB 160 

disruption in epilepsy leads to extravasation of serum albumin, which is taken up 161 

preferentially by astrocytes and activates them through transforming growth factor beta 162 

(Heinemann, Kaufer, & Friedman, 2012). We will now review how dysfunction of several 163 

astrocyte properties can contribute to seizure and epilepsy.  164 

1.2. Homeostasis: keeping an eye on K+ and water 165 

One of the most important physiological functions of astrocytes is the maintenance of ion 166 

homeostasis and, in particular, the regulation of extracellular K+ [K+]0. The accumulation of 167 

K+ in the extracellular space can lead to sustained neuronal depolarization and 168 

hyperexcitability (Heinemann & Dieter Lux, 1977; Walz, 2000). Astrocytes control [K+]0 by 169 

two mechanisms: K+ uptake and spatial buffering. The K+ uptake is mediated through 170 

Na+/K+ pumps, Na+/K+/Cl- cotransporters and the large expression of inward-rectifier 171 

potassium (Kir) 4.1 channels and relies also on the very negative resting potential of 172 

astrocytes (D’Ambrosio, Gordon, & Winn, 2002; Kofuji & Newman, 2004; Ransom, 173 

Ransom, & Sontheimer, 2000; Seifert et al., 2009). Remarkably, mice lacking Kir4.1 174 

channels on astrocytes were impaired for K+ and glutamate uptake and were more 175 

susceptible to seizures (Chever, Djukic, McCarthy, & Amzica, 2010; Djukic, Casper, 176 

Philpot, Chin, & McCarthy, 2007). Altered expression of astrocyte Kir4.1 channels has 177 

been reported for Alzheimer’s disease (Wilcock, Vitek, & Colton, 2009), major depressive 178 

disorder (MDD; (Medina et al., 2016) and for Huntington’s disease (Tong et al., 2014). 179 

Different studies, both in humans and animal models, have highlighted a clear association 180 

between uncontrolled extracellular K+ increase and epilepsy (Steinhäuser et al., 2016). In 181 

particular, measurements of extracellular K+, patch-clamp recordings of Kir currents in 182 

astrocytes, single-cell RT-PCR and immunostaining of Kir proteins revealed a reduction in 183 

Kir-mediated current and a reduction of Kir4.1 expression in surgical specimen from 184 

patients suffering from MTLE and in rodent models of MTLE (Bordey & Sontheimer, 1998; 185 
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Heinemann et al., 2000; Heuser et al., 2012; Hinterkeuser et al., 2000; Jauch, Windmüller, 186 

Lehmann, Heinemann, & Gabriel, 2002; Kivi et al., 2000; Schröder et al., 2000).  187 

Control of ion homeostasis by astrocytes relies also on spatial buffering (Orkand, Nicholls, 188 

& Kuffler, 1966), which is mediated by gap junctions (GJ), channels composed of connexin 189 

(Cx) 43) and Cx30 (Nagy & Rash, 2000). These channels allow the formation of a 190 

functional network between astrocytes (syncytium) and the diffusion of K+ following the 191 

electrochemical gradient: .K+ is taken up by astrocytes where neuronal activity is high, 192 

diffuses through the syncytium and is released at remote sites with lower [K+]0. In line with 193 

the spatial buffering concept, the physiological functioning of astroglial networks should 194 

have an anti-epileptic role, and indeed, a reduced threshold for generating epileptic activity 195 

was found in mice with coupling-deficient astrocytes (Pannasch et al., 2011; Wallraff et al., 196 

2006). Furthermore, evidence suggests that alterations in astrocyte coupling could be 197 

involved in the genesis and progression of epilepsy. Using a mouse model of HS-MTLE 198 

(unilateral intracortical kainate), it has been demonstrated that astrocyte coupling is 199 

impaired as early as 4 hours after the induction of status epilepticus (SE), a mechanism 200 

probably related to the release of pro-inflammatory cytokines and thus suggesting that 201 

impaired coupling represents a key event in epileptogenesis (Bedner et al., 2015). 202 

Moreover, the authors showed a complete lack of GJ coupling in sclerotic hippocampi of 203 

HS-MTLE patients. 204 

Another important function in which astrocytes are involved is the regulation of 205 

extracellular space (ECS) volume and fluid osmolarity through aquaporin 4 (AQP4), a 206 

channel mediating transmembrane water movements according to osmotic gradients and 207 

that is expressed by astrocytes mostly at perisynaptic processes and perivascular end-feet 208 

(Schwartzkroin, Baraban, & Hochman, 1998). Regulating water flux near synapses and 209 

blood vessels may be linked to K+ homeostasis (Papadopoulos & Verkman, 2013). Mice 210 

lacking AQP4 have a mild ECS volume expansion, an elevated threshold but prolonged 211 

duration for electrographic seizures induced in vivo by hippocampal electrical stimulation 212 

(Binder & Steinhäuser, 2006; Binder et al., 2006). Subsequent analysis of these mice, 213 

however, indicated that they also displayed an enhanced gap junctional coupling and an 214 

improved spatial [K+]0 buffering (Strohschein et al., 2011). In human and in animal models 215 

of MTLE, there is a loss of astrocytic perivascular AQP4, which preceeds the appearance 216 

of chronic seizures (Alvestad et al., 2013; Eid et al., 2005). This suggests that perturbed 217 
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polarized expression of AQP4 during epileptogenesis, together with consequences on 218 

[K+]0 homeostasis, may be of pathophysiological relevance. 219 

1.3. Neurotransmitter buffering: maintaining the equilibrium for glutamate, GABA 220 

and purines 221 

A crucial role for astrocytes that can also impact on neuronal excitability is 222 

neurotransmitter buffering. Indeed, the removal of neurotransmitters, such as glutamate 223 

and GABA, from the synaptic cleft is crucial for maintaining a correct functioning of 224 

synapses and an appropriate balance between excitation and inhibition. Alterations in 225 

these buffering mechanisms could lead to neuronal hyper-excitability and excitotoxicity 226 

(Choi, 1988; Meldrum, 1994). The astrocytic buffering is mediated by neurotransmitter 227 

uptake through transporters and their metabolism through the glutamine – glutamate – 228 

GABA cycle (Tore Eid, Behar, Dhaher, Bumanglag, & Lee, 2012). Glutamate and GABA 229 

reuptake relies on specific transporters expressed by astrocytes: EAAT1 and EAAT2 (also 230 

known as GLAST and GLT1) for glutamate, and GAT1 and GAT3 for GABA. Once 231 

internalized in astrocytes, glutamate is converted into glutamine by glutamine synthetase 232 

(GS), while GABA enters the TCA cycle which produces alpha ketoglutarate, glutamate 233 

and glutamine. Glutamine produced in astrocytes is then released, up taken by neurons 234 

and used as a precursor for both glutamate and GABA synthesis. 235 

Alterations in neurotransmitter transporters are reported in different neurological diseases, 236 

including epilepsy (Coulter & Eid, 2012). The involvement of alterations in neurotransmitter 237 

homeostasis in epilepsy is demonstrated by an increase in extracellular glutamate levels in 238 

the sclerotic hippocampus of MTLE patients (Cavus et al., 2005, 2008). In experimental 239 

epilepsy, deletion of GLT1 in astrocytes determined an exaggerated response to sub-240 

convulsive doses of pentylenetetrazol (Tanaka et al., 1997).  241 

Alterations in GABA extracellular levels can also contribute to hyper-excitability and 242 

epilepsy. Depending on the epileptic syndrome, both decreased extracellular GABA levels 243 

and increased GABA receptor mediated activity can be detrimental for the maintenance of 244 

excitation / inhibition balance. For example, in TLE an increase in the expression levels of 245 

GAT3 astrocytic GABA transporter, leading to a reduction of extracellular GABA levels, 246 

has been reported just before seizure onset (During & Spencer, 1993; Lee et al., 2006). 247 

On the other hand, in absence epilepsy a dysfunction of the astrocytic GABA transporter 248 

GAT1 was responsible for the generation of non-convulsive seizures by determining an 249 
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increase in GABA-A receptor mediated inhibition in thalamocortical neurons (Cope et al., 250 

2009; Pirttimaki, Parri, & Crunelli, 2013). 251 

Reduction in GS function is involved in the pathogenesis of epilepsy by inducing 252 

extracellular glutamate accumulation, as reported in TLE patients (Eid et al., 2004; Tore 253 

Eid et al., 2016; van der Hel et al., 2005). Evidence for GS involvement in the 254 

pathogenesis of epilepsy is reported also in animal models in which blocking of GS 255 

function with the inhibitor methionine sulfoximine was able to induce recurrent seizures, 256 

neuronal loss and hippocampal atrophy (Eid et al., 2008; Wang, Zaveri, Lee, & Eid, 2009). 257 

Considering that glutamine is fundamental also for GABA synthesis in interneurons, GS 258 

dysfunction could be related also to impaired inhibitory transmission, as shown in an 259 

experimental model of TLE in which the downregulation of GS in astrocytes was 260 

responsible for a compromised synaptic inhibitory transmission (Ortinski et al., 2010). 261 

Another important astrocytic enzyme involved in the balance between excitation and 262 

inhibition is adenosine kinase (ADK). By phosphorylating adenosine to adenosine-263 

monophosphate (AMP) it exerts a key role in regulating extracellular levels of adenosine 264 

(Etherington et al., 2009; Studer et al., 2006). Since adenosine is known to dampen 265 

neuronal activity, its release exerts anti-convulsant effects (Cunha, 2016; Lado & Moshé, 266 

2008). Astrogliosis occurring in epilepsy is known to be associated with increased levels of 267 

ADK both in humans and in experimental models (Boison, 2016). The increase in ADK and 268 

the consequent reduction of extracellular adenosine levels are responsible for reducing 269 

seizure threshold (Boison, 2016). 270 

Altogether these data clearly highlight how crucial is neurotransmitter buffering in order to 271 

maintain a functional synaptic activity and avoid the generation of a seizure-prone context. 272 

1.4. Gliotransmission: sensing and modulating the surrounding environment 273 

The concept of the “tripartite synapse” emerged from experiments demonstrating that 274 

astrocytes are able to sense neurotransmitters released by presynaptic neurons into the 275 

synaptic cleft but also can release gliotransmitters that regulate neuronal and synaptic 276 

activities (Auld & Robitaille, 2003; Perea, Navarrete, & Araque, 2009). 277 

Several classical neurotransmitters have been also identified as gliotransmitters, among 278 

which glutamate, D-serine, ATP, adenosine and GABA have been the most studied 279 

(Angulo, Le Meur, Kozlov, Charpak, & Audinat, 2008; Araque et al., 2014; Harada, 280 

Kamiya, & Tsuboi, 2016; Papouin, Dunphy, Tolman, Foley, & Haydon, 2017; Petrelli & 281 
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Bezzi, 2016). An increase in intracellular Ca2+ is often crucial for the release of 282 

gliotransmitters (Araque et al., 2014; Bazargani & Attwell, 2016; Khakh & Sofroniew, 2015; 283 

Rusakov et al., 2014; Volterra, Liaudet, & Savtchouk, 2014) that can be mediated through 284 

exocytotic or non-exocytotic pathways (Hamilton & Attwell, 2010; A. Verkhratsky, Matteoli, 285 

Parpura, Mothet, & Zorec, 2016) but gliotransmitters can be released also through Ca2+ 286 

independent mechanisms involving connnexin hemichannels or pannexin channels 287 

(Abudara, Retamal, Del Rio, & Orellana, 2018), plasma membrane ion channels like P2X7 288 

receptors, exchangers such as the cysteine-glutamate antiporter, or reversal of 289 

neurotransmitter transporters (Malarkey & Parpura, 2008). It should be noted, however, 290 

that the existence, the possible mechanisms of gliotransmission and the functional 291 

consequences of the release of gliotransmiitters are still matters of debates and 292 

controversies and that in vivo studies on gliotransmission are still sparse. These issues 293 

have been discussed recently in several reviews (Araque et al., 2014; Bazargani & Attwell, 294 

2016; Dallérac, Zapata, & Rouach, 2018; Fiacco & McCarthy, 2018; Khakh & Sofroniew, 295 

2015; Panatier & Robitaille, 2016; Papouin, Dunphy, Tolman, Foley, et al., 2017; Rusakov 296 

et al., 2014; Savtchouk & Volterra, 2018). We will therefore only summarize here findings 297 

on hippocampal gliotransmitters other than ATP that are relevant in the context of 298 

epilepsy.  299 

Following the pioneer work of Parri et al (Parri, Gould, & Crunelli, 2001) in the thalamus, 300 

we and others showed that astrocytes in acute slices of the hippocampus release 301 

glutamate that induces slow inward currents (SICs) in CA1 pyramidal cells due to the 302 

activation of extrasynaptic NMDA receptors (Angulo, Kozlov, Charpak, & Audinat, 2004; 303 

Fellin et al., 2004; G Perea & Araque, 2005). SICs generated by a single astrocyte have 304 

the capacity to synchronize a small ensemble of neurons whose soma or dendrites are 305 

within the morphological domain of this astrocyte. It was later on proposed that this form of 306 

gliotransmission could be at the origin of hypersynchronous excitation of neurons in 307 

models of epilepsy (Kang, Xu, Xu, Nedergaard, & Kang, 2005; Tian et al., 2005). However, 308 

although Ca2+ signalling in astrocytes and SICs frequency are enhanced during ictal 309 

events triggered in acute hippocampal slices, blocking action potentials with tetrodoxin 310 

blocks ictal events but not SICs whereas blocking NMDA receptors blocks SICs but not 311 

ictal events (Fellin, Gomez-Gonzalo, Gobbo, Carmignoto, & Haydon, 2006). Yet, astrocyte 312 

glutamate also contribute to set the extracellular concentration of ambient glutamate that 313 

tonically activate NMDA receptors of CA1 neurons (Cavelier & Attwell, 2005; Jabaudon et 314 
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al., 1999; Le Meur, Galante, Angulo, & Audinat, 2007) and regulate synaptic glutamate 315 

release through the activation of presynaptic metabotropic glutamate receptors or NMDA 316 

receptors in CA1 and in the dentate gyrus, respectively (Jourdain et al., 2007; Gertrudis 317 

Perea & Araque, 2007). In the context of epilepsy, in vitro models of seizure showed that 318 

an excitatory loop involving astrocyte Ca2+ signalling, glutamate and ATP signalling lowers 319 

seizure threshold for neurons (Gomez-Gonzalo et al., 2010). Moreover, increased 320 

astrocyte Ca2+ signalling and glutamate release contribute to neuronal cell death in the 321 

neocortex in vivo after a pilocarpine induced SE (Ding et al., 2007). 322 

Finally, it should be noted also that astrocyte Ca2+ signalling is modulated by inhibitory 323 

interneurons through GABA signalling and the activation of astrocyte GABA-B receptors 324 

and GAT-3 transporters (Mariotti, Losi, Sessolo, Marcon, & Carmignoto, 2016; Matos et 325 

al., 2018; Mederos et al., 2019) but also through the release of somatostatin by specific 326 

interneurons (Mariotti et al., 2018). This interneuron-induced astrocyte Ca2+ signalling 327 

differentially modulates inhibitory synaptic transmission originating from different types of 328 

interneurons (Matos et al., 2018; Mederos & Perea, 2019). Knowing the importance of 329 

neuronal inhibitory networks in different forms of epilepsy, such as temporal lobe or focal 330 

cortical epilepsies (Trevelyan, Muldoon, Merricks, Racca, & Staley, 2015) changes in the 331 

activity or survival of inhibitory interneurons can lead to impaired astrocyte signalling that 332 

may be relevant in the context of these epilepsies. 333 

 334 

2.  Astrocyte release of ATP (mechanisms of release) 335 

ATP plays an important role in physiological and pathological conditions, via activating 336 

various receptors on glia and neurons (Illes & Verkhratsky, 2016)(Fig. 1). Under 337 

physiological conditions, the concentration of ATP in extracellular space is very low. 338 

However, it can dramatically increase under pathological conditions such as trauma, 339 

ischemia/hypoxia, inflammation or excessive neuronal activity (Engel et al., 2016; Franke, 340 

Verkhratsky, Burnstock, & Illes, 2012; Rassendren & Audinat, 2016; Rodrigues, Tome, & 341 

Cunha, 2015). The sustained increase of extracellular ATP concentration under 342 

pathological conditions indicates that mechanisms regulating ATP release exist. 343 

As for other gliotransmitters (see section 1.4), a variety of molecular mechanisms of ATP 344 

release from astrocytes have been suggested, including calcium-dependent exocytosis 345 

and opening of large conductance channels such as hemichannels and anion channels 346 
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(Araque et al., 2014; Engel et al., 2016; Hamilton & Attwell, 2010; Harada et al., 2016; 347 

Rassendren & Audinat, 2016; Xiong, Sun, Teng, Jin, & Zhou, 2018). Regarding vesicular 348 

release, ATP can be packaged into vesicles and co-released with other transmitters 349 

(Zimmermann, 1994). A vesicular nucleotide transporter (VNUT) concentrating ATP into 350 

vesicles has been identified (Sawada et al., 2008) and is also expressed in non-neuronal 351 

cells where it localizes with vesicles of the regulatory secretary pathway (Lazarowski, 352 

2012). Moreover, VNUT and fluorescent ATP co-labelled lysosomes in astrocytes have 353 

been observed and several groups have shown that astrocytes release ATP by lysosome 354 

exocytosis (Oya et al., 2013; Verderio et al., 2012; Zhang et al., 2007). Verderio and co-355 

workers further identified that vesicle-associated membrane protein-7 (VAMP7), which is 356 

insensitive to the tetanus toxin, mediated lysosome exocytosis and contributed to ATP 357 

release from astrocytes (Verderio et al., 2012). Different functions of astrocyte vesicular 358 

release of ATP have been proposed. In cultured astrocytes, ATP vesicular release is the 359 

predominant cause of intercellular calcium waves (Bowser & Khakh, 2007). In vivo, 360 

brainstem astrocytes were shown to control breathing through a pH-dependent vesicular 361 

release of ATP (Gourine et al., 2010; Kasymov et al., 2013). Moreover, the use of 362 

transgenic mice expressing a dominant-negative cytoplasmic SNARE domain of the 363 

synaptobrevin-2 protein specifically in astrocytes (dnSNARE mice) provided evidence 364 

indicating that ATP vesicular release from astrocytes regulates synaptic strength and 365 

plasticity in the hippocampus (Pascual et al., 2005), sleep homeostasis in the 366 

hypothalamus (Halassa et al., 2009), inhibition and induction of long-term potentiation in 367 

the neocortex (Lalo et al., 2014; Rasooli-Nejad, Palygin, Lalo, & Pankratov, 2014). 368 

Although the specificity of the astrocyte expression of the transgene in these mice has 369 

been questioned (Fujita et al., 2014), a more recent report has excluded any neuronal 370 

expression in the hippocampus (Papouin, Dunphy, Tolman, Dineley, & Haydon, 2017). 371 

Overall, these studies indicate that astrocytes have the capability to release ATP from 372 

synaptic-like vesicles and that this process regulates the physiology of different neuronal 373 

networks.  374 

Additional mechanisms contributing to the release of ATP from astrocytes corresponds to 375 

the so-called conductive pathways allowing direct exchange between the cytoplasmic 376 

compartment and the extracellular space through large pores (Lazarowski, 2012; 377 

Rassendren & Audinat, 2016). The best documented of these pathways is ATP 378 

permeation through hemichannels, either constituted by pannexins or by connexins. 379 
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Although these two families of proteins have similar membrane topology (i.e. 4 380 

transmembrane domains, 2 extracellular and 1 intracellular loop, along with intracellular N- 381 

and C- terminal tails), they have no amino acid sequence homology and differ in their 382 

activation mode. Several studies have shown that pannexin-1 (PANX1) can release ATP in 383 

physiological conditions in response to the activation of different pathways, including 384 

purinergic receptor activation (Bao, Locovei, & Dahl, 2004; Pelegrin & Surprenant, 2006). 385 

Since PANX1 is widely expressed and can be activated at membrane potentials in the 386 

physiological range, it is considered as the major cause of ATP efflux through 387 

hemichannels. However, the positive feedback loop of ATP-induced ATP release may also 388 

constitute a danger signal under pathological conditions (Rodrigues et al., 2015) and it 389 

should be noted that the activity of PANX1 channels is much higher in acute slices (human 390 

and mice) experiencing ictal discharges than in slices without ictal discharges (Dossi, 391 

Blauwblomme, et al., 2018). Conditions leading to ATP efflux through hemiconnexins 392 

require low extracellular calcium concentration and strong depolarization, indicating that 393 

this pathway operates mostly in pathological conditions. The results obtained from 394 

pannexin- and connexin-deficient mice have led to somewhat controversial interpretations 395 

(Bedner, Steinhauser, & Theis, 2012; Hanstein et al., 2013) but they nevertheless support 396 

the idea that hemichannels contribute to the release of ATP, particularly in pathological 397 

conditions. 398 

Anion channels have long been suspected to mediate ATP release from astrocytes 399 

(Kimelberg, MacVicar, & Sontheimer, 2006). In cultured astrocytes, ATP release through 400 

Maxi-anion channels may play a role in glutamate-induced release of ATP (Zhao, Gu, Liu, 401 

Zhang, & Liu, 2017) whereas volume-regulated anion channels (VRAC) contribute to the 402 

propagation of calcium waves (Fujii, Maekawa, & Morita, 2017) through an autocrine 403 

mechanism (Akita, Fedorovich, & Okada, 2011). The exact contribution of astrocyte anion 404 

channels to physiological and pathological processes in vivo remains largely unknown but 405 

the recent molecular identification of several subunits constituting these channels should 406 

help resolving this issue (Han et al., 2019; Osei-Owusu, Yang, Vitery, & Qiu, 2018). In the 407 

context of epilepsy, additional studies are required to evaluate the relative contribution of 408 

astrocytic exocytotic and conductive pathways to a rise in ATP in the extracellular space 409 

during episodes of intense neuronal activities. Interestingly, PANX1 channel activation was 410 

shown recently to promote seizure generation through ATP signalling involving P2 411 

receptors in human cortical brain tissue and in a mouse model of MTLE (intra-hippocampal 412 
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kainate) (Dossi, Blauwblomme, et al., 2018). However, both neuronal and astroglial 413 

PANX1 channels were activated in these conditions and the specific role of PANX1-414 

dependent release of ATP from astrocytes remains to be tested.  415 

 416 

3. Purinergic signalling in the onset and progression of epilepsy 417 

Despite the long-lasting interest in the study of ATP as a signalling messenger the exact 418 

roles of purinergic signalling in pathological conditions is far from being elucidated. Once 419 

released into the extracellular space, ATP is rapidly hydrolysed to ADP and adenosine by 420 

different ectonucleotidases present in the extracellular environment (Haydon & 421 

Carmignoto, 2006). Thereby, the release of ATP generates different purines that can 422 

activate different types of receptors, including P2X and P2Y receptors as well as 423 

adenosine receptors (Rassendren & Audinat, 2016). The activation of these receptors may 424 

have a variety of effects on the onset and progression of epilepsy and this will depend on 425 

the extracellular concentrations of the different purines. It is commonly believed that these 426 

concentrations increase under pathological conditions, (Franke et al., 2012; Rodrigues et 427 

al., 2015) but in the context of epilepsy this has only been convincingly established for 428 

adenosine (During & Spencer, 1993; Lopatář, Dale, & Frenguelli, 2011). However, a recent 429 

in vivo study reported increased ATP concentrations after spontaneous seizures in the 430 

chronic phase of the rat pilocarpine model (Doná et al., 2016). New genetically encoded 431 

sensors based on the use of mutated P2 receptors should help clarifying this issue for ATP 432 

and ADP.  433 

Adenosine has a well-established anticonvulsant action (Boison, 2012, 2016; Cieślak, 434 

Wojtczak, & Komoszyński, 2017; Masino, Kawamura, & Ruskin, 2014). This primarily 435 

relies on the activation of adenosine A1 receptors that decrease excitatory synaptic 436 

transmission and, for instance, mice lacking A1 receptors have lower threshold of seizure 437 

propagation (Boison, 2012; Fedele, Li, Lan, Fredholm, & Boison, 2006) whereas A2 and 438 

A3 receptors have rather convulsive or deleterious effects (Cunha, 2016; Matute & 439 

Cavaliere, 2011). The astrocytic enzyme adenosine kinase (ADK) appears to play a key 440 

role in regulating the anticonvulsant effect of adenosine. The expression of ADK is 441 

upregulated during epilepsy, leading to a deficiency in adenosine concentration and thus 442 

of A1 receptor activation (Boison, 2016).  443 
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In contrast, the role of ATP signalling in epilepsy is less well understood. There is, 444 

however, a general agreement that ATP signalling contributes the pathology of epilepsy. 445 

Direct application of ATP analogues in the brain evokes neuronal excitation and promotes 446 

seizure activity (Rassendren & Audinat, 2016). There is a profound remodelling of the 447 

expression of hippocampal P2 receptors following SE in rodents (Avignone, Ulmann, 448 

Levavasseur, Rassendren, & Audinat, 2008; Engel et al., 2016; Rassendren & Audinat, 449 

2016), suggesting that these receptors contribute to epileptogenesis. Analysis of the role 450 

of specific P2 receptors led to contrasting results depending on the identity of these 451 

receptors, their cellular expression but also on the type of epilepsy or on the experimental 452 

model. Many of these studies were directed toward the analysis of P2X7, P2X4 and 453 

P2Y12 receptors expressed by microglia and have been reviewed previously (Engel et al., 454 

2016; Eyo & Wu, 2019; Rassendren & Audinat, 2016). Without entering in too many 455 

details, it is nevertheless worth mentioning that P2X4 and P2X7 have rather detrimental 456 

effects whereas P2Y12 have more protective effects on cell survival and disease 457 

progression in experimental SE or TLE. It should also be remembered that purinergic 458 

signalling is an important communication pathway between astrocytes and microglia. For 459 

instance, microglial cells sense ATP released by astrocytes (Davalos et al., 2005; Schipke, 460 

Boucsein, Ohlemeyer, Kirchhoff, & Kettenmann, 2002) and ATP released by microglia 461 

enhances Ca2+ signalling and glutamate release by astrocytes (O. Pascual, Ben Achour, 462 

Rostaing, Triller, & Bessis, 2012). It is therefore very likely that microglia and astrocyte 463 

purinergic signalling influence each other in pathological settings known to favour the 464 

release of ATP (see above). 465 

The role of metabotropic P2Y1 receptors in epilepsy has been also studied. P2Y1 is 466 

expressed mostly in astrocytes, oligodendrocytes and in neurons, in particular 467 

hippocampal inhibitory interneurons (Bowser & Khakh, 2004). A recent study based on the 468 

analysis of P2Y1 deficient mice but also on the use of selective agonists and antagonists 469 

of P2Y1 indicates that these receptors have an anticonvulsant action at the onset of SE, 470 

either triggered by systemic pilocarpine or by intra-amygdala kainate, but have 471 

proconvulsant effects once SE has been initiated and favour spontaneous seizures during 472 

the chronic phase of these models (Alves et al., 2019). Surprisingly, the same study 473 

reported an up-regulation of P2Y1 in microglia and in neurons, but no expression of these 474 

receptors in astrocytes after SE. Considering the many studies involving a role of P2Y1 in 475 

astrocytes, cell type specific knockout of P2Y1 receptors are now needed to help clarifying 476 
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these complex effects (see also below). Overall these observations support the idea that 477 

ATP signalling intervenes in epilepsy, but the exact mechanisms involved and their 478 

influence on epileptogenesis and ictogenesis are still unclear. However, several 479 

mechanisms involving ATP signalling in astrocytes have been recently updated under 480 

pathological conditions and in particular in the context of epilepsy. 481 

 482 

4.  Astrocyte ATP-mediated intercellular signalling in epilepsy  483 

ATP is an essential mediator of communication between astrocytes and between 484 

astrocytes and other types brain cells (Butt, 2011)(Fig. 1). Whether astrocyte purine-485 

mediated signalling is impaired in epilepsy is an intriguing question receiving increased 486 

attention. Genetic impairment of the vesicular ATP release from astrocytes by expressing 487 

a dominant-negative SNARE (see above and (Pascual et al., 2005)) delays the onset of 488 

recurrent seizures, decrease epileptiform activity and reduce hippocampal damage after a 489 

pilocarpine-induced SE (Clasadonte, Dong, Hines, & Haydon, 2013). These effects 490 

probably involve the control of NMDA receptor expression that is regulated by adenosine 491 

A1 receptor activation following ATP release from astrocyte (Deng, Terunuma, Fellin, 492 

Moss, & Haydon, 2011; Fellin et al., 2009). On the other hand, ATP release through 493 

PANX1 appears to contribute to ictal discharges in human epileptic brain tissue and in 494 

mouse models of MTLE (intra-hippocampal kainate) or SE (systemic kainate) (Dossi, 495 

Blauwblomme, et al., 2018; Santiago et al., 2011), although in these two studies the 496 

source of ATP was not specifically determined. Once released by astrocytes, ATP could 497 

have several effects. Selective activation of hippocampal astrocytes by optogenetics was 498 

shown to induce ATP release that led to the excitation of CCK-expressing interneurons, 499 

through P2Y1 receptor activation, and to the inhibition of pyramidal cells, through A1 500 

receptors (Tan et al., 2017). These effects should rather have anti-convulsive effects but it 501 

should be noted that they have been observed and studied in the presence of glutamate 502 

and GABA-A receptor antagonists, making it difficult to evaluate their consequences on 503 

the whole hippocampal network. Using a similar approach, but in absence of blockers of 504 

synaptic transmission, we observed that the initial and dominant effect of optogenetic 505 

activation of hippocampal astrocytes was an excitation of pyramidal neurons (Shen, 506 

Nikolic, Meunier, Pfrieger, & Audinat, 2017). This excitation was the consequence of an 507 

autocrine ATP signalling in astrocytes involving P2Y1 receptors and boosting Ca2+ 508 
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signalling and glutamate release from astrocytes. In CA1, this astrocyte glutamate release 509 

led to the activation of post-synaptic NMDA receptors and pre-synaptic mGluR receptors 510 

on excitatory terminals. Of note, this initial excitation of pyramidal neurons was followed by 511 

an inhibition due to A1 receptor activation (Shen et al., 2017), as observed by Tan et al. 512 

(2017). It is difficult to extrapolate from these observations made with optogenetic 513 

activation of astrocytes in non-epileptic tissue what would be the net effect of astrocyte 514 

ATP signalling in the epileptic hippocampus where concentration of purines and 515 

expression of their receptors are modified (see section 3 above). However, enhanced Ca2+ 516 

signalling in astrocytes, P2Y1 receptors and presynaptic mGluR receptors had been 517 

already associated with epilepsy. Ca2+ signalling is enhanced in cortical astrocytes during 518 

several days after pilocarpine-induced SE and contribute to neuronal excitotoxicity (Ding et 519 

al., 2007). Ca2+ signals in hippocampal astrocytes facilitate the propagation of epileptiform 520 

activity induced by kainate in vivo (Heuser et al., 2018) and Ca2+ signalling is enhanced in 521 

astrocyte endfeet in vivo during the latent phase of a mouse model of MTLE (unilateral 522 

intra-cortical kainate; (Szokol et al., 2015)). In a rat model (rapid kindling) of MTLE, 523 

activation of P2Y1 receptors is responsible for astrocyte Ca2+ hyperactivity that induces an 524 

increase in glutamate release from astrocytes and a downstream activation of neuronal 525 

mGluR5, thereby increasing release probability at the CA3-CA1 synapses (Álvarez-526 

Ferradas et al., 2015). Blocking astrocyte Ca2+ signalling or inhibiting P2Y1 or mGluR5 527 

receptors relieved this abnormal enhancement of synaptic strength. The same group 528 

reported subsequently that astrocyte PANX1 hemichannels are the route through which 529 

ATP is released before activating P2Y1 receptors and triggering the increased astroglial 530 

Ca2+ signalling (Wellmann, Álvarez-Ferradas, Maturana, Sáez, & Bonansco, 2018). These 531 

observations are consistent with an enhanced autocrine ATP signalling being responsible 532 

for an increased glutamate release from astrocytes promoting neuronal excitation in the 533 

epileptic hippocampus. It is not clear yet whether this autocrine signalling pathway is 534 

involved in the purine-dependent action of astrocytes favouring ictal discharges in human 535 

epileptic brain tissue (see above and (Dossi, Blauwblomme, et al., 2018)). It should be 536 

noted, however, that in a recent study using a model of SE induced by systemic injection 537 

of kainate, targeted deletion of PANX1 from astrocytes lowers the level of ATP but 538 

potentiates seizures during SE (Scemes, Velíšek, & Velíšková, 2019). This effect was 539 

found to be related to the lower level of adenosine consecutive to the increased level of 540 

ADK in astrocytes.  541 
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Altogether, the majority of the above cited observations point to the conclusion that the 542 

actions of astrocyte purinergic signalling determined by the combined effects of ATP, 543 

adenosine and glutamate can displace the equilibrium between excitation and inhibition 544 

and promote appearance of epileptiform activity. It is important to note that P2Y1 545 

regulation of astrocyte Ca2+ signalling described in the context of epilepsy has been also 546 

reported in a mouse model of Alzheimer’s disease (Delekate et al., 2014; Reichenbach et 547 

al., 2018) and in a model of traumatic brain injury (Choo et al., 2013). In both cases, 548 

blocking this pathway had beneficial consequences on outcome of these models. Impaired 549 

astrocyte purinergic signalling could thus be a common signature of different CNS 550 

pathologies.  551 

Purinergic interactions between microglia and astrocytes are likely to influence how 552 

astrocytes regulate neuronal excitability and epilepsy progression. Together with 553 

astrogliosis, reactivity of microglia is another typical feature of human and experimental 554 

epilepsies and purinergic signalling is enhanced in both cell types (Devinsky et al., 2013; 555 

Rassendren & Audinat, 2016). In the hippocampus of naïve animals, activation of 556 

microglial TLR4 receptors rapidly induces a release of ATP that activates astrocytic P2Y1 557 

receptors and the release of glutamate by astrocytes, which in turn activates mGluR5 558 

receptors on presynaptic glutamatergic terminals (Pascual et al., 2012). This cascade 559 

eventually leads to an enhancement of excitability and promotes the appearance of 560 

epileptiform activities in vitro in experimental conditions where GABA receptors are 561 

blocked and external Mg2+ is low. Since microglial cells also express purinergic receptors, 562 

the release of ATP by astrocytes consecutively to the activation of P2Y1 receptors (see 563 

above) could initiate a vicious circle by recruiting further microglia. This possibility has not 564 

been specifically tested in the context of epilepsy but purine-mediated crosstalk between 565 

these glial cells has been reported in the corpus callosum (Davalos et al., 2005; Schipke et 566 

al., 2002) and also in the dentate gyrus following pilocarpine induced SE by showing that 567 

blocking microglial P2X7 receptors prevents astroglial death (Kim, Kwak, Jo, & Kang, 568 

2009). Interestingly, in a model of traumatic brain injury, reactive microglia induces a 569 

protective phenotype of astrocytes by down-regulating the expression of astrocytic P2Y1 570 

receptors (Shinozaki et al., 2017). 571 

Bidirectional interactions between microglia and astrocytes in epilepsy will not only set the 572 

level of purinergic signalling but probably also that of microglial release of cytokines. This 573 

is particularly important since cytokines are implicated in the control of glutamate release 574 
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from astrocytes (see next section). Careful examination of purinergic receptors types that 575 

contribute to the crosstalk between astrocytes and microglia is required to better 576 

characterize paracrine glial signalling in epilepsy. Clearly more targeted genetic 577 

approaches involving deletion or activation of specific type of purinergic receptor on 578 

astrocytes or microglia could clarify the actual outcome of such purinergic communication 579 

on the functional changes in the epileptic brain. 580 

 581 

5.  Cytokine control of astrocyte purinergic signalling in epilepsy  582 

There is strong evidence that high levels of key pro-inflammatory cytokines, such as tumor 583 

necrosis factor alpha (TNFα) and IL-1β, and downstream signalling that these cytokines 584 

promote, contribute to the neuronal hyper-excitability and degeneration in epilepsy (van 585 

Vliet, Aronica, Vezzani, & Ravizza, 2018).These neuromodulatory actions of cytokines, 586 

distinct from their canonical function in the immune system, could induce seizures by 587 

acting on astrocytes in multiple ways. For instance, these cytokines released by microglia 588 

inhibit gap junctions in astrocytes in vitro (Meme et al., 2006) and in MTLE, inhibition of 589 

gap junctions by TNFα and IL-1β leads to the impairment of astrocytic buffering of 590 

extracellular K+ (Bedner et al., 2015). Furthermore, TNFα could induce seizures through 591 

excessive astrocyte-neuron gliotransmitter mediated signalling. Clues supporting this idea 592 

can be drawn from studies showing, on the one hand, that cytokines can boost glutamate 593 

release from astrocytes (Vesce, Rossi, Brambilla, & Volterra, 2007) and, on the other 594 

hand, that astrocytic glutamate promotes abnormal neuronal activity in epilepsy (see 595 

sections 1.4 and 4).  596 

In the context of purinergic signalling in astrocytes, TNFα is the key cytokine that can 597 

amplify astrocytic glutamate release through coupling with P2Y1 receptors (Fig. 1). It was 598 

first shown that binding of TNFα to the astrocytic TNFR1 receptors is a powerful positive 599 

modulator of glutamate release from astrocytes (Bezzi et al., 2001). Later on, the same 600 

group showed that TNFα controls P2Y1R-dependent glutamate release from astrocytes 601 

(Domercq et al., 2006) and that gliotransmission driven by this pathway loses its efficacy in 602 

modulating glutamatergic synaptic activity in TNFα knockout mice (Santello, Bezzi, & 603 

Volterra, 2011). This stimulation of astrocyte glutamate release by a cytokine was 604 

demonstrated in the dentate gyrus and leads to increase the release probability at 605 

glutamatergic synapses impinging onto granule cells through the activation of pre-synaptic 606 
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NMDA receptors. It is not clear yet whether TNFα also potentiate other outcomes of 607 

astrocyte glutamate release in the hippocampus, such as the generation of SICs (Angulo 608 

et al., 2004; Fellin et al., 2004) or the mGluR-dependent potentiation of synaptic excitation 609 

in CA1 (Gertrudis Perea & Araque, 2007).   610 

Although P2Y1R-dependent signalling is one of the main pathways regulating astrocyte-611 

neuron interactions through the release of glutamate, it has not been considered as a 612 

specific cytokine target in the epileptic brain. However, TNFα signalling is rapidly 613 

upregulated in the hippocampus after SE (Avignone et al., 2008) and astrocytic purinergic 614 

P2Y1 signalling is highly active in models of MTLE (see above section 4). Our recent 615 

findings indicate that TNFα signalling is one pathway that increases astrocyte purinergic 616 

signalling in epilepsy. We indeed confirmed that TNFα triggers a Ca2+-dependent 617 

glutamate release from astrocytes that boosts excitatory synaptic activity in granule cells of 618 

the dentate gyrus through presynaptic NMDA receptors (see above). We further showed 619 

that this effect of TNFα can be mimicked by optogenetic activation of astrocyte and 620 

demonstrated that this action involves the autocrine activation of astrocyte P2Y1 receptors 621 

(Nikolic et al., 2018). In a mouse model of MTLE (unilateral intracortical kainate), this 622 

autocrine loop seems permanently activated at the end of the latent phase that precedes 623 

the appearance of spontaneous seizures: In the ipsilateral dentate gyrus, the frequency of 624 

mEPSCs is higher than in the control conditions, exogenous TNFα does not trigger 625 

anymore the increase of excitatory synaptic transmission and blocking P2Y1 receptors, 626 

which has no effect in control conditions, reduces excitatory synaptic activity to the level of 627 

control conditions (Nikolic et al., 2018). This signalling pathway could therefore be 628 

responsible for the lowering of seizure threshold by TNFα (Iori, Frigerio, & Vezzani, 2016) 629 

and thus be an important component of the functional remodelling (epileptogenesis) that 630 

will drive the hippocampus to spontaneous seizures.  631 

Targeting the coupling of TNFα with astrocyte purinergic signalling may thus hold the 632 

potential to be a useful therapeutic strategy for reducing astrocytic glutamate release and 633 

normalizing synaptic activity in epilepsy. It should be kept in mind, however, that the 634 

precise mechanism of the cytokine-P2Y1 interaction in epilepsy is still unclear. A promising 635 

candidate to be considered is of course TNFR1 whose expression increased in animal 636 

model of seizures and has been reported to mediate the ictogenic effects of TNFα (Iori et 637 

al., 2016). Interestingly, TNFR1 has been shown to mediate TNFα effects on astrocyte 638 

glutamate signalling in an animal model of multiple sclerosis (Habbas et al., 2015). 639 
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Inhibiting the function of astrocyte TNFR1, or P2Y1, should prevent the lowering of seizure 640 

threshold. Our observation that this TNFα-P2Y1 pathway is activated during the latent 641 

phase, i.e. before the appearance of the first spontaneous seizures, suggests that 642 

targeting this pathway could be a disease-modifying strategy through which the 643 

occurrence of spontaneous seizures could be delayed or event prevented. 644 

  645 
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 646 

 647 

Figure 1: Purinergic signalling between astrocytes, neurons and microglial cells in 648 

epilepsy. The mechanisms of ATP release and the involvement of specific purinergic P2X 649 

and P2Y receptors types are depicted for astrocytes and microglia. Activation of astrocytic 650 

P2Y1 receptors leads to the rise in intracellular Ca2+ that promotes astrocyte release of 651 

glutamate, which acts on pre- and post- synaptic neuronal glutamate receptors and 652 

increases excitation. ATP released from astrocytes can be converted into adenosine and 653 

promote activation of adenosine A1 receptors which will favour inhibition. The cytokine 654 

TNF likely released by microglia, activates the P2Y1R-dependent glutamate release 655 

from astrocytes and thus neuronal excitation.  656 

  657 
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