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Introduction and mathematical model

We consider the problem of imaging the position and polarizability tensor of N small dielectric polarizable inclusions in an homogeneous medium (with permeability µ) by using polarization data only. This is a common assumption in optics, where it is easier to measure polarization (a statistical property of light) than the full electrical field. We assume that the medium is probed by a single electric source whose position x s ∈ R 3 is known and dipole moment is j s (ω) ∈ C 3 at the frequency ω. Furthermore, the source and the two dimensional array A of receivers (within the plane z = 0) are supposed to be far from the inclusions. To model "white light" we assume its "rescaled dipole moment" j s (ω) = µ ω 2 j s (ω) ∈ C 3 is given at each frequency by a circular symmetric Gaussian random vector with zero mean j s (ω) = 0. The covariance of this vector is assumed known and determines the polarization state of the probing wave. It is given as U s J s (ω)U * s , where J s (ω) is a 2 × 2 complex positive definite matrix and U s is 3 × 2 unitary matrix whose range Ran(U s ) is the cross-range of the source. This corresponds to losing the range component of the source's polarization in the far field, where the probing wave is close to a plane wave near the inclusions [START_REF] Bardsley | Imaging small polarizable scatterers with polarization data[END_REF].

At each realization, the source emits an incident wave: E i (x; ω) = G(x, x s ; ω) j s (ω), where G(x, x s ; ω) denotes the standard Dyadic Green tensor [START_REF] Novotny | Principles of nano-optics[END_REF]. As the inclusions are assumed to be small with respect to the wavelength, they can be modelled as a point-like inclusion localized at y n ∈ R 3 whose scattering properties are determined by a polarizability tensor α (y n ; ω) for n = 1, . . . , N that is a 3 × 3 complex symmetric matrix. We denote by α(y n ) = µ ω 2 α (y n ; ω) "the rescaled polarizability tensor", assumed here to be frequency independent. The incident wave is then reflected and the resulting scattered field (see [START_REF] Novotny | Principles of nano-optics[END_REF]) is given under the first Born approximation by: E s (x; ω) = Π(x; ω)j s (ω) with

Π(x; ω) = N n=1 G(x, y n ; ω) α(y n ) G(y n , x s ; ω).
Finally, one records at each receiver x r ∈ A the 2 × 2 coherency matrix:

ψ(x r ; ω) = ( E(x r ; ω)E(x r ; ω) 1:2,1:2 , (1)
that encodes the polarization of the total field E = E i +E s on A (where • is the expectation).

Kirchhoff imaging with ideal data

We consider now the case of ideal data, that is when one can measure Π(x; ω) for x ∈ A or equivalently the scattered field for three independent source's dipole moments. We use a matrix-valued electromagnetic version of the Kirchhoff imaging function [START_REF] Cassier | Imaging polarizable dipoles[END_REF]:

I[Π](y; ω) = A dx r G(x r , y; ω)Π(x r ; ω)G(x s , y; ω).
We denote by U r = [e 1 , e 2 ] (where (e 1 , e 2 , e 3 ) is the canonical basis of R 3 ) the 3 × 2 unitary matrix whose range is the cross-range of A. We extract from I a stable reconstruction [START_REF] Bardsley | Imaging small polarizable scatterers with polarization data[END_REF][START_REF] Cassier | Imaging polarizable dipoles[END_REF] of the position y n and of the 2 × 2 block α n = U * r α(y n )U s of the polarizability tensor α(y n ) (up to a complex phase). The other components of α(y n ) are lost in this regime of propagation. In the Fraunhofer regime [START_REF] Bardsley | Imaging small polarizable scatterers with polarization data[END_REF], resolution estimates for the reconstruction of these two quantities are given (as in acoustics) by the Rayleigh criterion in cross-range and by c/B in range (where the constant c is the wave propagation speed and B the frequency bandwidth of the data Π(•, ω)). Moreover, one shows that

I[Π](y; ω) ≈ I[U r ΠU * s ](y; ω) with Π = U * r ΠU s .
Thus, instead of using Π, one can image as well with U r ΠU * s , i.e. the ideal data Π projected on the left on the cross-range of the array and on the right on the cross-range of the source.

The Phase-less imaging method

The strategy we use for imaging generalizes the approach for scalar waves of [START_REF] Bardsley | Kirchhoff migration without phases[END_REF]. One first preprocesses the data ψ(x r ; ω) to calculate the matrix p(ψ) = U r ΠU * s + error terms. It consists in particular to partially recover the data U r ΠU * s by eliminating the contribution of the incident field E i in [START_REF] Bardsley | Imaging small polarizable scatterers with polarization data[END_REF]. The remaining error terms are antilinear and sesquilinear in Π. The key is that these terms do not affect the Kirchhoff images for high frequencies. Indeed, one shows [START_REF] Bardsley | Imaging small polarizable scatterers with polarization data[END_REF] via a stationary phase argument and under mild assumptions on the geometry of the problem that the imaging functions with either p(ψ) or Π data are similar, i.e. as ω → ∞ we have

I[p(ψ)](y; ω) = I[U r ΠU * s ](y; ω) + o(1).
Our method is illustrated in figure 1 where the medium contains two dipoles located at y 1 = (-6, 4, 105)λ 0 and y 2 = (7, 4, 105)λ 0 with λ 0 the central wavelength of B. To image the position, we use the Frobenius norm α(•) F of the recovered polarizability tensor. To visualize the polarization tensor (up to a complex phase) we visualize Re α = 1/2( α + α) and Im α = (1/2i)( αα), which are real non-symmetric matrices. We visualize 2 × 2 real matrices A with the ellipse E(A) = {Av | v 2 = 1}. To emphasize that the matrices are not symmetric, we also display the vectors σ 1 v 1 and σ 2 v 2 as axes, where the σ j are the singular values and v j the right singular vectors of A. Here (up to a reference phase [START_REF] Bardsley | Imaging small polarizable scatterers with polarization data[END_REF]) the true tensor Re α (resp. Im α) is depicted by the white (resp. yellow) ellipses/axes, whereas the recovered tensor is depicted using black (real part) and magenta (imaginary part) ellipses/axes.
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 1 Figure 1: Cross-range (top) and range (bottom) images of α(•) F . The columns show reconstructions with Π (left) and with p(ψ) (right).Here (up to a reference phase[START_REF] Bardsley | Imaging small polarizable scatterers with polarization data[END_REF]) the true tensor Re α (resp. Im α) is depicted by the white (resp. yellow) ellipses/axes, whereas the recovered tensor is depicted using black (real part) and magenta (imaginary part) ellipses/axes.
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