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Abstract

We present a method for imaging small dielec-
tric inclusions in a homogeneous medium from
polarization measurements. The problem is a
generalization of phase-less imaging, with data
being the coherency matrix of the electric field
at an array of receivers. The data are obtained
by illuminating the scatterers with a single point
source with known position and polarization.
The imaging consists of two steps. First we
partially recover “the ideal data”, i.e. when the
full scattered field is measured on the array for
three independent source polarizations. Second,
we use an electromagnetic version of Kirchhoff
imaging. We show that for high frequencies, the
images we obtain are close to the ones obtained
with ideal data. Resolution estimates of the re-
constructed quantities and numerical results to
illustrate our method are presented. A time do-
main interpretation of this imaging problem is
left to the talk.
Keywords: Polarization imaging, Kirchhoff mi-
gration, phaseless imaging, coherency matrix.

1 Introduction and mathematical model

We consider the problem of imaging the posi-
tion and polarizability tensor of N small dielec-
tric polarizable inclusions in an homogeneous
medium (with permeability µ) by using polar-
ization data only. This is a common assumption
in optics, where it is easier to measure polariza-
tion (a statistical property of light) than the full
electrical field. We assume that the medium is
probed by a single electric source whose posi-
tion xs ∈ R3 is known and dipole moment is
j′s(ω) ∈ C3 at the frequency ω. Furthermore,
the source and the two dimensional array A of
receivers (within the plane z = 0) are supposed
to be far from the inclusions. To model “white
light” we assume its “rescaled dipole moment”
js(ω) = µω2j′s(ω) ∈ C3 is given at each fre-
quency by a circular symmetric Gaussian ran-
dom vector with zero mean 〈js(ω)〉 = 0. The

covariance of this vector is assumed known and
determines the polarization state of the probing
wave. It is given as UsJs(ω)U

∗
s , where Js(ω) is

a 2× 2 complex positive definite matrix and Us

is 3× 2 unitary matrix whose range Ran(Us) is
the cross-range of the source. This corresponds
to losing the range component of the source’s
polarization in the far field, where the probing
wave is close to a plane wave near the inclu-
sions [1].

At each realization, the source emits an inci-
dent wave: Ei(x;ω) = G(x,xs;ω) js(ω), where
G(x,xs;ω) denotes the standard Dyadic Green
tensor [4]. As the inclusions are assumed to be
small with respect to the wavelength, they can
be modelled as a point-like inclusion localized
at yn ∈ R3 whose scattering properties are de-
termined by a polarizability tensor α′(yn;ω) for
n = 1, . . . , N that is a 3× 3 complex symmetric
matrix. We denote by α(yn) = µω2α′(yn;ω)
“the rescaled polarizability tensor”, assumed here
to be frequency independent. The incident wave
is then reflected and the resulting scattered field
(see [4]) is given under the first Born approxi-
mation by: Es(x;ω) = Π(x;ω)js(ω) with

Π(x;ω) =
N∑

n=1

G(x,yn;ω)α(yn)G(yn,xs;ω).

Finally, one records at each receiver xr ∈ A the
2× 2 coherency matrix:

ψ(xr;ω) =
〈[
(E(xr;ω)E(xr;ω)

>]
1:2,1:2

〉
, (1)

that encodes the polarization of the total field
E = Ei+Es onA (where 〈·〉 is the expectation).
2 Kirchhoff imaging with ideal data

We consider now the case of ideal data, that
is when one can measure Π(x;ω) for x ∈ A
or equivalently the scattered field for three in-
dependent source’s dipole moments. We use
a matrix-valued electromagnetic version of the
Kirchhoff imaging function [3]:

I[Π](y;ω) =

∫
A
dxrG(xr,y;ω)Π(xr;ω)G(xs,y;ω).
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We denote by Ur = [e1, e2] (where (e1, e2, e3)
is the canonical basis of R3) the 3 × 2 unitary
matrix whose range is the cross-range of A. We
extract from I a stable reconstruction [1, 3] of
the position yn and of the 2 × 2 block α̃n =
U∗r α(yn)Us of the polarizability tensor α(yn)
(up to a complex phase). The other compo-
nents of α(yn) are lost in this regime of propa-
gation. In the Fraunhofer regime [1], resolu-
tion estimates for the reconstruction of these
two quantities are given (as in acoustics) by the
Rayleigh criterion in cross-range and by c/B in
range (where the constant c is the wave propa-
gation speed and B the frequency bandwidth of
the data Π(·, ω)). Moreover, one shows that

I[Π](y;ω) ≈ I[UrΠ̃U
∗
s ](y;ω) with Π̃ = U∗rΠUs.

Thus, instead of using Π, one can image as well
with UrΠ̃U

∗
s , i.e. the ideal data Π projected

on the left on the cross-range of the array and
on the right on the cross-range of the source.

3 The Phase-less imaging method

The strategy we use for imaging generalizes the
approach for scalar waves of [2]. One first pre-
processes the data ψ(xr;ω) to calculate the ma-
trix p(ψ) = UrΠ̃U

∗
s +error terms. It consists in

particular to partially recover the data UrΠ̃U
∗
s

by eliminating the contribution of the incident
field Ei in (1). The remaining error terms are
antilinear and sesquilinear in Π̃. The key is that
these terms do not affect the Kirchhoff images
for high frequencies. Indeed, one shows [1] via a
stationary phase argument and under mild as-
sumptions on the geometry of the problem that
the imaging functions with either p(ψ) or Π
data are similar, i.e. as ω →∞ we have

I[p(ψ)](y;ω) = I[UrΠ̃U
∗
s ](y;ω) + o(1).

Our method is illustrated in figure 1 where
the medium contains two dipoles located at y1=
(−6, 4, 105)λ0 and y2 = (7, 4, 105)λ0 with λ0
the central wavelength of B. To image the po-
sition, we use the Frobenius norm ‖α̃(·)‖F of
the recovered polarizability tensor. To visualize
the polarization tensor (up to a complex phase)
we visualize Re α̃ = 1/2(α̃ + α̃) and Im α̃ =
(1/2i)(α̃ − α̃), which are real non-symmetric
matrices. We visualize 2 × 2 real matrices A
with the ellipse E(A) = {Av | ‖v‖2 = 1}. To
emphasize that the matrices are not symmetric,

we also display the vectors σ1v1 and σ2v2 as
axes, where the σj are the singular values and
vj the right singular vectors of A.

�10 0 10

�10

0

10

�10 0 10

�10

0

10

0

2

4

�10 0 10

90

100

110

�10 0 10

90

100

110

0

2

4

Figure 1: Cross-range (top) and range (bottom)
images of ‖α̃(·)‖F . The columns show recon-
structions with Π (left) and with p(ψ) (right).
Here (up to a reference phase [1]) the true ten-
sor Re α̃ (resp. Im α̃) is depicted by the white
(resp. yellow) ellipses/axes, whereas the recov-
ered tensor is depicted using black (real part)
and magenta (imaginary part) ellipses/axes.
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