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interface
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Abstract 

Background: The surgical success of cementless implants is determined by the evolu‑
tion of the biomechanical properties of the bone–implant interface (BII). One difficulty 
to model the biomechanical behavior of the BII comes from the implant surface rough‑
ness and from the partial contact between bone tissue and the implant. The determi‑
nation of the constitutive law of the BII would be of interest in the context of implant 
finite element (FE) modeling to take into account the imperfect characteristics of the 
BII. The aim of the present study is to determine an effective contact stiffness 

(

K
FEM
c

)

 
of an osseointegrated BII accounting for its micromechanical features such as surface 
roughness, bone–implant contact ratio (BIC) and periprosthetic bone properties. To do 
so, a 2D FE model of the BII under normal contact conditions was developed and was 
used to determine the behavior of K FEMc .

Results: The model is validated by comparison with three analytical schemes based 
on micromechanical homogenization including two Lekesiz’s models (considering 
interacting and non‑interacting micro‑cracks) and a Kachanov’s model. K FEMc  is found to 
be comprised between  1013 and  1015 N/m3 according to the properties of the BII. K FEMc  
is shown to increase nonlinearly as a function of the BIC and to decrease as a function 
of the roughness amplitude for high BIC values (above around 20%). Moreover, K FEMc  
decreases as a function of the roughness wavelength and increases linearly as a func‑
tion of the Young’s modulus of periprosthetic bone tissue.

Conclusions: These results open new paths in implant biomechanical modeling since 
this model may be used in future macroscopic finite element models modeling the 
bone–implant system to replace perfectly rigid BII conditions. 

Keywords: Bone–implant interface, Contact, Roughness, Homogenization, Finite 
element modeling
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Background
Endosseous cementless implants have been used clinically for more than 40 years and 
have allowed considerable progresses in dental, maxillofacial and orthopedic surgery, 
to replace missing organs or to restore joints functionality. Despite their routine clini-
cal use, implant failures still occur and remain difficult to predict. One of the main 
determinants of the surgical success lies in the determination of the implant stability 
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[1]. The primary stability occurs during implant surgery. It is a phenomenon of bio-
mechanical nature related to bone quality at the implant site and to the implant prop-
erties. A good implant primary stability is a necessary condition to obtain implant 
osseointegration. Secondary stability is obtained after a certain healing period and 
corresponds to the initial stability reinforced by newly formed bone production and 
maturation at the bone–implant interface [2, 3]. Osseointegration phenomena [4] 
are stimulated by the application of mechanical stimuli to the bone–implant inter-
face (BII). Moreover, the implant surface roughness, which is obtained using different 
processes such as, for example, sand blasting [5], plasma spraying [6], or laser blast-
ing [7], is known to strongly influence the quality of osseointegration phenomena [8]. 
When the primary stability is not sufficient, micro-movements may appear, prevent-
ing good healing conditions and leading to the formation of fibrous tissue and eventu-
ally to surgical failure [9, 10]. Relative micromotions between the implant and bone 
tissue should not exceed around 150 µm, because it leads to fibrous tissue formation 
rather than bone ongrowth [11, 12]. Fibrous tissue may develop instead of an osseoin-
tegrated interface when there are excessive interfacial micromotions early after sur-
gery [13, 14]. However, micromotions at a relatively low level may be responsible for 
biomechanical stimulation of bone remodeling.

Consequently, it is important to understand the biomechanical behavior of the BII 
at the microscopic scale, which depends on the bone geometrical and material prop-
erties as well as on the implant surface roughness. Experimental approaches remain 
of limited interest to retrieve the main determinant of the micromechanics of the 
BII because many parameters such as the bone–implant contact (BIC) ratio as well 
as bone material properties are difficult to assess and are likely to vary in parallel. 
Despite the development of acoustical methods [15, 16] to retrieve information on 
the BII properties, it remains difficult to employ noninvasive techniques. Classical 
imaging techniques such as magnetic resonance imaging or X-ray microcomputed 
tomography cannot be used in vivo due to diffraction effects related to the presence 
of the titanium [17, 18].

Finite element (FE) models have been widely used to model the implant biome-
chanical behavior at the organ scale in the context of primary and secondary stabil-
ity, but often the BII is modeled as a perfect interface, i.e., continuity of stresses and 
displacements at the interface [19]. In particular in the context of dental implantol-
ogy, microfinite element analyses were applied to images obtained using X-ray micro-
computed tomography [20, 21], which allowed to assess the strain and stress field 
around the implant. However, the BII was often considered as fully bonded. Some 
groups modeled the BII during osseointegration as an interphase, considering a thin 
layer described by the Drucker–Prager plasticity model [22]. The use of springs to 
model the BII was introduced by Egan and Marsden [23], who described load transfer 
at the BII by a network of linear springs whose stiffness can vary in time.

However, it remains difficult to relate the macroscopic behavior of the BII in terms 
of contact stiffness [23] or continuous mechanical properties [22] to its microme-
chanical properties such as the BIC and bone properties. Establishing such a rela-
tionship would be interesting in the context of large-scale finite element (FE) 
simulations because it could allow to replace the BII by an interface constitutive law 
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(soft imperfect interface [24]) instead of considering a rigid interface behavior (per-
fect interface). Such an approach will allow to scale the BII microscopic properties up 
to the macroscopic behavior in a multiscale FE-simulation framework.

The aim of this study is to develop a multiscale model of the biomechanical behav-
ior of an osseointegrated BII, which is modeled as an imperfect interface, taking into 
account its microscopic properties: the BIC ratio, the implant surface roughness and 
the bone properties. An effective incremental contact stiffness in normal direction is 
numerically derived and compared to analytical predictions.

Results
In “Voigt–Reuss bounds” section, the numerical contact stiffness K FEM

c  is compared with 
the analytical stiffness obtained from the Voigt–Reuss bounds. In “Comparisons with 
the analytical models” section, the results obtained with the FEM (described in “Finite 
element modeling” section) and the three analytical models (described in “Analytical 
approaches” section) are compared. Finally, the parametrical analyses investigating the 
effect of the BIC, of the roughness amplitude ∆, of the roughness wavelength λ and of 
the bone Young’s modulus Eb are presented in “Parametrical analyses” section.

Voigt–Reuss bounds

Figure 1 shows the variation of the effective contact stiffness obtained using the numeri-
cal approach described in “Numerical resolution” section as a function of the BIC in the 
reference configuration (∆ = 5 µm, λ = 80 µm, Eb = 2 GPa), which is compared with the 
Voigt–Reuss bounds. As expected, the numerical results are comprised between Voigt 
(upper) and Reuss (lower) bounds for different BIC scenarios, which constitutes a first 
validation of the numerical model.

Comparisons with the analytical models

Figure 2 shows the variation of the effective contact stiffness Kc obtained with the finite 
element model (gray solid line), the Kachanov’s model (black solid line), the Lekesiz’s 
model with crack interaction (black dashed line) and the Lekesiz’s model without crack 
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Fig. 1 Comparison between the numerical effective contact stiffness K FEMc  and the analytical stiffness 
obtained from the Voigt–Reuss bounds [see Eqs. (7)–(10)] as a function of the BIC. The roughness wavelength 
λ, amplitude ∆ and the bone Young’s modulus Eb are equal to their reference values 80 µm, 5 µm and 2 GPa, 
respectively
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interaction (gray dashed line) as a function of the roughness amplitude ∆. All other 
parameters are taken equal to their reference value. The effective contact stiffness is 
shown to decrease as a function of ∆ for the FEM and for the Kachanov’s model. Moreo-
ver, as expected, the results obtained with both Lekesiz’s models do not depend on ∆.

Figure  3 shows the variation of the effective contact stiffness Kc obtained with the 
finite element model (gray solid line), the Kachanov’s model (black solid line), the Leke-
siz’s model with crack interaction (black dashed line) and the Lekesiz’s model without 
crack interaction (gray dashed line) as a function of the roughness wavelength λ. All 
other parameters are taken equal to their reference values. The effective contact stiffness 
is shown to decrease as a function of λ for all four models.

Figure  4 shows the variation of the effective contact stiffness Kc obtained with the 
finite element model (gray solid line), the Lekesiz’s model with crack interaction (black 
dashed line) and the Lekesiz’s model without crack interaction (gray dashed line) as a 

0 2 4 6 8 10 12 14 16 18 20

K
c
(N

/m
3 )

FE solution
Kachanov's scheme
Lekesiz's scheme (NI)
Lekesiz's scheme (I)

3.0

2.5

2.0

1.5

1.0

0.5

× 10
14

Fig. 2 Variation of the effective contact stiffness Kc obtained with the finite element model, the Kachanov’s 
model, the Lekesiz’s model with crack interaction (I) and the Lekesiz’s model without crack interaction (NI) 
as a function of the roughness amplitude ∆. The roughness wavelength λ, the BIC and the bone Young’s 
modulus Eb are equal to their reference values 80 µm, 50% and 2 GPa, respectively

20 50 80 110 140 170 200 230 260 290 320 350

K
c
(N

/m
3 )

FE solution
Kachanov's scheme
Lekesiz's scheme (NI)
Lekesiz's scheme (I)

6.0

5.0

4.0

3.0

2.0

0.0

× 10
14

1.0

Fig. 3 Variation of the effective contact stiffness Kc obtained with the finite element model, the Kachanov’s 
model, the Lekesiz’s model with crack interaction (I) and the Lekesiz’s model without crack interaction (NI) 
as a function of the roughness wavelength λ. The roughness amplitude ∆, the BIC and the bone Young’s 
modulus Eb are equal to their reference values 5 µm, 50% and 2 GPa, respectively
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function of the BIC. In this case, the numerical stiffness has been calculated assuming 
∆ = 1 µm to compare the FE solution with the analytical solutions by Lekesiz, which are 
valid in the case of crack-like non-contact zones (see “Lekesiz’s models” section). All 
other parameters in the FE model are taken equal to their reference values. The effective 
contact stiffness is shown to increase as a function of the BIC for all three models.

Parametrical analyses

Figure 5 shows the variation of the numerical effective contact stiffness K FEM
c  as a func-

tion of the BIC for different values of ∆. The wavelength λ and the bone Young’s modulus 
Eb are equal to their reference values 80 µm and 2 GPa, respectively. K FEM

c  is shown to 
increase as a function of the BIC for all values of ∆ considered. The sensitivity of K FEM

c  
to BIC variations is more important for lower values of ∆ and high values of the BIC. For 
low BIC values, K FEM

c  weakly depends on ∆; while for high BIC values, K FEM
c  decreases 

significantly as a function of ∆.
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Fig. 4 Variation of the effective contact stiffness Kc obtained with the finite element model, the Lekesiz’s 
model with crack interaction (I) and the Lekesiz’s model without crack interaction (NI) as a function of the BIC. 
The roughness amplitude ∆ is equal to 1 µm; the roughness wavelength λ and the bone Young’s modulus Eb 
are equal to their reference values 80 µm and 2 GPa, respectively
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Fig. 5 Variation of the numerical effective contact stiffness K FEMc  as a function of the BIC for different values of 
the roughness amplitude ∆. The roughness wavelength λ and the bone Young’s modulus Eb are equal to their 
reference values 80 µm and 2 GPa, respectively
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Figure 6 shows the variation of the numerical effective contact stiffness K FEM
c  as a 

function of the BIC for different values of λ. The roughness amplitude ∆ and the bone 
Young’s modulus Eb are equal to their reference values 5 µm and 2 GPa, respectively. 
K FEM
c  is shown to increase as a function of the BIC for all values of λ considered. 

Moreover, K FEM
c  decreases significantly as a function of λ for all BIC values.

Figure 7 shows the variation of the numerical effective contact stiffness K FEM
c  as a 

function of the bone Young’s modulus Eb for BIC = 50% and BIC = 100%. The rough-
ness amplitude ∆ and the roughness wavelength λ are equal to their reference values 
5 µm and 80 µm, respectively. K FEM

c  is shown to increase linearly as a function of Eb 
for all BIC values considered. The slope of the variation of K FEM

c  as a function of Eb is 
higher for BIC = 100% compared to the case where BIC = 50%.
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Fig. 6 Variation of the numerical effective contact stiffness K FEMc  as a function of the BIC for different values of 
λ. The roughness amplitude ∆ and the bone Young’s modulus Eb are equal to their reference values 5 µm and 
2 GPa, respectively
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Fig. 7 Variation of the numerical effective contact stiffness K FEMc  as a function of the bone Young’s modulus 
Eb for different values of the BIC. The roughness amplitude ∆ and the wavelength λ are equal to their 
reference values 5 µm and 80 GPa, respectively
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Discussion
The originality of this work is to provide a homogenized interface model able to 
obtain an effective normal contact stiffness of the BII accounting for bone ingrowth 
and implant micro-roughness. The proposed 2D numerical model was validated by 
comparison with five analytical models. The Lekesiz’s schemes were employed to 
describe the asymptotic limit behavior of the proposed FE-based interface model 
when the aspect ratio of the non-contact zone b

/

a tends to zero, which corresponds 
to the case where the non-contact zones can be modeled as internal micro-cracks. 
The results obtained with Lekesiz’s models were also employed to highlight the 
effect of the interaction between non-contact zones. Kachanov’s scheme was used 
to describe the asymptotic limit behavior when the aspect ratio of the non-contact 
zone b

/

a tends to 1 which corresponds to the case where the non-contact zones can 
be modeled as elliptical holes. The results presented herein show that the roughness 
parameters (∆ and λ), the bone Young’s modulus Eb as well as the BIC have a signifi-
cant effect on the effective contact stiffness of the BII.

Figure  7 shows that the effective normal contact stiffness increases linearly as a 
function of the bone Young’s modulus, which may be explained by considering the 
Hertzian contact problem between two elastic spheres made of the same isotropic 
material (E, ν ) [25].  In the Hertzian theory, for a circular contact area S, the incre-
mental normal contact stiffness Kc

N  per contact area, reads as follows [26]: 

Equation  (1) shows that the contact stiffness Kc
N  is proportional to the material 

Young’s modulus E, which explains the linearity of K FEM
c  as a function of the bone 

Young’s modulus Eb obtained in Fig. 7. Moreover, Eq. (1) shows that the normal con-
tact stiffness increases as a function of S, which is directly related to the BIC, thus 
explaining that the slope of the variation of K FEM

c  as a function of Eb is higher for 
BIC = 100% compared to the case where BIC = 50%.

Voigt–Reuss bounds are obtained by a rule of mixtures as a weighted average, and 
they provide the theoretical widest upper- and lower bounds used to predict various 
properties (mechanical, thermal, etc.) of fiber-composite materials and porous mate-
rials. The effective elastic properties obtained by a homogenization technique must 
fall into these bounds. Accordingly, results shown in Fig. 1 constitute a first validation 
for the proposed homogenized numerical model. In addition, the analytical stiffness 
obtained by both Lekesiz’s and Kachanov’s schemes are comprised within Voigt–
Reuss bounds as can be highlighted by comparing Figs. 1, 2, 3 and 4.

The results shown in Figs.  1, 4, 5 and 6 indicate that the normal contact stiffness 
obtained by FE analyses K FEM

c  always increases as a function of the BIC. Note that a 
similar behavior is obtained in the Reuss model (see Fig. 1), as well as with the Leke-
siz’s models (see Fig. 4). These results may be explained by the fact that increasing of 
the BIC leads to a more important contact area, which is known to increase contact 
rigidity nonlinearly (refer to the Hertzian contact model Eq. (1), for instance). Moreo-
ver, increasing the BIC leads to a decrease of the void fraction (see Fig. 8), which also 
leads to a more rigid interface behavior.

(1)Kc
N =

E

1− ν2

√

S

π
.
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The results shown in Figs. 2 and 5 indicate that the contact stiffness K FEM
c  decreases 

as a function of ∆, for BIC > 20%. This result may be explained by the increase of the 
size of the cavity in the y-direction when ∆ increases, leading to lower rigidity of the 
system compared to a cavity with a lower aspect ratio (defined by b

/

a ). Note that 
similar results were obtained with the Kachanov’s model (see Fig. 2), which may be 
explained by the same analysis. Other authors have also found a higher normal con-
tact stiffness for lower values of the roughness amplitude with analytical models [27] 
and experimental approaches [28].

For BIC values lower than around 20%, the contact stiffness K FEM
c  weakly depends on 

the amplitude ∆, as shown in Fig. 5. In this case, the overall contact is concentrated near 
the peaks of the implant surface (y = 0 and y = λ/2 in Fig. 8), which present an initially 
horizontal slope due to the sinusoidal geometry. Therefore, for low values of BIC, such 
situation may be approximated by a “flat punch” configuration, which does not depend 
on variations of ∆ because the effective contact area does not vary significantly.

When the BIC is equal to 100%, the porosity of the BII vanishes (see Fig. 8); so, the 
numerical interface model acts like a bi-material layer. In this case, as shown in Fig. 5, 
the overall stiffness is shown to increase when ∆ decreases, as expected for a thin 
elastic layer [24].

The results shown in Fig. 6 indicate that the contact stiffness K FEM
c  decreases as a 

function of λ, which may be explained by the decrease of the contact area (or contact 
length in our 2D model) per unit length (along the x-direction) when the wavelength 
λ increases. This behavior can be analytically explained by the expression of the con-
tact length per unit length LP

�
= 1

π
E
(

− 4π2�2

�2

)

 , obtained by Eq. (4) after some algebra.

The numerical and analytical results may be compared in specific configurations. 
First, the cases where (i) ∆ tends towards 0 and (ii) λ increases significantly both cor-
respond to an aspect ratio of the non-contact zone b

/

a tending towards 0. Such situa-
tion corresponds in turn to the micro-crack of the Lekesiz’s model, which explains why 
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sketched, corresponding to BIC = 5%, 50% and 100%
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the effective contact stiffness obtained with the FEM tends towards that obtained with 
the Lekesiz’s model with crack interaction when ∆ tends towards 0 (see Fig. 2) as well as 
when λ > 200 µm (see Fig. 3). Second, the cases where (i) ∆ increases significantly and 
(ii) λ tends towards 0 correspond to aspect ratio of the non-contact zone b

/

a tending 
towards 1. This situation corresponds in turn to Kachanov model, which explains why 
the effective contact stiffness obtained with the FEM tends towards that obtained with 
the Kachanov model for λ < 30 µm (see Fig. 3) as well as when ∆ > 15 µm (see Fig. 2).

Figure  4 shows that for relatively low BIC values (below around 50%), the results 
obtained with the Lekesiz’s model with crack interaction (I) and with the FE model 
are in good agreement, while the results obtained with the Lekesiz’s model without 
crack interaction (NI) overestimates the contact stiffness obtained with the FE model. 
When considering high BIC values within the physiological range (50% < BIC < 75%), 
the results obtained with the Lekesiz’s model without crack interaction (NI) and 
with the FE model are in good agreement. This result may be explained by the fact 
that the distance between two contiguous non-contact zones (i.e., �− 2a ) increases 
as a function of the BIC (see Fig. 8). Note that for BIC > 50% the analytical solutions 
obtained by models with (I) and without (NI) interactions overlap because the inter-
action parameter Ik

(

a
�

)

 expressed by Eq.  (16) is equal to 1. Physically, this finding is 
in agreement with the theory of the micro-cracked media, which establishes that the 
interaction between cracks could be neglected when the distance between two con-
tiguous cracks is greater or equal to their length [52]. Therefore, when BIC values are 
relatively low, a suitable choice is to consider interacting cracks, while cracks interac-
tions may be neglected for relatively high BIC values. Note that when the BIC tends 
towards 100% (which corresponds to a tending to 0), both Lekesiz’s models becomes 
invalid giving an infinite contact stiffness because of the interaction parameter Ik

(

a
�

)

.
Several parameters were chosen empirically. First, the choice of the thickness 

H = 500 µm of the layers representing bone tissue and the implant was made to find a 
compromise between a sufficiently low value to obtain reasonable computational time 
and a sufficiently high value so that the results do not depend on H for all configura-
tions. Accordingly, a parametric study on H was carried out in the most unfavorable 
case that is for λ = 350 µm. The numerical contact stiffness was found not to depend 
on H for H > 300 µm.

Second, all numerical simulations have been carried out considering a uniform nor-
mal tensile stress σ0 = 25 MPa (see Fig. 8), which was chosen because such amount of 
stress has been shown to be obtained in clinical configuration [29]. However, it has 
been verified that the results do not depend on the choice of the value of σ0 , which is 
explained by the linear assumptions of the model.

This study has several limitations. First, the FE model was developed in 2D and the 
BII description should be realized considering the three dimensions, which could be 
done using approaches such as, for example, 3D analytical approaches based on the 
Eshelby theory [30–32]. Second, a sinusoidal function is used to describe the implant 
surface roughness, similarly as what was done by [46]. This sinusoidal description 
of the implant surface constitutes a strong approximation and considering the real 
surface texture is likely to lead to different results. Note that comparable approaches 
using wavy surfaces have already been developed in contact mechanics in the past 
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[33]. Third, only normal stresses were considered and assessing the influence of shear 
stresses would be of interest since it corresponds to a situation of clinical interest. 
Fourth, bone material properties were assumed to be linearly elastic, homogene-
ous and isotropic, and fluid structure interactions were neglected, similarly as what 
was done in various previous FE-based numerical studies [34–38]. However, newly 
formed bone properties are heterogeneous [39] and viscoelastic, which was neglected 
herein. The assumption of bone homogeneity implies a simplified modeling of the 
bone microstructure, which may include cavities at various scales [40, 41]. Note that 
adopted analytical approaches can be extended to anisotropy of the bone by consid-
ering microcracks and pores embedded into an anisotropic matrix. Moreover, a dry-
material model was employed and fluid–structure interaction effects were neglected; 
these assumptions were necessary to understand the main contact mechanisms 
occurring at the BII, by simplifying as coherently as possible the biomechanical prob-
lem. Note that in vivo, fully bonded interfaces are not likely to occur since values of 
the BIC are typically comprised between around 30 and 80% [42–44]. Fifth, the pro-
posed model should be validated experimentally. However, accurate data on bone–
implant contact stiffness are scarce because of the difficulty of controlling the implant 
surface as well as the bone distribution around the implant. However, a validation of 
the proposed numerical model was carried out by comparison with three analytical 
models (and Voigt–Reuss bounds). Sixth, adhesion phenomena at the BII [45] that 
may be important in particular at early stage of osseointegration were not taken into 
account, which should be considered in the future.

Despite the aforementioned limitations, this work constitutes the first attempt to 
determine an effective normal contact stiffness for an osseointegrated BII, which is able 
to account for the microstructural effects of periprosthetic bone properties and implant 
micro-roughness.

Conclusions
The present study proposes a nonlinear spring model for an osseointegrated bone–
implant interface in normal contact conditions based on micromechanical modeling. A 
2D FE model accounting for implant micro-roughness and bone ongrowth is used to 
obtain an effective incremental contact stiffness K FEM

c  in normal direction. Several para-
metrical analyses have been carried out to investigate the effects of the micro-roughness 
parameters Δ and � , the BIC ratio and the bone Young’s modulus Eb, on K FEM

c  . Com-
parisons with analytical schemes based on micromechanical homogenization (Eshelby’s 
problem [58]) have been employed to validate the FE model, as well as to provide an 
insight on the advantages and limitations of closed-form analytical solutions for the 
estimation of the effective contact stiffness of BII. The proposed nonlinear spring mod-
eling strategy for BII can allow to overcome computational difficulties to account for BII 
evolving microstructure within large-scale finite element (FE) simulations.

Future work should focus on 3D modeling (considering actual surface profiles), on the 
tangential movement and on studying the biomechanical reaction terms which mimic 
osseointegration phenomena.
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Methods and models
Let the general framework of the contact problem be introduced by considering two 
continuous bodies (representing in the following implant and bone tissue) comprising 
linearly elastic isotropic materials, in no-sliding contact via a rough surface under a ten-
sile loading condition (Fig. 8). Let a Cartesian frame (O, ex, ey, ez) be introduced, with x, 
y and z the corresponding coordinates. Let S ⊂ R

2 be the nominal contact area between 
the two bodies. Then, the normal incremental contact stiffness per unit nominal contact 
area in S is defined as:

where dw is the increment of the relative displacement at the contacting interface region 
in normal (i.e., along ey) direction, and dFN is the increment of the normal force trans-
mitted through the unit contact area.

Finite element modeling

Bone–implant interface modeling

The contact region of interest (ROI) comprises two subdomains corresponding to the 
bone tissue and to the implant with the same thickness H = 500 µm (along ey). Similarly 
as what was done by [46], a simplistic idealization of the contacting rough implant sur-
face via a sinusoidal wavy-like surface, of amplitude 2Δ and wavelength λ, is adopted:

Since the out-of-plane dimension of the ROI (i.e., along ez) is assumed to be infinite 
and applied load is homogeneous, an assumption of plane strain is considered herein, in 
the plane (ex, ey).

The BIC ratio (i.e., the ratio of the bone in direct contact with the implant surface) 
which is assumed to be comprised between 5 and 100% depends on the bone ongrowth 
onto the implant surface and is an input parameter of the model. Non-contact zones 
between bone and the implant determine the microstructural voids of the BII.  The 
dimension of these voids along ey (respectively, along ex) is noted 2b (respectively, 2a) 
and depends on �, � and BIC. Note that for the proposed model, the BIC is geometri-
cally given by:

where LP (respectively, LT) is the arc length of the implant surface in contact with bone 
tissue (respectively, the total arc length of the implant boundary), and E(z) = E

(

π
2 |z

)

 
and E = (z|m) =

∫ z
0

√

1−m sin2 (t)dt represent the complete and incomplete elliptic 
integral of the second kind [47], respectively.

The material properties of the implant and bone tissue are assumed to be linear elas-
tic, isotropic and homogeneous. The implant is assumed to be made of titanium alloy 

(2)Kc
N =

dFN

dw
,

(3)y(x) = �

[

1− cos

(

2πx

�

)]

, x ∈ [0, �].

(4)BIC =
LP

LT
= 1−

E
(

2πa
�

∣

∣

∣
− 4π2�2

�2

)

2E
(

− 4π2�2

�2

) ,
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(TiAl6V4) with a Young’s modulus Ei = 113  GPa [48]. The bone Young’s modulus Eb 
is varied between 1 and 20  GPa, to simulate the increase of the stiffness of the heal-
ing periprosthetic bone tissue due to osseointegration phenomena [49]. All materials are 
assumed to have a Poisson ratio ν of 0.3.

Figure  8 shows the boundaries conditions for the proposed FE model. A symmetric 
boundary condition u · ex = ux = 0 holds on the boundaries parallel to ey, where u is the 
displacement vector. The lower boundary (y = − H) of the bone domain is fixed (u = 0) . 
A uniform normal tension σ0 = 25 MPa is applied on the upper boundary of the implant 
domain (y = 2∆ + H) for all FE analyses. The choice of these model parameters is dis-
cussed in “Discussion” section. Continuity conditions of the displacement and of the 
traction (bounded interface condition) hold at the contacting surfaces between bone and 
implant.

Numerical resolution

The goal of the proposed FE simulations is to derive the incremental contact stiffness in 
the normal direction of the BII, denoted K FEM

c  . To do so, a homogenization model of the 
interphase representing the bone–implant contacting zone (see Fig. 8) was developed to 
derive the normal incremental contact stiffness. An equivalent one-dimensional system 
comprising three springs in series representing the implant domain (spring stiffness Ki), 
the bone domain (spring stiffness Kb) and the BII (spring stiffness K FEM

c  ) was considered. 
The stiffness of the one-dimensional bone–implant system Keq described above is deter-
mined numerically following:

where σyy =
(

σey
)

· ey and uy are, respectively, the stress and displacement along ey and 
�•� = 2

�

∫

• dx represents the average on the loaded boundary (at y = 2� + H, see Fig. 1). 
As a result, the numerical contact stiffness of the BII is given by:

where Kj =
�j+2µj

δ
; j = i, b (the subscript i and b denotes the implant and bone tis-

sue, respectively). In Eq. (6), �j and µj are the Lamé parameters of the implant and bone 
materials and δ = H −� corresponds to the size of the implant and bone domain.

Equation  6 is used to obtain the numerical contact stiffness of the BII for each FE-
based simulation. Several parametrical analyses have been carried out to investigate the 
influence of the BIC (between 5 and 100%), of the roughness amplitude ∆ (between 0.1 
and 20 µm), of the roughness wavelength λ (between 20 and 350 µm) and of the bone 
Young’s modulus Eb (between 1 and 20 GPa). The ranges of variation of ∆ and λ were 
chosen based on the values of the arithmetic mean roughness (Ra) and the mean spac-
ing (Sm) measured on real titanium implants [10], noting that Ra

∼= 2�/π . The reference 
configuration corresponds to the following parameters: BIC = 50%, ∆ = 5 µm, λ = 80 µm 
and Eb = 2 GPa.

(5)Keq =

〈

σyy
〉

〈

uy
〉 ,

(6)K FEM
c =

[

K−1
eq −

(

K−1
i + K−1

b

)]−1
,
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The numerical analyses have been carried out using the Comsol  Multiphysics® simula-
tion software (Stockholm, Sweden). The total mesh comprises approximately 9300 sec-
ond-order triangular Lagrange elements depending on the geometrical configuration of 
the micro-roughness parameters ∆ and λ (e.g., 9274 in the reference configuration). The 
global system comprises about 38,000° of freedom (e.g., 37,742 in the reference configu-
ration). For the sake of regularity, a mapped second-order quadrangular mesh has been 
chosen only for the case BIC = 100%, as shown in Fig. 8. The interpolation functions for 
the displacement field are quadratic. The mesh size has to be finer around the tip of the 
non-contact zone, as shown in Fig. 8, to describe the stress localization, especially for a 
smaller interface thickness 2∆. To this aim, a convergence study was performed to 
choose the mesh size at the tip in the most unfavorable configuration that is for 
∆ = 0.1 µm. The chosen mesh has a smallest element size of 3 × 10−5 µm. The local error 
on the approximated solution uay calculated in terms of the displacement uy is 
∥

∥

∥
uey−uay

∥

∥

∥

L2
∥

∥

∥
uey

∥

∥

∥

L2

= 0.006%, where �•�L2 indicates the L2 norm.

Analytical approaches

The non-contact zone of the BII (Fig. 9a) may be approximated by an internal micro-
crack [50] when b

/

a → 0 , as shown in Fig. 2b. Lekesiz’s schemes consider an array of 
planar cracks at the interface between two dissimilar isotropic materials [51] under two 
hypotheses assuming i) interacting and ii) non-interacting micro-cracks.

Conversely, the non-contact zone may be better approximated by an elliptical cavity 
[52] when its aspect ratio b

/

a → 1 , as shown in Fig. 2c. Kachanov’s scheme considers 
elliptical holes randomly oriented embedded into an isotropic homogenized material 
[53] in the non-interacting approximation [54].

Voigt and Reuss bounds

The Voigt and Reuss bounds represent the upper and the lower limits for the homoge-
nized mechanical properties of a multi-phase composite material, respectively. These 
analytical bounds have been calculated considering the region of interest shown in 
Fig. 9a and constituted by the implant, bone tissue and the void corresponding to the 
non-contact zone (for BIC < 100%). For BIC = 100%, a two-phase medium made of 
bone and implant was considered. The area fractions of bone tissue, implant and void 
were noted fb , fi and fvoid , respectively, and were related to the BIC, ∆ and λ. The ana-
lytical contact stiffness given by the Voigt bound writes [24]:

where κV  and µV  are the equivalent bulk and shear moduli, respectively, given as a func-
tion of the bulk moduli and shear moduli of bone tissue κb,µb ; implant κi,µi and void 
κvoid,µvoid , as follows:

Similarly, the analytical contact stiffness given by the Reuss bound is given by:

(7)KV
c =

1

2�

(

κV +
4

3
µV

)

,

(8)
κV = fiκi + fbκb + fvoid κvoid,

µV = fiµi + fbµb + fvoid µvoid,
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where κR and µR are the equivalent bulk modulus and shear modulus, respectively, given 
by:

In Eqs. (8) and (10), the bulk modulus and shear modulus of the void are assumed 
to be equal to those of a very soft material of which the elastic moduli are taken as 
κvoid = ϕ κb and µvoid = ϕ µb , with ϕ = 10−9, following what has been done in [55]. 
Note that hanging the value of ϕ between  10−12 and  10−6 does not affect the results.

Lekesiz’s models

Lekesiz’s scheme [51] considers two different media separated by a partial non-con-
tact zone modeled as an internal micro-crack of length 2a. Note that 2a = λ/2 for 
BIC = 50% (see Fig. 2b). Lekesiz provided a closed-form analytical expression for the 
effective spring stiffness of a planar periodic array of collinear cracks at the interface 
between two dissimilar isotropic materials. Lekesiz’s scheme is based on an elastic 
analysis under normal loading in the framework of the open crack model [56]. Leke-
siz also provided an analytical expression of the effective contact stiffness taking into 

(9)KR
c =

1

2�

(

κR +
4

3
µR

)

,

(10)
κR =

(

fiκ
−1
i + fbκ

−1
b + fvoid κ

−1
void

)−1
,

µR =

(

fiµ
−1
i + fbµ

−1
b + fvoid µ

−1
void

)−1
.

2Δ

λ

2a = λ/2

2b=Δ

2Δ

2b=Δ

λ

a FE model (BIC = 50%, Δ = 5 µm, λ = 80 µm)   

2a = λ/2

2Δ

λ

2a = λ/2

b Lekesiz’s scheme (micro-crack)

c Kachanov’s scheme (elliptical hole)

Implant

Bone

Implant

Bone

Homogenized material

Fig. 9 Schematic representation of the BII for a the numerical and b, c the analytical models. FEM‑based 
interface model in the reference configuration a is compared with two analytical descriptions: b the Lekesiz’s 
scheme and c the Kachanov’s scheme. Dimensions 2a and 2b are specified in the three models for BIC = 50%
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account the effects of the interaction between cracks. Two models taken from [51] 
were considered in this study.

Interacting micro-cracks When the distance between non-contact zones is small 
compared to λ, these non-contact zones can be assumed to interact with each other. 
In this case, the effective contact stiffness KLEK

c,int  is:

where the elastic dissimilarity function Mk(α,β) is expressed in terms of the Dundurs’ 
parameters α and β within the assumption of plane strain [57] following:

where ∈ is the oscillation index and E∗
j =

Ej
1−ν2

; j = i, b . The interaction parameter 
Ik
(

a
�
,∈

)

 can be approximated by the homogeneous case Ik
(

a
�

)

 when |∈| < 0.05 . In the 
proposed model, the oscillation index is equal to |∈| = 0.039 . Therefore, the interaction 
parameter is:

where a
�
 represents the linear crack density, as sketched in Fig. 9.

The parameter K homog
c, non-int in Eq. (11) corresponds to the contact stiffness in the case of 

non-interacting cracks embedded in a homogeneous domain, assumed to be the implant 
material, and reads:

where γi = 3− 4ν is the Kolosov’s constant for the implant material.
Non-interacting micro-cracks When the distance between non-contact zones is rel-

atively large compared to λ, the interaction parameter Ik
(

a
�

)

 may be taken equal to 1, 
which leads to the effective contact stiffness KLEK

c, non-int in the non-interaction case:

(11)KLEK
c,int = Mk(α,β)× Ik × K

homog
c,non-int,

(12)Mk(α,β) =
(1+ α)

(

1− β2
)(

1+ 4 ∈2
) ,

(13)α =
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i

E∗
b + E∗

i

,

(14)β =
1

2
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µb + µi

)(

1− 2ν

1− ν

)

,

(15)∈=
1

2π
log
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,
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π2
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π
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a2
µi

(1+ γi)
,

(18)KLEK
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homog
c, non-int
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Kachanov’s model

As shown in Fig.  9c, in the Kachanov’s model, the non-contact zone is modeled by a 
circumscribed elliptical cavity with a and b being the semi-major and semi-minor axes, 
respectively. This model neglects interactions between voids. The aforementioned ellip-
tical cavity is embedded in a homogenized medium whose mechanical properties are 
given by the homogenization of the isotropic mechanical properties of implant and bone 
materials [58]. The closed-form analytical expression for the effective Young’s modulus 
Eeff of a two-dimensional isotropic matrix with an embedded elliptical hole randomly 
oriented is [53]:

where the microstructural parameters p and q are the porosity and the average eccen-
tricity over the bone–implant area A = 2�� and are expressed by:

In Eq.  (19), E0 corresponds to the equivalent Young’s modulus of the homogenized 
matrix in which the elliptical hole is embedded and based on plane strain assumption, it 
is given by:

where E∗
i  and E∗

b are defined above. The effective contact stiffness of the BII obtained 
with the Kachanov’s model is given by:
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