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Abstract—MisBehavior Detection (MBD) is an important se-
curity mechanism in Cooperative Intelligent Transport Systems
(C–ITS). It involves monitoring C–ITS communications to detect
potentially misbehaving entities. This monitoring is based on
local plausibility and consistency checks done by the Intelligent
Transport Systems (ITS) Station (ITS–S) on every received
Vehicle–to–Everything (V2X) message. These checks are then
analyzed by a local detection mechanisms to estimate the overall
plausibility of a message. In this paper we focus on the logic
behind different local detection mechanisms. First, we propose
different local detection solutions based on logics extracted from
the state of the art. Then we present a comparative review of the
detection quality and the computation latency of each proposed
mechanisms.

Index Terms—Misbehavior Detection, C–ITS, Machine Learn-
ing

I. INTRODUCTION

According to the National Highway Traffic Safety Admin-
istration (NHTSA) and the Directorate-General for Mobility
and Transport (DGMT), more than three million people are
injured each year due to traffic accidents in the US and the
EU [1] [2]. Cooperative Intelligent Transport Systems (C–
ITS) is a technology that aims to reduce traffic accidents and
improve road safety in general. The technology is based on
the exchange of safety messages between different entities
called ITS Stations (ITS–Ss). These Vehicle–to–Everything
(V2X) messages could contain information about the vehicle
(GPS position, Velocity, Heading, etc.) or various warning
about the traffic condition. This information could be critical
for the ITS–S to insure the safety of the passengers or sur-
rounding pedestrians. The European C–ITS system standards
are published by the European Telecommunications Standards
Institute (ETSI) while the US standards are published by the
Institute of Electrical and Electronics Engineers (IEEE).

V2X messages must be secure to ensure the reliable oper-
ation of C–ITS-based security applications. To this end, the
Public Key Infrastructure (PKI) is created and standardized
by the IEEE and the ETSI. The PKI issues digital certificates
to the ITS–Ss. These certificates are used by theITS–S to
sign each transmitted messages thus ensuring their authen-

ticity, integrity and non repudiation. Additionally, the ITS–
S are allowed to regularly change their certificates to avoid
tracking and protect the vehicles privacy [3]. However, the
digital signature could not ensure the accuracy and validity
of a message. For instance, a malicious vehicle with a valid
certificate could send inaccurate or false data on the C–
ITS network. Consequently, a MisBehavior Detection (MBD)
system is needed to protect the system and otherwise mitigate
the effects of these malicious or otherwise faulty ITS–Ss.

In this paper, we focus our work at the local MBD. This
detection is based on plausibility and consistency checks
done by the ITS–S on every received V2X message called
sensors. The results of these checks are analyzed by a local
detection application to classify the received V2X message as
misbehaving or genuine. Our goal is to evaluate different ap-
proaches for local MBD applications. The different published
detection results are often difficult to compare since it’s done
on different data and with different implementations. To this
end we implement the complete MBD process along with the
different detection applications in an extension of Vehicles in
Network Simulation (VEINS) simulator [4]. Our comparative
results show a clear trade-off between the accuracy of the
detection mechanisms and the calculation latency.

The remainder of the paper is as follows. Section II presents
the state of the art regarding local MBD mechanisms. Section
III presents the C-ITS general architecture and details the
misbehavior detection concept. Section IV details the tested
detection mechanisms. Then, section V presents our evalu-
ations and discuss the obtained results. Finally, section VI
concludes this work and gives some future work.

II. RELATED WORK

MisBehavior Detection (MBD) is a well researched topic
with studies spanning the last two decades. Van der Heijden et
al. published a recent survey on the different MBD studies [5].
In this survey we can extract four families of detection mech-
anisms: data-centric, node-centric, cooperative and Machine
Learning (ML)-based. A study could make use of a combi-
nation of mechanisms but every mechanism fits under one of



these families. Data-centric mechanisms that rely purely on
the contents of the message to estimate its plausibility. Node-
centric mechanisms assigns a trust value to every neighboring
ITS–S. Cooperative mechanisms relies on information sharing
between ITS–Ss nodes to detect implausibilities. Finally, ML
based mechanisms that rely on adequately training ML models
to detect anomalies.

Schmidt et al. propose VEhicle Behavior Analysis and
Evaluation Scheme (VEBAS) [6]. VEBAS is based on a set of
plausibility and consistency checks. These checks are devided
into positive rative and negative rating modules. The modules
are then combined using Exponentially Weighted Moving Av-
erage (EWMA) to evaluate the behavior of a vehicle. Bißmeyer
et al. proposes a similar system to VEBAS while adding
a plausibility model to check vehicle intersections [7]. This
plausibility model has uncertainty calculation that accounts for
sensor errors. A trust value is also calculated to support the
plausibility module. Using the trust and the plausibility value
a detection is then classed as benign, erroneous or unknown.

Leinmüller et al. propose a cooperative solution to defend
against roadside attackers [8]. Every vehicle shares the result
of its local checks on the network to enhance the collective
detection of roadside attackers. Kerrache et al. introduced
a novel Trust architecture for Vehicular Networks using the
standardized messaging services of ETSI ITS (T-VNets) [9].
T-VNets is a more complex trust evaluation scheme that uses a
large sets of detectors and integrate data-centric, event-based,
watchdog and Road–Side Unit (RSU)-based trust mechanisms.
The scheme also propose sharing the trust values between
neighboring vehicles.

Van der Heijden et al. introduced Vehicular Reference
Misbehavior Dataset (VeReMi) [10]. It is an MBD dataset
created with the VEINS simulator and using the LuST network
scenario. VeReMi contains four types of misbehavior: Fixed
Position, Fixed Position Offset, Random Position, Random
Position Offset and an Eventual stop. So el al. trained and
tested multiple ML models using the VeReMi dataset [11]. The
solution used plausibility checks as an input feature vector for
the ML models. The study aimed to created a baseline ML
solution and tested K-Nearest Neighbors (K-NN) and Support
Vector Machine (SVM). Both algorithms performed similarly
with SVM having a slight edge. Singh et al. proposed a similar
solution on the VeReMi dataset [12]. The study tested SVM
and Logistic regression with SVM as the better performer.
Singh et al. also proposed a deep learning based solution that
tested Multi-Layer Perceptron (MLP) and Long Short-Term
Memory (LSTM) [13]. LSTM is the better performer although
at the cost of more computational time.

III. SYSTEM MODEL

A. C–ITS General Architecture

The C–ITS system depend on a set of V2X messages
exchanged between On–Board Units (OBUs) and RSUs. These
message contain safety information that could be could kine-
matic beacons (position, speed, heading, etc.) or warnings
(road works, hazardous conditions, etc.). The V2X messages

Fig. 1: C–ITS security architecture

are signed using digital certificates to ensure the ITS–S stations
identity. The certificates are issued by the PKI. Each ITS–
S receives one long term identity and several short term
pseudonym identities. These short term identities are dispos-
able certificates periodically changed to limit the track-ability
of an ITS–S. The C–ITS security architecture is illustrated in
Figure 1. The Figure shows the data exchange for a certificate
request between the blue vehicle and the PKI through a cellular
network (eNodeB).

A certificate signature ensure the authenticity of the data,
i.e. the receiver could verify that the data is not altered during
transmission. However, that does not ensure the integrity of
the data with respect to the physical truth. An ITS–S with a
valid certificate could send erroneous data on the vehicular
network. This erroneous data could be a result of a faulty
ITS–S node or a malicious attacker. This type of semantic
attacks or misbehavior is treated by the Misbehavior Authority
(MA). The local ITS–Ss performs MBD checks and send the
detection results to the MA under the form of Misbehavior
Reports (MBRs). The whole process of MBD is detailed in
section III-B.

B. Misbehavior Detection Overview

The MBD process is divided into four steps (see Fig. 2).
a) Local Misbehavior detection: The local MBD is per-

formed by every ITS–S (vehicle’s OBUs and RSUs). The
goal is to detect potentially misbehaving entities in the local
vehicular network. Every received message should pass a set of
plausibility and consistency checks (see section III-C). These
checks are then analyzed by a local MBD application to decide
on the need to send a Misbehavior Report (see section IV ).

b) Misbehavior reporting: The reporting process begins
as soon as the ITS–S detects an implausibility. The ITS–
S then collects the evidence required to prove and recreate
a misbehavior on the global level. After collecting enough
evidence, the MBR is created and sent to the MA. Figure 2



shows this action performed by the grey vehicle. More details
on the reporting protocol are available [14].

c) Global Misbehavior detection: The global MA has a
role of collecting and analyzing the received MBRs. Using the
MBRs the MA should be able to false positives and genuine
reports. Moreover, if a misbehavior is detected, the MA should
be able to determine what type of misbehavior. The severity
and type of misbehavior determines the suitable reaction
required to protect the system and mitigate the misbehavior
effect.

d) Misbehavior reaction: Local misbehavior reaction is
currently limited to the ITS–S discarding the malicious mes-
sages. Global reaction is more developed and starts once the
MA is confident in a certain diagnosis. The MA notifies the
corresponding authority of the reaction to be carried out. For
example, the PKI is in charge of certificate revocations. AS
shown in figure 2, if a certain a misbehavior requires certificate
revocation, the PKI is informed. The misbehavior reaction is
still not yet well defined by the stabilization organisms, thus
other authorities may be in charge of misbehavior reaction in
the future.

Fig. 2: Misbehavior detection steps

C. Local Detection Checks

The local detection process is based on checks performed
by the ITS–Ss. Therefore, these checks should contain relevant
and sufficient information for the detection process. In this

study, we aggregated and implemented the checks used in
the related works [6] [7] [9] [10] [11] [12] . However, the
implemented checks does not return a binary value, instead
a plausibility factor is calculated as described in [17]. For
more details on the implementation of the detectors, all the
implementations are open-source on github [18]. Table I shows
a summary of all the selected local detectors.

D. Attacker Model

A misbehaving entity in C–ITS is any ITS–S sending
inaccurate or fake V2X messages. Misbehaving entities could
be divided into two categories: Faulty and Attackers. A Faulty
behavior is any inaccurate V2X message data coming from a
broken vehicle sensor. An attack is an intentional modification
of the V2X message data. The implemented set of possible
misbehavior types is inspired from the literature [5] [19] (see
Table II). Please note that every new attacker sets the attack
parameters randomly within a certain range. This is done to
render the detection more difficult specifically for the ML
based solution.

IV. DETECTION MECHANISMS

In this part we extract the base logic behind of the state
of the art solution described in Section II. We also detail
our implementation of the extracted detection logics. We
put forward the following solutions: (1) Threshold Based:
a purely data-centric baseline solution, (2) Non-Cooperative
Trust Based: a node-centric trust evaluation using data-centric
mechanisms, (3) Cooperative Trust Based: a solution with a
form of information sharing between the ITS–Ss, (4) Machine
Learning Based: a use of some form of machine learning for
misbehavior detection.

A. Threshold Based

This is our simple baseline application. The threshold based
app consist of testing the result of every check against a

TABLE I: Description of Local Misbehavior Detection Checks

Range plausibility (rP) The advertised ITS–S position is inside of the ITS–S maximum reception range

Position plausibility (pP) The advertised ITS–S position is at a plausible location (e.g. on a road, without overlaps of physical obstacles, etc.)

Speed plausibility (sP) The advertised ITS–S speed is less than a predefined maximum threshold

Position consistency (pC) The distance separating two consecutive advertised ITS–S positions is less than a maximum threshold

Speed consistency (sC) The acceleration separating two consecutive advertised ITS–S speeds is less than a maximum threshold

Position speed consistency (psC) The distance separating two consecutive advertised ITS–S positions is consistent with the advertised speed

Position heading consistency (phC) The angle separating two consecutive advertised ITS–S positions is consistent with the advertised heading.

Beacon frequency (bF) The time separating two consecutive messages from the same ITS–S is compliant with the standards.

Intersection check (inT) The advertised positions from two different ITS–Ss must not intersect.

Sudden appearance (sA) A newly advertised ITS–S must not appear with a preset positive speed within a preset close range.

Kalman Filter Tracking

A set of checks derived from Kalman filter tracking [15]. The advertised beacon information must not diverge from
the predicted information as proposed in [16]. From this calculation we extract the seven following detectors:
- Kalman Position Speed Consistency (kPSCP, kPSCS, kPSCSP, kPSCSS),
- Kalman Position Consistency (kPC),
- Kalman Position Acceleration Consistency (kPAC),
- Kalman Speed Consistency (kSC).



TABLE II: Description of C–ITS Misbehavior Types

Faulty Behaviors

Fixed Position The ITS–S broadcasts a faulty fixed position (X ,Y )

Fixed Position Offset The ITS–S broadcasts its real position with a fixed offset (∆X ,∆Y )

Random Position The ITS–S broadcasts a faulty limited random position (rand(Xmin 7→ Xmax), rand(Ymin 7→ Ymax))

Random Position Offset The ITS–S broadcasts its real position with a limited random offset (∆(0 7→ Xmax),∆(0 7→ Ymax)

Fixed Speed The ITS–S broadcasts the same faulty fixed speed (Vx)

Fixed Speed Offset The ITS–S broadcasts its speed with a fixed offset (∆VX )

Random Speed The ITS–S broadcasts a faulty limited random speed (∆(0 7→ Vmax))

Random Speed Offset The ITS–S broadcasts its real speed with a limited random offset (∆(0 7→ Vmax))

Delayed Messages The ITS–S broadcasts its information delayed from reality (∆t)

Attacks

DoS The ITS–S sends V2X messages at a higher frequency than what is defined in the standard. The frequency increase
inflicts an overhead on the broadcasting channel. This may render the channel unusable by other vehicles

DoS Random The ITS–S performs a DoS attack while simultaneously randomizing all the V2X messages data

DoS Random Sybil The ITS–S performs a DoS Random attack while simultaneously changing its pseudonym on each send V2X message

Disruptive

The ITS–S records the data broadcasted by neighbour ITS–Ss. The attacker then proceeds to broadcast V2X messages
with data derived from previously received beacons. Given that the falsely broadcated data is initially generated by
genuine vehicles, it is plausible on some levels. The intention of this attacker is to flood the network with these type
of messages thus deteriorating the quality of the C–ITS

DoS Disruptive This ITS–S performs a simultaneous DoS and Disruptive attacks

DoS Disruptive Sybil This ITS–S performs a Dos Disruptive attack while simultaneously changing its pseudonym on each send V2X message

Data Replay The ITS–S chooses a target and replays its data instantly with a certain minor prediction epsilons added. Consequently,
for an observer it would seem that there are two vehicles in the same space-time dimension

Data Replay Sybil This ITS–S performs a Data Replay attack while simultaneously changing its pseudonym while changing the target
vehicle. This mechanism the ITS–S avoid detection

Eventual Stop The ITS–S suddenly starts broadcasting a fixed positions and a null speed thus simulating a sudden stop

Traffic Congestion Sybil
The ITS–S uses the previously acquired and stored pseudonyms simultaneously to generate a set of ghost-vehicles.
The ghost vehicles data is calculated somewhat intelligently in a grid like matter while avoiding implausibilities to
simulate a realistic traffic congestion

predefined threshold. A message is considered misbehaving
if any check fails the test (see algorithm 1).

Algorithm 1: Threshold Based Solution

cx: Check Value, θ: Threshold;
for c0 . . . cn do

if ci < cmin then
cmin = ci

end
end
if cmin < θ then

Misbehaving
else

Genuine
end

B. Non-Cooperative Trust Based (N-CTB)
The goal of this solution is to evaluate the behavior of

the node to determine a level of trust in the received V2X
messages from a certain ITS–S. A similar approach to the
logic used in [6] and in [7]. The trust is derived from the long-
term trust level combined the current calculated plausibility

factors. The trust has a negatively exponential relation with
the plausibility factor (see equation 1 , figure 3). A message
is considered misbehaving if the global trust level falls below
a certain value (see algorithm 2).

Trust(x) = −e
(10×(1−x)) + 1

2 × 104
(1)
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Fig. 3: The exponential variation of the trust level function of
the plausibility value



Algorithm 2: Non-Cooperative Trust Based So-
lution
cx: Check Value, θ: Threshold, TL: Long-Term

Trust;
for c0 . . . cn do

if ci < cmin then
cmin = ci

end
end
TS = Trust(cmin)

if TS > −ε and TL < 0 then
TL = TL + 0.1

else
TL = TL + TS

end
if TL < θ then

Misbehaving
else

Genuine
end

C. Cooperative Trust Based (CTB)

The goal of this solution is to cooperatively evaluating
the behavior a node to determine a shared level of trust a
certain ITS–S. Similarly to the approach used in [8] and
in [9]. The trust is calculated identically to the case of Non-
Cooperative Trust Based. However, the global trust levels are
shared between all the ITS–Ss of the network.

D. Machine Learning (ML) Based

The goal of this solution is to train a ML algorithm to
detect if a V2X message is misbehaving. Many ML algorithms
exist for this purpose, however we revert to testing SVM [20],
XGBoost [21], MLP [22] and LSTM [23].We detail below the
models and parameters trained and tested in this study. All
models hyper-parameters of the proposed model are tuned
using a grid search based on 5-fold cross validation.

0) Common Features: For every received V2X message
a set of features is created. These features are important
indications used by the tested ML algorithm to evaluate
the plausibility of a message. We propose two features sets
suitable for different ML algorythms.

• Checks Feature Set: The local detection checks done on
V2X messages described in section III-C.

• Kinematic Feature Set: The Position, Speed, Accel,
Heading and Time of the last beacon. The ∆Position,
∆Speed, ∆Acceleration, ∆Heading and ∆Time be-
tween the last 2 beacons.

1) eXtreme Gradient Boosting (XGBoost): XGBoost is a
relatively new algorithm and currently arguably the most
performing of the tree-based models. The model is given
a set of V2X messages with the Checks Feature Set. The
messages are given independently of each other. This entails
an assumption that no time dependency exists between the
data. All messages are treated as independent entities similarly
to the case of the Threshold based solution. Consequently,

some valuable information is lost from the base data due to
this assumption. However, this model is useful to evaluate and
better understand the treated data.

2) Support Vector Machine (SVM): As proposed in [11] we
use SVM as our baseline ML solution. Multiple implementa-
tion exist for SVM classification. The model is also trained
with the Checks Feature Set. However, the default SVM
implementation (C-Support Vector Classification (SVC)), is
not designed for large data sets. The SVC training times
exhibit quadratic growth with the increase of the number of
samples. Therefore, we are able to train SVC with only 10%
of our original training data-set. Accordingly, we tested the
Linear Support Vector Classification (LinearSVC), a similar
implementation that could scale better with a large numbers of
samples. However, LinearSVC performed significantly worse
than SVC even when trained on the full data-set.

3) Multi-Layer Perceptron (MLP): MLP is feedforward
backpropagation Artificial Neural Network (ANN). It is the
algorithm used in [13]. We tested two implementation for this
model. The first implementation (MLP-T1) makes use of the
same features Checks Feature Set as the previous models.
The proposed MLP-T1 model has 1 Dense layer with 18
nodes. The second implementation (MLP-T10) takes as input
the previous 10 time-steps. The feature set consists of the
Minimum and the Average of the Checks Feature Set. The
proposed MLP-T10 model has 1 Dense layer with 36 nodes.

4) Long Short-Term Memory (LSTM): LSTM is also an
algorithm of choice used in [13]. Moreover, is a well suited
algorithm for our problem due the temporal based relation
between the successive V2X messages. LSTM is part of the
Recurrent Neural Network (RNN) family of ML algorithms
specifically designed to treat time dependent data. Therefore,
the LSTM if additionally given the Kinematic Feature Set
as input. The model proposed contains a single bidirectional
LSTM layer with 20 nodes. A dropout of 0.2 and batch
normalization is added to combat over-fitting. This is similarly
validated through cross validation.

For more technical details, the implementation of these
models is open-source and shared on GitHub [18].

V. EVALUATION RESULTS

A. Simulation settings and scenarios

We use the Framework For Misbehavior Detection (F2MD)
to test the previously described solutions [4]. F2MD is a
VEINS module. VEINS is a well known an open source
framework for running vehicular network simulations [24].
It is also the simulator of choice for VeReMi [10]. VEINS
is based on the Objective Modular Network Testbed in C++
(OMNeT++) [25] for network simulation and the Simulation
of Urban MObility (SUMO) [26] for road traffic simulation.

In order to correctly evaluate the ML algorithms, a different
scenario is used for the training and the testing (see Fig. 4).
The Luxembourg SUMO Traffic (LuST) scenario is used for
training [27]. LuST is also the scenario of choice for VeReMi.
It is a set of vehicle traces generated with SUMO and validated
with real data. The chosen network size is 1.61km2 with



(a) Train Network: Luxembourg (b) Test Network: Paris Scalay

(c) Train Vehicle Density (d) Test Vehicle Density

Fig. 4: Simulation Scenarios

a variable density peaking at 67.4V ehicle/km2. In total,
the train scenario contains 24, 663 vehicles with 17, 097, 930
exchanged V2X messages with an attacker rate of 25%.
Alternatively, The testing is done on an area of Paris Scalay
with randomly generated vehicle traces. Therefore, the vehicle
density is somewhat stable. The test bench network size is
1.11km2 and of density circling around 17.1V ehicle/km2.
This selection of scenarios enables a significantly different
training and testing data-sets. In total, the test bench contains
12, 542 vehicles with 8, 475, 371 exchanged V2X messages
with an attacker rate of 5%. For further details, the raw
data, the source code and all the configuration details of the
scenarios are published on GitHub [18].

Provided our relatively large data-set, high performance
computing is needed for the prepossessing and training of
our models. The SVM and XGBoost training is done on CPU
server with an 176 core Intel(R) Xeon(R) CPU E7-8880 v4 @
2.20GHz and 2TBs of RAM. The MLP and LSTM training is
done on a GPU server with a couple of NVIDIA Tesla P100s.
All the algorithms are tested on a local workstation with an 8
core Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz and 32GBs
of RAM.

B. Data Evaluation

Figure 5 shows a t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) visualization of the train and test data-sets.
t-SNE is a dimensional reduction technique used to reduce
multiple features into a two dimensional space [28]. We
observe that the two classes are not perfectly separated into
clusters. Some of the genuine and misbehaving data points are
mixed. Therefore, we suspect that a linear model is not suitable
for this classification. A non-linear kernel or a deep-learning
model might perform better in our scenario.

(a) Train Data (b) Test Data

Fig. 5: t-SNE: Genuine (Gray) and Misbehaving (Red)

Fig. 6: XGBoost feature importance

Figure 6 shows the feature importance by weight as cal-
culated by the XGBoost module. We can see that not all
feature are equally important. A relative correlation is apparent
between the complexity of the calculated check and the impor-
tance with respect to the XGBoost classification. Specifically,
the Kalman-Filter based check is especially important. All
the Kalman Filter extracted checks rank high on the feature
importance scale. Future studies treating ML in local misbe-
havior detection should consider adding it to their feature sets.
Ultimately, it is as important to consider the checks calculated
as the ML algorithms used for the classification.

C. Results Analysis

Figure 7 shows the evaluation metric results of the models
classification of the test data-set. The considered evaluation
metrics are: Recall, Precision, F1score, Accuracy, Bookmaker
Informedness (BM), Markedness (MK), Matthews Correlation
Coefficient (MCC) and Cohen’s kappa (κ). The evaluation
metrics are detailed in out previous publication [17]. The Mean
Processing Time (MPT) is also measured for every considered
detection application.

First thing we notice is that all the detection mechanisms
are within a small accuracy range. In fact, all the detection
mechanisms score more that 98% accuracy. This is due to the
mechanisms relatively high precision and the unbalanced test



Detection
Solution

Evaluation Metrics MPT (µs)

Recall Precision F1score Accuracy BM MK MCC K C++(∗) Python(◦)
Threshold 0.8401 0.9262 0.8811 0.9827 0.8346 0.9131 0.8730 0.7604 0.00010 (∗)
N-CTB 0.8509 0.9864 0.9137 0.9880 0.8500 0.9745 0.9101 0.8300 0.00019 (∗)
CTB 0.9131 0.9599 0.9359 0.9904 0.9100 0.9527 0.9311 0.8664 0.00023 (∗)
XGBoost 0.8892 0.8578 0.8732 0.9808 0.8774 0.8489 0.8630 0.7262 745.01 (◦)
LinearSVC 0.8406 0.9216 0.8792 0.9828 0.8349 0.9088 0.8711 0.7564 7089.6 (◦)
SVM-SVC 0.8626 0.9887 0.9213 0.9891 0.8618 0.9778 0.9180 0.8441 115.14 (◦)
MLP-T1 0.8611 0.9804 0.9169 0.9884 0.8598 0.9694 0.9129 0.8348 1358.6 (◦)
MLP-T10 0.9018 0.9787 0.9387 0.9912 0.9002 0.9708 0.9349 0.8746 0.176 (∗) 1562.6 (◦)
LSTM 0.9312 0.9603 0.9455 0.9920 0.9281 0.9547 0.9413 0.8852 0.614 (∗) 8298.9 (◦)

Fig. 7: Evaluation Metrics by tested detection application

data-set of 5% attacker rate. Consequently, accuracy is not a
suitable detection metric for our use case. For comparison pur-
poses we rely on Cohen’s kappa, MCC or the F1score which
all have the same ranking for the considered mechanisms.

Second thing we notice is the LinearSVC performed signif-
icantly worse than the SVC with respect to all the evaluation
metrics. In fact, LinearSVC even performed nearly identically
to the simple Threshold application. This result is in line
with our previous analysis of the t-SNE plot in section V-B.
To emphasize, a simple LinearRegression is also tested with
similarly performing results.

Moving on to the MPT, we have two platforms of execution.
The deterministic models are executed in C++ within the
simulation. The ML-based solutions are executed on Keras in
Python. Keras is not optimized for single predictions, instead it
performs much better with batch predictions, which is not the
case in out model. Consequently, the Python and the C++ exe-
cutions are unsuitable for processing time comparison. To this
end, we re-implement the MLP-T10 and the LSTM models in
C++ using the previously trained weights. Nevertheless, even
with the C++ optimization, the deterministic models calculates
around 800 times faster than their ML-based counterparts.
However, the ML-based solutions do not entirely outperforms

the deterministic solutions. We notice three clusters within the
results. The metrics of the Threshold solution is comparable to
the LinearSVC and the XGBoost. The N-CTB is comparable to
the MLP-T1 and the SVC. The CTB is closer to the MLP-T10
and the LSTM. Accordingly, there is no positive correlation
between the processing time and the detection quality.

On the other hand, some solutions have their own draw-
backs. The CTB application relies on the authenticity of the
neighboring vehicles to determine the level of trust. Therefore,
it is vulnerable to Sybil attacks. Additionally, the system could
completely fall apart in sub-environments where an definite
honest majority of vehicles is not assured. In contrast, all ML-
based solutions are venerable to adversarial attacks. Moreover,
a large and reliable training set is required for the models to
function adequately. Therefore, the ML-based solutions could
not protect against zero-day vulnerability, i.e. in the early
stages of deployment we do not have enough data to train
a ML-based detection system. Furthermore, the deploy-ability
and certification of these ML-based solution for an embedded
implementation is relatively complex. Finally, the detection of
new types of previously unknown attacks might require the
re-training of the model.

We believe that a robust set of well calibrated detectors



coupled with a non cooperative deterministic application, like
the N-CTB, could be the more suitable solution for this stage
of local MBD. It has a fast processing time and easy deploy-
ability. it is not vulnerable to Sybil or adversarial attacks. It is
agnostic to new types of attacks. And it requires no training
data so it could be implemented immediately with the first
deployment. Nevertheless, this result is not conclusive as the
local MBD is not an independent system. Even though, the
global MA should be designed to withstand a number of False
Positive reports and a number of missed reports. The effect of
the local detection quality on the global MA should also be
evaluated for a more rigorous analysis.

VI. CONCLUSION AND FUTURE WORK

In this paper, we focused on local misbehavior detection in
C–ITS. Specifically, we evaluate different detection solutions.
To achieve this, we extract the detection logic from several
state of the art studies. Then we describe our implementation
of the different extracted solutions. We show through testing
results that some Machine Learning solutions outperforms the
deterministic algorithms but only by a small margin. We put
in question the need for Machine Learning solutions in this
use case. We argue that Non-Cooperative Trust Based could
be a suitable solution for this application.

Future work involves focusing on other components of the
MBD system. That includes a more efficient reporting protocol
and a robust global detection. Additionally, testing of MBD
system within current C–ITS deployment projects is planned.
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