Reversible causal graph dynamics: invertibility, block representation, vertex-preservation
Résumé
Causal Graph Dynamics extend Cellular Automata to arbitrary time-varying graphs of bounded degree. The whole graph evolves in discrete time steps, and this global evolution is required to have a number of symmetries: shift-invariance (it acts everywhere the same) and causality (information has a bounded speed of propagation). We add a further physics-like symmetry, namely reversibility. In particular, we extend two fundamental results on reversible cellular automata, by proving that the inverse of a causal graph dynamics is a causal graph dynamics, and that these reversible causal graph dynamics can be represented as finite-depth circuits of local reversible gates. We also show that reversible causal graph dynamics preserve the size of all but a finite number of graphs.