Jean-Francois Bony 
email: bony@math.u-bordeaux.fr
  
AND Nicolás Ás Espinoza 
  
Georgi Raikov 
email: graikov@mat.uc.cl
  
Jean-Franc ¸ois Bony 
  
  
  
  
Spectral Properties of 2D Pauli Operators with Almost-Periodic Electromagnetic Fields

Keywords: Pauli operators, almost periodic functions, ergodic operator families, zero modes, asymptotics of Dirichlet series. 2010 AMS Mathematics Subject Classification: 35P05, 81Q05, 47N50, 58G10, 11F66

come   L'archive ouverte pluridisciplinaire

Introduction

In the present article we study the spectral properties of the 2D Pauli operator H with scalar magnetic field b and electric potential V .

First, we assume that b and V are almost periodic and there exists an almost periodic magnetic potential A which generates b := b-b 0 , b 0 being the mean value of b, and construct an ergodic family of operators {H ω } ω∈B 2 such that H 0 = H. Here B 2 is the Bohr compactification of R 2 , equipped with the normalized Haar measure P. Using the general properties of ergodic families of operators, and the uniform continuity of the resolvent (H ωz) -1 , z ∈ C \ R, with respect to ω ∈ B 2 , we show that for every ω ∈ B 2 the spectrum σ(H ω ) of H ω is the same and the discrete spectrum σ disc (H ω ) is empty, while the absolutely continuous spectrum σ ac (H ω ), the singular continuous spectrum σ sc (H ω ), and the closure σ pp (H ω ) of the set of the eigenvalues of H ω , are almost surely constant. Moreover, we prove that almost surely any fixed E ∈ R is not an eigenvalue of H ω of finite multiplicity. Next, we assume only that b and V are almost periodic without supposing the existence of an almost periodic A which generates b, and extend to this case the above results which now all hold almost surely.

Further, we investigate the kernel of the operator H with V = 0. We concentrate on the problem of determining dim Ker H for a given magnetic field b. If Ker H is not trivial, we also address the issue of whether the zero is an isolated point of σ(H). To start with, we recall the classical results concerning rapidly decaying or periodic b, and then we pass to almost periodic fields. First, we consider a class of such fields which was studied already in [START_REF] Raikov | Spectral asymptotics for the perturbed 2D Pauli operator with oscillating magnetic fields. I. Non-zero mean value of the magnetic field, Markov Process[END_REF], and, in a certain sense, is close to the class of periodic b. We recall that for this class we have dim Ker H = ∞ if b 0 = 0, the zero is an isolated point of σ(H), and an effective bound of the size of the spectral gap adjoining the origin is available, while if b 0 = 0, then Ker H = {0}. Further, we consider almost periodic magnetic fields which are distant from the periodic ones. In this case again dim Ker H = ∞ if b 0 = 0. However, if b 0 = 0 the situation changes drastically in comparison with the previous class. Namely, for each m ∈ N ∪ {∞} we construct explicitly magnetic fields for which dim Ker H = m. If m ∈ N, then, due to the ergodic properties of H, the zero is not an isolated point of σ(H). Our construction strongly relies on some new results concerning the asymptotic behavior of certain Dirichlet series containing on a large parameter, which are also obtained in the present article; these results could be of independent interest, say, in the analytic number theory.

The article is organized as follows. In Section 2 we introduce the 2D Pauli operator H and describe some of its general properties such as its supersymmetric form in the case V = 0, as well as its gauge invariance. In Section 3, we discuss the ergodic properties of H. Finally, in Section 4 we assume V = 0, and investigate the zero modes of H. Finally, the Appendix contains the proofs of our results on the asymptotics of Dirichlet series.

Two-dimensional Pauli operators: general setting

Let b : R 2 → R be a bounded continuous function which has the physical interpretation of a scalar magnetic field, and let A = (A 1 , A 2 ) ∈ C 1 (R 2 ; R 2 ) be a vector field such that

b = curl A := ∂A 2 ∂x 1 - ∂A 1 ∂x 2 .
Then, A is interpreted as a magnetic potential which generates the magnetic field b. Let M 2 be the set of Hermitian 2 × 2 matrices, and let V : R 2 → M 2 be a bounded continuous function, interpreted as a matrix-valued electric potential. Then the 2D Pauli operator H with magnetic potential A and electric potential V , acting in the Hilbert space L 2 (R 2 ; C 2 ), can be defined as

H = H(A, V ) = H -0 0 H + + V,
where H ± := h±b and h = h(A) := (-i∇-A) 2 is the 2D Schrödinger operator with magnetic potential A. Let us recall that for A ∈ L 2 loc (R 2 ; R 2 ), the operator h can be defined as the self-adjoint operator generated by the closure of the quadratic form

R 2 |i∇u + Au| 2 dx, u ∈ C ∞ 0 (R 2 ). If (2.1) A ∈ L 4 loc (R 2 ; R 2 ), div A ∈ L 2 loc (R 2 ), then h is essentially self-adjoint on C ∞ 0 (R 2 ) (see [17]). Note that A = (A 1 , A 2 ) ∈ C 1 (R 2 ; R 2 ) implies (2.1
). Thus, the block operators H ± with common domain Dom H ± = Dom h are self-adjoint in L 2 (R 2 ) and the matrix operator

H(A, V ) is self-adjoint in L 2 (R 2 ; C 2 ). Let us introduce the magnetic creation operator a * = a(A) * := -2i ∂ ∂z -A 1 + iA 2 , z = x 1 + ix 2 ,
and the magnetic annihilation operator

(2.2) a = a(A) := -2i ∂ ∂z -A 1 -iA 2 , z = x 1 -ix 2 .
The operators a and a * with common domain Dom h 1/2 are closed and mutually adjoint in L 2 (R 2 ). Then the operator H(A, 0) can be written in the supersymmetric form

(2.3) H(A, 0) = 0 a * a 0 2 = a * a 0 0 aa * ,
so that H -= a * a and H + = aa * . Let now ϕ ∈ C 2 (R 2 ; R) be a solution of the Poisson equation

(2.4) ∆ϕ(x) = b(x), x ∈ R 2 .
Then A := -∂ϕ ∂x 2 , ∂ϕ ∂x 1 generates the magnetic field b, and moreover div A = 0. In this case we have

(2.5) a * = -2ie ϕ ∂ ∂z e -ϕ , a = -2ie -ϕ ∂ ∂z e ϕ .
Next, assume that the magnetic potentials A (j) ∈ C 1 (R 2 ; R 2 ), j = 1, 2, generate the same magnetic field, i.e. curl A (1) = curl A (2) . Then there exists a function Φ ∈ C 2 (R 2 ; R) such that A (1) = A (2) + ∇Φ. Therefore, h(A (1) ) = e iΦ h(A (2) )e -iΦ and, hence,

H(A (1) , V ) = e iΦ H(A (2) , V )e -iΦ ,
i.e. the operators H(A (1) ) and H(A (2) ) are unitarily equivalent under the gauge transformation u → e -iΦ u. In particular, H(A (1) ) and H(A (2) ) have identical spectral properties. The definition of the Pauli operator in arbitrary dimension d ≥ 2, and the description of some of its basic spectral properties can be found, for example, in [START_REF] Shigekawa | Spectral properties of Schrödinger operators with magnetic fields for a spin 1 2 particle[END_REF].

Ergodic properties of H

In this section we consider the ergodic properties of the operator H with almost periodic magnetic field b. We start with a brief summary of the definition of almost periodic functions and their basic properties following mainly [START_REF] Shubin | Almost periodic functions and partial differential operators, (Russian) Uspehi Mat. Nauk[END_REF]. Since this part is independent of the dimension d, we let d ≥ 1. 

f C b (R d ) := sup x∈R d |f (x)|. Set e λ (x) := e iλ•x , λ ∈ R d , x ∈ R d . Thus, {e λ } λ∈R d is the set of the continuous characters of the Abelian group R d . Put Trig(R d ) := u = N j=1 c j e λ j | c j ∈ C, λ j ∈ R d for j = 1, . . . , N < ∞ .
Then the Banach space of continuous almost periodic functions

CAP (R d ) is the closure of Trig(R d ) in C b (R d ). It is well known that if f ∈ C b (R d ), then f ∈ CAP (R d ) if and only if the set {f (• + s)} s∈R d is precompact in C b (R d ). Let f ∈ CAP (R d ). Denote by M(f ) := lim T →∞ T -d (-T /2,T /2) d f (x) dx ∈ C,
the mean value of f . For λ ∈ R d denote by f λ the Fourier coefficient

f λ := M(f e -λ ),
so that f 0 = M(f ), and put

J(f ) := λ ∈ R d | f λ = 0 , J 0 (f ) := J(f ) \ {0}.
It is well known that for any given f ∈ CAP (R d ), the set J(f ) is countable, and f is uniquely determined by the set {f λ } λ∈R d . Let us note here the elementary fact that

f ∈ CAP (R d ) is real valued if and only if f -λ = f λ , λ ∈ R d .
We will need also the Wiener class of almost periodic functions

WAP (R d ) := f ∈ CAP (R d ) | λ∈J(f ) |f λ | < ∞ . If f ∈ WAP (R d
), then f coincides with the sum of its Fourier series λ∈J(f ) f λ e λ (x), which is absolutely convergent, uniformly with respect to x ∈ R d . Note also that if f ∈ WAP (R d ) and the set J(f ) is bounded, then

f ∈ CAP ∞ (R d ) := u ∈ C ∞ (R d ) | D α u ∈ CAP (R d ) for α ∈ Z d + .
Let 

f (x) = φ(ι(x)), x ∈ R d ;
we call φ the canonic extension of f . Let P be the Haar measure on B d , normalized to one, and F be the σ-algebra of the P-measurable subsets of B d . Then (B d , F, P) is a probability space. If f ∈ CAP (R d ) and φ ∈ C(B d ) is its canonic extension, then

M(f ) = B d φ(ω) dP(ω) =: E(φ).
Denote by ǫ λ the canonic extension of e λ , λ ∈ R d . Thus, {ǫ λ } λ∈R d is the set of continuous characters of the group B d which forms an orthonormal basis of L 2 (B d , dP).

3.2.

Operators with linear plus almost periodic magnetic potential. Assume now that b ∈ CAP (R 2 ; R) and V ∈ CAP (R 2 ; M 2 ). Recalling that b 0 is the mean value of b, set

A 0 := - b 0 x 2 2 , b 0 x 1 2 ,
so that curl A 0 = b 0 . Further, put b := bb 0 , and assume that there exists A ∈ CAP (R 2 ; R 2 ) such that curl A = b. This is for example the case if

(3.1) b(x) = b 0 + λ∈J 0 (b) b λ e λ (x), x ∈ R 2 ,
where b λ = b -λ for all λ ∈ J(b) and

(3.2) λ∈J 0 (b) |b λ | 1 + |λ| -1 < ∞.
Then A can be chosen in the form

(3.3) A(x) = i λ∈J 0 (b) b λ λ 2 |λ| 2 e λ (x), -i λ∈J 0 (b) b λ λ 1 |λ| 2 e λ (x) , x ∈ R 2 .
Thus, A ∈ WAP (R 2 ; R 2 ) and curl A = b. Eventually, we have curl A = b for A := A 0 + A.

Let α ∈ C(B 2 ; R 2 ), β ∈ C(B 2 ; R), and Υ ∈ C(B 2 ; M 2 ) be the canonic extensions of A, b and V respectively. Set

A ω (x) := α(ω + ι(x)), B ω (x) := β(ω + ι(x)), V ω (x) := Υ(ω + ι(x)),
for x ∈ R 2 and ω ∈ B 2 . On Dom h(A 0 ) define the operators

(3.4) H ± ω := (-i∇ -A 0 -A ω ) 2 ± B ω , self-adjoint in L 2 (R 2
), and on Dom h(A 0 ) ⊕ Dom h(A 0 ) define the operator

(3.5) H ω = H - ω 0 0 H + ω + V ω , ω ∈ B 2 , self-adjoint in L 2 (R 2 ; C 2 ).
Evidently, H 0 = H(A, V ). Note that the operator family {H ω } ω∈B 2 is continuous in the norm resolvent sense.

For ξ ∈ R 2 introduce the unitary operators

U ξ : L 2 (R 2 ) → L 2 (R 2 ) by (U ξ f )(x) = e i b 0 2 (ξ 1 x 2 -x 1 ξ 2 ) f (x -ξ), x ∈ R 2 , f ∈ L 2 (R 2 ). We have (3.6) U ξ (-i∇ -A 0 )U * ξ = -i∇ -A 0 , U ξ B ω U * ξ = B T ξ ω , U ξ V ω U * ξ = V T ξ ω , and 
(3.7) U ξ A ω U * ξ = A T ξ ω , where (3.8) T ξ ω := ω -ι(ξ), ω ∈ B 2 , ξ ∈ R 2 .
Hence,

(3.9) U ξ H ω U * ξ = H T ξ ω , ω ∈ B 2 , ξ ∈ R 2 .
We recall that a group of measure preserving automorphisms of B 2 , homomorphic to R 2 , is called R 2 -ergodic if any set S ⊂ F invariant under the action of this group, satisfies either P(S) = 0 or P(S) = 1.

Lemma 3.1. The group {T ξ } ξ∈R d defined in (3.8) is R 2 -ergodic.
Proof. Due to the invariance of the Haar measure P under the action of B 2 , {T ξ } ξ∈R 2 is a group of measure preserving automorphisms. Assume that S ∈ F is invariant under this group, i.e. T ξ S = S for all ξ ∈ R 2 . Define the measure µ S (C) := P(S ∩ C), C ∈ F.

We will show that this measure is invariant under the action of B 2 . Since P is a Haar measure on B 2 and S is invariant, we have

µ S (C + ι(ξ)) = P(S ∩ (C + ι(ξ))) = P((S -ι(ξ)) ∩ C) = P(S ∩ C) = µ S (C), for ξ ∈ R 2 . From the continuity of the function B 2 ∋ ω → P(S ∩ (C + ω)) ∈ [0, 1] and the density of ι(R 2 ) in B 2 , this yields µ S (C + ω) = µ S (C), C ⊂ F, ω ∈ B 2 ,
i.e. the measure µ S is invariant under B 2 . By the uniqueness property of the Haar measure, there exists a constant a = a(S) ≥ 0 such that

µ S (C) = aP(C), C ∈ F. If a = 0, then P(S) = µ S (S) = 0. If a > 0 then P(S) = µ S (S) a = µ S (B 2 ) a = P(B 2 ) = 1.
Hence, {T ξ } ξ∈R 2 is an R 2 -ergodic group of automorphisms.

Remark. Various versions of Lemma 3.1 are available in the literature (see e.g. [7, Section 10.1] for a somewhat different but closely related situation). We include its proof just for the sake of completeness of the exposition.

Using standard properties of ergodic operator families (see e.g. [START_REF] Kirsch | On the ergodic properties of the spectrum of general random operators[END_REF][START_REF] Kirsch | Random Schrödinger operators. A course[END_REF][START_REF] Pastur | Spectra of Random and Almost-Periodic Operators Grundlehren der Mathematischen Wissenschaften[END_REF]), we obtain the following

Theorem 3.2. Let b ∈ CAP (R 2 ; R) and V ∈ CAP (R 2 ; M 2 ) be such that there exists A ∈ CAP (R 2 ; R 2 ) with curl(A 0 + A) = b. Then, (i) There exist closed subsets Σ, Σ ac , Σ sc and Σ pp of R such that P-almost surely σ(H ω ) = Σ, σ ac (H ω ) = Σ ac , σ sc (H ω ) = Σ sc , σ pp (H ω ) = Σ pp .
(ii) Moreover, P-almost surely σ disc (H ω ) = ∅. (iii) Any E ∈ R is P-almost surely not an eigenvalue of H ω of finite multiplicity.

Remark. In the case V = 0, the operator family {H ω } ω∈B 2 was introduced in the proof of [START_REF] Raikov | Spectral asymptotics for the perturbed 2D Pauli operator with oscillating magnetic fields. I. Non-zero mean value of the magnetic field, Markov Process[END_REF]Lemma 3.2]. There are many works considering the non-magnetic Schrödinger operator

-∆ + V acting in L 2 (R d ), d ≥ 1
, with almost periodic scalar potential V . However, usually the corresponding ergodic family -∆ + V ω is defined for ω on the hull of V (see e.g [START_REF] Pastur | Spectra of Random and Almost-Periodic Operators Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Avron | Almost periodic Schrödinger operators. I. Limit periodic potentials[END_REF]). Our choice to define the ergodic family H ω for ω ∈ B 2 is motivated by the fact that there are several scalar almost periodic functions involved in H(A, V ) and, on the other hand, the hull of any scalar function

f ∈ CAP (R 2 ) is a subgroup of B 2 .
Applying a suitable continuity argument, we show in Corollary 3.3 below that the results of Theorem 3.2 concerning σ(H ω ) and σ disc (H ω ) hold for every ω ∈ B 2 . Corollary 3.3. Under the hypotheses of Theorem 3.2, we have

σ(H ω ) = Σ, (3.10) σ disc (H ω ) = ∅, (3.11) for any ω ∈ B 2 . In particular, σ disc (H) = σ disc (H 0 ) = ∅. Proof. Since P(U ) > 0 for any open non-empty U ⊂ B 2 , every S ∈ F with P(S) = 1 is dense in B 2 . Set S 0 := {ω ∈ B 2 | σ(H ω ) = Σ and σ disc (H ω ) = ∅}.
By Theorem 3.2, we have P(S 0 ) = 1, and then S 0 is dense in B 2 . Let ω ∈ B 2 . Pick a net {ω α } α∈I ⊂ S 0 which converges to ω. Then we have

(3.12) (H ωα -z) -1 -→ (H ω -z) -1 , z ∈ C \ -sup x∈R 2 |V (x)|, ∞ ,
in norm. The rest of the proof is based on standard perturbation arguments. We include some details just because we're dealing with operator nets instead of operator sequences.

From the spectral theorem, the resolvent of a self-adjoint operator T satisfies

(3.13) (T -z) -1 = 1 dist(z, σ(T )) , z ∈ C \ R.
Using (3.12), (3.13) and σ(H ωα ) = Σ for all α ∈ I, we deduce

dist(z, σ(H ω )) = dist(z, Σ), z ∈ C \ R.
Since Σ and σ(H ωα ) are closed subsets of R, this easily implies (3.10). Now assume that there exists E ∈ σ disc (H ω ). Then, (3.10) shows that E is an isolated eigenvalue of infinite multiplicity of H ωα for any α ∈ I.

Now pick ε > 0 such that (E -ε, E + ε) ∩ σ(H ω ) = {E}.
Passing to resolvents and applying [4, Chapter 9, Section 4, Lemma 3], we find that there exists β ∈ I such that α ≥ β implies (3.14) Tr

1 (E-ε,E+ε) (H ω ) ≥ Tr 1 (E-ε/2,E+ε/2) (H ωα ).
Here 1 S (T ) denotes the spectral projection of the self-adjoint operator T corresponding to the Borel set S ⊂ R. Since the l.h.s. of (3.14) is finite and its r.h.s. is infinite, we obtain a contradiction which gives (3.11).

Remark. An analogue of Corollary 3.3 for the case of

-∆ + V in L 2 (R d ), d ≥ 1, with almost periodic V , is contained in [2, Theorems A.2.1, A.2.2].
As already mentioned, in [START_REF] Avron | Almost periodic Schrödinger operators. I. Limit periodic potentials[END_REF], the operator family -∆ + V ω is defined on the hull of V .

3.3.

Operators with general almost periodic magnetic fields. Our next goal is to investigate the ergodic properties of the operator H(A, V ) assuming only that b ∈ CAP (R 2 ; R) and V ∈ CAP (R 2 ; M 2 ) but not that there exists A ∈ CAP (R 2 ; R 2 ) which generates b = b-b 0 .

In fact, we will suppose a bit more about b, namely that b ∈ WAP (R 2 ; R). Then we have

B ω (x) = b 0 + λ∈J 0 (b) b λ ǫ λ (ω)e λ (x), ω ∈ B 2 , x ∈ R 2 .
For ω ∈ B 2 and x ∈ R 2 , set

A ω (x) := i λ∈J 0 (b) b λ λ 2 ǫ λ (ω) |λ| 2 (e λ (x) -1), -i λ∈J 0 (b) b λ λ 1 ǫ λ (ω) |λ| 2 (e λ (x) -1) .
Since we do not assume any more that (3.2) is true, generically A ω / ∈ CAP (R 2 ; R 2 ). However, the series above converge absolutely, uniformly with respect to ω ∈ B 2 , and locally uniformly

with respect to x ∈ R 2 . It is easy to see that A ω ∈ C 1 (R 2 ; R 2 ) and curl A ω = B ω -b 0 for each ω ∈ B 2 . Moreover, |e λ (x) -1| ≤ |λ||x| gives (3.15) |A ω (x)| ≤ √ 2 λ∈J 0 (b) |b λ | |x|, ω ∈ B 2 , x ∈ R 2 ,
and, using in addition that |e λ (x) -1| ≤ 2, we get

(3.16) lim |x|→∞ |x| -1 A ω (x) = 0.
Similarly to (3.4)-(3.5), set

H ± ω := (-i∇ -A 0 -A ω ) 2 ± B ω , H ω = H - ω 0 0 H + ω + V ω , ω ∈ B 2 .
Again,

H 0 = H(A 0 + A 0 , V ). Proposition 3.4. Let z ∈ C \ R and f ∈ L 2 (R 2 ; C 2 ).
Then the function

B 2 ∋ ω -→ (H ω -z) -1 f ∈ L 2 (R 2 ; C 2 ),
is continuous.

Proof. Pick ω ∈ B 2 and a net {ω α } ⊂ B 2 such that ω α → ω. We will show that

(3.17) (H ωα -z) -1 -(H ω -z) -1 f L 2 (R 2 ;C 2 ) -→ 0. Since (H ωα -z) -1 -(H ω -z) -1 f L 2 (R 2 ;C 2 ) ≤ 2 | Im z| f L 2 (R 2 ;C 2 ) ,
and

C ∞ 0 (R 2 ; C 2 ) is dense in L 2 (R 2 ; C 2 ), we can assume without loss of generality that f ∈ C ∞ 0 (R 2 ; C 2 ). Further, (H ωα -z) -1 -(H ω -z) -1 f = (H ωα -z) -1 H - ω -H - ωα 0 0 H + ω -H + ωα + V ω -V ωα (H ω -z) -1 f. (3.18) It is easy to check that (3.19) (H ωα -z) -1 (V ω -V ωα )(H ω -z) -1 ≤ V ω -V ωα | Im z| 2 -→ 0, as ω α → ω. Next, write (H ωα -z) -1 H - ω -H - ωα 0 0 H + ω -H + ωα (H ω -z) -1 f = C ωα (z) * D(ω, ω α ) * x (H ω -z) -1 f + (H ωα -z) -1 D(ω, ω α ) x C ω (z)f = C ωα (z) * D(ω, ω α ) * (H ω -z) -1 x f + C ωα (z) * D(ω, ω α ) * x , (H ω -z) -1 f + (H ωα -z) -1 D(ω, ω α )C ω (z) x f + (H ωα -z) -1 D(ω, ω α ) x , C ω (z) f, (3.20)
where

C ν (z) := a ν 0 0 a * ν (H ν -z) -1 , with a ν := a(A 0 + A ν ), ν ∈ B 2 ,
the operator a(A) being defined in (2.2),

D(ω, ω α ) := (a * ω -a * ωα ) x -1 0 0 (a ω -a ωα ) x -1 ,
which is a multiplication operator, and

x := (1 + |x| 2 ) 1/2 . Similarly to (3.15), (3.21) D(ω, ω α ) ≤ √ 2 λ∈J 0 (b) |b λ | |ǫ λ (ω) -ǫ λ (ω α )|. Since λ∈J 0 (b) |b λ | < ∞, |ǫ λ (ω) -ǫ λ (ω α )| ≤ 2 for all λ ∈ R 2 and |ǫ λ (ω) -ǫ λ (ω α )| → 0 as ω α → ω for any fixed λ ∈ R 2 , we find that (3.21) implies (3.22) D(ω, ω α ) -→ 0,
as ω α → ω. Further, we have

C ν (z) 2 = C ν (z) * C ν (z) = (H ν -z) -1 (H ν -V ν )(H ν -z) -1 ≤ (H ν -z) -1 + (H ν -z) -1 (z -V ν )(H ν -z) -1 ≤ 1 | Im z| + |z| + sup x∈R 2 |V (x)| | Im z| 2 , (3.23)
for ν ∈ B 2 . Since the gradient of x is bounded and

x , (H ν -z) -1 = (H ν -z) -1 a * ν [a ν , x ] + [a * ν , x ]a ν 0 0 a ν [a * ν , x ] + [a ν , x ]a * ν (H ν -z) -1 ,
we find that

(3.24) x , (H ν -z) -1 ≤ 2 (H ν -z) -1 [a ν , x ] C ν (z) + C ν (z) ≤ C,
and, analogously,

(3.25) x , C ν (z) ≤ C, ν ∈ B 2 ,
with a constant C > 0 which may depend on z but is independent of ν. Since supp f is compact, putting together (3.22)-(3.25), we find that (3.20) implies

(H ωα -z) -1 H - ω -H - ωα 0 0 H + ω -H + ωα (H ω -z) -1 f L 2 (R 2 ;C 2 ) -→ 0,
as ω α → ω, which combined with (3.18) and (3.19), yields (3.17).

Corollary 3.5. For λ ∈ R, the operator family {1 (-∞,λ) (H ω )} ω∈B 2 is weakly measurable, i.e. the functions

(3.26) B 2 ∋ ω -→ 1 (-∞,λ) (H ω )f, g ∈ C, f, g ∈ L 2 (R 2 ; C 2 ), are P-measurable, •, • being the scalar product in L 2 (R 2 ; C 2 ).
Proof. Let z ∈ C \ R. It follows from Proposition 3.4, that the functions

B 2 ∋ ω -→ (H ω -z) -1 f, g ∈ C, f, g ∈ L 2 (R 2 ; C 2 ),
are continuous, and hence P-measurable. By [15, Proposition 3], this is equivalent to the measurability of the functions defined in (3.26).

Note that (3.6) remains unchanged but (3.7) should be replaced by

U ξ A ω U * ξ = A T ξ ω + ∇Φ ω,ξ , where Φ ω,ξ (x) = x • A ω (-ξ), x ∈ R 2 , ξ ∈ R 2 , ω ∈ R 2 .
Hence, (3.9) should be replaced by

(3.27) U ξ H ω U * ξ = e -iΦ ξ,ω H T ξ ω e iΦ ξ,ω , ω ∈ B 2 , ξ ∈ R 2 .
Thus the operator family {H ω } ω∈B 2 is not any more ergodic in the classical sense (see (3.9)), but is ergodic up to an ω-dependent gauge transformation. However, relation (3.27) defines a reasonable generalization of the R 2 -ergodicity, allowing us to prove Theorem 3.6 below, thus extending Theorem 3.2 to the case where we just assume almost periodicity of b and V . Theorem 3.6. Assume that b ∈ WAP (R 2 ; R) and V ∈ CAP (R 2 ; M 2 ). Then, (i) There exist closed subsets Σ, Σ ac , Σ sc , and Σ pp of R such that P-almost surely

σ(H ω ) = Σ, σ ac (H ω ) = Σ ac , σ sc (H ω ) = Σ sc , σ pp (H ω ) = Σ pp .
(ii) Moreover, P-almost surely,

σ disc (H ω ) = ∅. (iii) Any E ∈ R is P-almost surely not an eigenvalue of H ω of finite multiplicity.
In the proof of the theorem we will need Lemma 3.7 below whose first (resp. second) part is very close to Proposition 5 (resp. Proposition 6) of [START_REF] Kirsch | Random Schrödinger operators. A course[END_REF]Chapter 4]. Lemma 3.7. Let {P ω } ω∈B 2 be a weakly measurable family of orthogonal projections acting in L 2 (R 2 ; C 2 ), which satisfies Hence, we must just exclude the possibility that n ∈ N in (3.30). Assume that (3.30) holds true with n ∈ N. Since n > 0, we find that for any total set X ⊂ L 2 (R 2 ; C 2 ) there exists an element φ ∈ X such that (3.31)

(3.28) U ξ P ω U * ξ = e -iΦ ξ,ω P T ξ ω e iΦ ξ,ω , ω ∈ B 2 , ξ ∈ R 2 . Then, ( 
E( P ω φ, φ ) > 0. Define X 0 := φ ∈ L 2 (R 2 ; C 2 ) | supp φ ⊂ (-1/2, 1/2) 2 + x for some x ∈ R 2 ,
where •, • is the scalar product in L 2 (R 2 ; C 2 ). Evidently, X 0 is total in L 2 (R 2 ; C 2 ). Pick φ ∈ X 0 with φ, φ = 1 such that (3.31) holds true. Note that the system {U * ξ e -iΦ ξ,ω φ} ξ∈Z 2 is orthonormal in L 2 (R 2 ; C 2 ). Therefore, (3.32) Tr P ω = E(Tr P ω ) ≥

ξ∈Z 2 E P ω U * ξ e -iΦ ξ,ω φ, U * ξ e -iΦ ξ,ω , φ = ξ∈Z 2 E( P T ξ ω φ, φ ).
Since the transformations T ξ are measure preserving, we have

(3.33) E( P T ξ ω φ, φ ) = E( P ω φ, φ ), ξ ∈ R 2 .
By (3.31) and (3.33), we find that the rightmost term in (3.32) is infinite which contradicts our assumption that n in (3.30) is finite.

Proof of Theorem 3.6. Fix λ ∈ R. Then (3.27) implies that equality (3.28) holds true for the family 

P ω = 1 (-∞,λ) (H ω ), ω ∈ B 2 ,
P ω = 1 (-∞,λ) (H ♯ ω
) is weakly measurable, and, hence, by Lemma 3.7 Tr 1 (-∞,λ) (H ♯ ω ), is almost surely constant, which implies, as above, that σ ♯ (H ω ), ♯ = ac, sc, pp, is almost surely constant. This concludes the proof of Theorem 3.6 (i).

The remaining two parts of Theorem 3.6 now follow from Lemma 3.7 just as Theorem 3 and Corollary 1 in [14, Section 4] follow from Propositions 5 and 6 there.

Remark. (i) A result closely related to Theorem 3.6 is contained in [28, Theorem 2.1]. It is possible that our theorem could be deduced from that result which however is fairly abstract, so we preferred to provide a relatively simple and self-contained independent proof.

(ii) Theorem 3.2, Corollary 3.3 and Theorem 3.6 admit straightforward but quite technical generalizations to the case d ≥ 3. We omit them since we don't believe that they would add a new and deeper insight to the problems considered.

(iii) For the moment, we do not know whether an analogue of Corollary 3.3 holds true under the hypotheses of Theorem 3.6.

Zero modes of H

In this section we assume V = 0 and write H instead of H(A, 0). We are interested in the zero modes of the positive operator H, i.e. in the closed subspace Ker H of the Hilbert space L 2 (R 2 ; C 2 ). From (2.3), we have 

(4.1) Ker H = u = (u 1 , u 2 ) | u 1 ∈
a = u ∈ L 2 (R 2 ) | u = f e -ϕ , ∂f ∂z = 0 , (4.3) Ker a * = u ∈ L 2 (R 2 ) | u = f e ϕ , ∂f ∂z = 0 .
∈ C ∞ (R 2 ; R) satisfies |b(x)| ≤ C x -2-ε , x ∈ R 2 ,
with C, ε > 0. Then the function

ϕ(x) = 1 2π R 2 ln |x -y|b(y) dy, x ∈ R 2 ,
is well defined and is a solution of (2.4). Moreover, we have

ϕ(x) = Φ ln |x| + o(1), |x| → ∞,
where Φ := 1 2π R 2 b(y) dy is the flux of the magnetic field. As a result, (4. [START_REF] Birman | The two-dimensional periodic magnetic Hamiltonian is absolutely continuous[END_REF] dim Ker H = ⌊|Φ|⌋, where ⌊t⌋ is the greatest integer less than t > 0, and ⌊0⌋ = 0 (see the original work [START_REF] Aharonov | Ground state of a spin-1 2 charged particle in a two-dimensional magnetic field[END_REF] or [7, Theorem 6.5]). Moreover, since σ(H) is purely essential and coincides with [0, ∞) (see e.g.

[7, Theorem 6.1]), the zero eigenvalue of H is the endpoint of its essential spectrum.

Remark. Relation (4.5), known as the Aharonov-Casher theorem, has been generalized in various directions during the last two decades [START_REF] Erdős | Pauli operator and Aharonov-Casher theorem for measure valued magnetic fields[END_REF][START_REF] Geyler | Zero modes in a system of Aharonov-Bohm fluxes[END_REF][START_REF] Rozenblum | Infiniteness of zero modes for the Pauli operator with singular magnetic field[END_REF][START_REF] Elton | Approximate zero modes for the Pauli operator on a region[END_REF].

4.1.2. Periodic magnetic fields. Suppose now that b(x) = k∈Z 2 b k e ik•x , x ∈ R 2 , with {b k } k∈Z 2 ∈ ℓ 1 (Z 2 ) and b k = b -k for k ∈ Z 2 .
In particular, b ∈ C(T 2 ; R). We can choose the solution ϕ in (2.4) as ϕ = ϕ 0 + ϕ where

ϕ 0 (x) := b 0 |x| 2 4 , ϕ(x) := - 0 =k∈Z 2 b k |k| 2 e ik•x , x ∈ R 2 .
Then ϕ is real, bounded and we have

(4.6) ϕ(x) := b 0 |x| 2 4 + O(1), x ∈ R 2 .
Hence, (4.3)-(4.4) easily imply

dim Ker a = ∞ if b 0 > 0, 0 if b 0 ≤ 0, dim Ker a * = ∞ if b 0 < 0, 0 if b 0 ≥ 0.
By (4.2), we deduce

(4.7) dim Ker H = ∞ if b 0 = 0, 0 if b 0 = 0.
If b 0 = 0, it is shown in [START_REF] Birman | The two-dimensional periodic magnetic Hamiltonian is absolutely continuous[END_REF] that σ(H) is purely absolutely continuous. If b 0 = 0, then the zero eigenvalue is an isolated point of σ(H). This fact was noticed in [START_REF] Dubrovin | Fundamental states in a periodic field. Magnetic Bloch functions and vector bundles[END_REF] without proof, and later was proved in [START_REF] Besch | Eigenvalues in spectral gaps of the two-dimensional Pauli operator[END_REF]Example 6]. An explicit bound for the spectral gap adjoining the origin is contained in Proposition 4.1 below which concerns a considerably more general situation.

4.2.

Almost periodic magnetic fields.

4.2.1.

Almost periodic fields close to the periodic ones. Assume that b ∈ WAP (R 2 ; R) and (4.8)

λ∈J 0 (b) |b λ ||λ| -2 < ∞.
This class of magnetic fields contains the periodic ones and satisfies the assumptions of Theorem 3.2. Similarly to the periodic case, we can choose the solution ϕ of (2.4) as ϕ = ϕ 0 + ϕ where

ϕ 0 (x) := b 0 |x| 2 4 , ϕ(x) := - λ∈J 0 (b) b λ |λ| -2 e λ (x), x ∈ R 2 .
Again, ϕ is bounded and (4.6) and, hence, (4.7) hold true. As a matter of fact, this class of almost periodic b is contained in a larger class of magnetic fields, considered in the following 

(4.9) ∆ ϕ(x) = b(x), x ∈ R 2 .
Then, (4.7) holds true. If moreover b 0 = 0, the zero eigenvalue is isolated in the spectrum of H. More precisely,

(4.10) dist 0, σ(H) \ {0} ≥ 2|b 0 |e -2 osc ϕ ,
where osc ϕ := sup

x∈R 2 ϕ(x) -inf x∈R 2 ϕ(x).

4.2.2.

Almost periodic fields distant from the periodic ones. We suppose now that b ∈ WAP (R 2 ; R) but possibly (4.8) does not hold true. This corresponds to the assumptions of Section 3.3. In this case, we can chose the solution ϕ of (2.4) as ϕ = ϕ 0 + ϕ with

ϕ 0 (x) := b 0 |x| 2 4 , ϕ(x) := λ∈J 0 (b) b λ (λ • x) 2 |λ| 2 1 0 (1 -s)e sλ (x) ds, x ∈ R 2 ,
(see [START_REF] Raikov | Low energy asymptotics of the spectral shift function for Pauli operators with nonconstant magnetic fields[END_REF]). Then, ϕ is well defined and belongs to the class C 2 (R 2 ; R), but generally it is not bounded. However, similarly to (3.16), it satisfies

ϕ(x) = o(|x| 2 ), |x| → ∞.
Hence, if b 0 = 0, we have Remark. The result of Proposition 4.2 follows also from [START_REF] Rozenblum | Infiniteness of zero modes for the Pauli operator with singular magnetic field[END_REF]Theorem 3.11]. If, under the hypotheses of this proposition, there exists no bounded solution of (4.9), then estimate (4.10) is not applicable. However, [START_REF] Rozenblum | Infiniteness of zero modes for the Pauli operator with singular magnetic field[END_REF]Theorem 3.11] implies that in this case still there is a gap in σ(H) adjoining the origin.

(4.11) ϕ(x) = b 0 |x| 2 4 (1 + o(1)), |x| → ∞.
We are going to show now that if b ∈ WAP (R 2 ; R) and b 0 = 0, but (4.8) doesn't hold true, then the situation is quite different with respect to the periodic case. More precisely, for any given m ∈ N ∪ {∞}, we will construct almost periodic magnetic fields with vanishing mean value such that dim Ker H = m. Let

C > 0, K ∈ N, γ k ∈ S 1 , k = 1, . . . , K, with γ k = γ ℓ if k = ℓ. Further, let s > 1, t > 0, s -2t ≤ 1.
We will consider magnetic fields of the form

(4.12) b(x) = C K k=1 ∞ n=1 n -s cos(n -t γ k • x), x ∈ R 2 .
Then, b ∈ WAP (R 2 ; R) but it doesn't satisfy (4.8). Moreover, a simple calculation yields

(4.13) ϕ(x) = ϕ(x) = 2C K k=1 g s,t (|γ k • x|/2), x ∈ R 2 ,
where

(4.14) g s,t (r) := ∞ n=1 n -s+2t sin 2 (n -t r), r ≥ 0. Evidently, g s,t satisfies the estimate 0 ≤ g s,t (r) ≤ ζ(s)r 2 , r ≥ 0,
where ζ is the Riemann zeta function, and g s,t (r) = 0 if and only if r = 0. If t > 0 and s = 1 + 2t, we will write g t instead of g 1+2t,t . Let us discuss the asymptotic behavior of g s,t (r) as r → ∞.

Proposition 4.3. If s > 1 and s -2t < 1, then g s,t (r) = C s,t r -s+2t+1 t (1 + o(1)), r → ∞, where C s,t := 1 t ∞ 0 u s-3t-1 t sin 2 (u) du.
Remark. Under the hypotheses of Proposition 4.3 we have 0 < -s+2t+1 t < 2.

We prove Proposition 4.3 in Section A.1 of the Appendix. Before we turn to the asymptotics as r → ∞ of g t (r) in the border-line case t > 0 and s = 1 + 2t, we state an elementary global estimate of g t in this case:

Proposition 4.4. If s > 1 and s -2t = 1, then g t (r) ≤ ln 1 + r 1/t + C t , r ≥ 0,
where

C t := ζ(1 + 2t) + sup n∈N ( n k=1 k -1 -ln n).
The simple proof of Proposition 4.4 can be found in Section A.2 of the Appendix. 

g t (r) = 1 2t ln r(1 + o(1)), r → ∞.
The proof of Proposition 4.5 which is considerably more complicated than that of Proposition 4.3, is contained in Section A.3 of the Appendix.

Remark. Note that g s,t is represented by a Dirichlet series, and extends to an entire function on the complex plane. More precisely, we have

g s,t (z) = 2z 2 ∞ n=0 (-4) n ζ(s + 2nt) (2(n + 1))! z 2n , z ∈ C.
The asymptotic behavior at infinity of entire functions whose coefficients involve values of the Riemann zeta function are of a considerable interest in analytic number theory (see e.g. [START_REF] Titchmarsh | The Theory of the Riemann Zeta-Function[END_REF]Section 14.32], [START_REF] Katsurada | Power series with the Riemann zeta-function in the coefficients[END_REF], [START_REF] Li | Modular relation interpretation of the series involving the Riemann zeta values[END_REF]). Since we didn't find in the literature the results of Propositions 4.3 and 4.5 which we needed, we include their detailed proofs with the hope that they could be useful to number theorists.

Theorem 4.6. Suppose that b has the form (4.12) with

s > 1, s -2t < 1, C = 1, K = 2, γ 1 = (1, 0), γ 2 = (0, 1). Then, (4.15) 
dim Ker H = ∞.

Proof. By Proposition 4.3, we have ϕ(x) ≍ |x| -s+2t+1 t for large |x|. Therefore, z m e -ϕ ∈ L 2 (R 2 ) for any m ∈ Z + . By (4.3), we conclude that dim Ker a = ∞ which combined with (4.2) implies (4.15).

Remark.

The operator H considered in Theorem 4.6 falls under Section 3.3 but, in general, not under Section 3.2. We don't know yet in general whether under the hypotheses of Theorem 4.6 the zero eigenvalue of H is isolated in σ(H). Nevertheless, the following proposition shows that there is no spectral gap if st > 1.

Proposition 4.7. Assume that (2.4) has a solution ϕ ∈ C 2 (R 2 ; R) such that ϕ(x) ≥ 0 for large |x| and ϕ(x) = o(|x|) as |x| → ∞. Then, 0 is a limit point of σ(H + ).

Proof. For ε > 0, set u(x) = e ϕ(x)-ε x , x ∈ R 2 . We have u ∈ Dom a * and

H + u, u = a * u 2 = 4 e 2ϕ ∂ z e -ε x 2 dx = 4ε 2 |∂ z x | 2 |u(x)| 2 dx ≤ Cε 2 u 2 , with C = 4 ∂ z x 2 L ∞ < ∞.
Hence, inf σ(H + ) ≤ Cε 2 for any ε > 0. By H + ≥ 0, this implies inf σ(H + ) = 0. Since ϕ(x) ≥ 0 for large |x|, the kernel of H + is trivial by (4.4), and 0 has to be a limit point in σ(H + ). Theorem 4.8. Assume that b has the form (4.12) with t > 0, s = 1 + 2t, (4.16)

C = 1 K , γ k = (cos θ k , sin θ k ), θ k = 2πk K , k = 1, . . . , K.
Moreover, suppose that t -1 ∈ N, K ≥ 3 is odd, and

(4.17) ⌊t -1 ⌋ < K -1 Kt < K + 1 Kt < ⌊t -1 ⌋ + 1.
Then, ), we can assume that K ≥ 4 is even; in this case the numbers K ± 1 in (4.17) have to be replaced by K ± 2. Since, anyway, Theorem 4.8 should be regarded rather as a pioneering example of 2D Pauli operators with almost periodic fields which admit eigenvalues of finite multiplicity than an exhaustive description of such operators, we decided not to treat more general families {γ k }, but to make our construction as explicit and simple as possible.

(
Proof of Theorem 4.8. First, we will prove that (4.19) dim Ker a = ⌊t -1 ⌋.

By (4.3), u ∈ Ker a implies that u = e -ϕ f with entire f . Let us show that under our hypotheses, f is a holomorphic polynomial. Since Re f and Im f are harmonic, it follows from [11, Section 2.2, Theorem 7]) that for any m ∈ Z + there exists a constant c m such that for any z ∈ C and R ∈ (0, ∞) we have 

|f (m) (z)| ≤ c m R 2+m B R (z) |f (x 1 + ix 2 )| dx, where B R (z) = {w ∈ C | |z -
e 2ϕ dx ≤ 2πe 2Ct R+|z| 0 1 + (r/2) t -1 4 r dr = O(R 4t -1 +2 ),
for large R. Letting R → ∞, we find that (4.20) and (4.21) imply that f (m) (z) = 0 if 2 + m > 2t -1 + 1. Since z is arbitrary, f is a polynomial.

Let us now calculate the maximal possible degree of f . To this end, we will need a suitable partition of the unit circle S 1 . Since K ≥ 3 is odd, it is easy to see that there exist disjoint open arcs α ℓ ⊂ S 1 , ℓ ∈ {1, . . . , 2K}, such that S 1 = 2K ℓ=1 α ℓ and for each ℓ = 1, . . . , 2K there exists a unique k ℓ ∈ {1, . . . , K} such that (4.22) min

k =k ℓ inf ν∈α ℓ |γ k • ν| > 0.
Next, pick ε ∈ (0, 1) such that

(4.23) ⌊t -1 ⌋ < (1 -ε) K -1 Kt < (1 + ε) K + 1 Kt < ⌊t -1 ⌋ + 1,
which is possible thanks to (4.17). By Proposition 4.5 and (4.22), there exists

C = C ε,t,K > 0 such that (4.24) (1 -ε) 2t ln x -C ≤ g t (|γ k • x|/2) ≤ (1 + ε) 2t ln x + C, k = k ℓ , x |x| ∈ α ℓ ,
for all ℓ = 1, . . . , 2K. Assume that t < 1 i.e. ⌊t -1 ⌋ ≥ 1, and pick m ∈ Z + with m ≤ ⌊t -1 ⌋ -1.

We will show that u = z m e -ϕ ∈ L 2 (R 2 ). Using the first inequality of (4.24) to estimate the contribution of k = k ℓ and g t (y) ≥ 0 for any y ∈ R 2 to estimate the contribution of k = k ℓ , we find that the function ϕ given in (4.13) satisfies

ϕ(x) ≥ (1 -ε) K -1 Kt ln x -C, x ∈ R 2 ,
with an appropriate constant C. Therefore, (4.25)

u 2 L 2 (R 2 ) = R 2 |x| 2m e -2ϕ(x) dx ≤ e 2C R 2 |x| 2m x -2(1-ε) K-1 Kt dx.
Since m ≤ ⌊t -1 ⌋ -1, the first inequality in (4.23) yields

2m -2(1 -ε) K -1 Kt < -2,
and the last integral in (4.25) is convergent. Thus we find that if t < 1, then

dim Ker a ≥ ⌊t -1 ⌋.

If t ≥ 1, i.e. ⌊t -1 ⌋ = 0, then (4.26) is trivially true. Assume now t > 0 and pick m ∈ Z + with m ≥ ⌊t -1 ⌋. We will show that the function u = z m e -ϕ ∈ L 2 (R 2 ). Using the second inequality of (4.24) to estimate the contribution of k = k ℓ and Proposition 4.4 to estimate the contribution of k = k ℓ , we find that

ϕ(x) ≤ (1 + ε) K + 1 Kt ln x + C, x ∈ R 2 ,
with an appropriate constant C. Thus, (4.27)

u 2 L 2 (R 2 ) = R 2 |x| 2m e -2ϕ(x) dx ≥ e -2C R 2 |x| 2m x -2(1+ε) K+1 Kt dx.
Since m ≥ ⌊t 

s-3t-1 t sin 2 (u) ≤    u s-t-1 t = u -1+ s-1 t near 0, u s-3t-1 t = u -1+ s-2t-1 t near + ∞.
Since s -1 > 0 and s -2t -1 < 0, this function is integrable on (0, ∞), and (A.7) becomes

M r 1/t εr 1/t y -s+2t sin 2 r y t dy = r 1-s+2t t t +∞ 0 u s-3t-1 t sin 2 (u) du + o ε→0 (1) + o M →+∞ (1) .
Eventually, combining the previous estimate together with (A.1), (A.2) and (A.4), we deduce

g s,t (r)- r 1-s+2t t t +∞ 0 u s-3t-1 t sin 2 (u) du ≤ CM 1-s r 1-s+2t t + Cε 1-s+2t r 1-s+2t t + Rr -s+2t t + r 1-s+2t t o ε→0 (1) + o M →+∞ (1) . (A.8)
Then, we obtain the proposition taking ε small enough and M large enough. Here, we have used again that 1s < 0 and 1s + 2t > 0.

A.2. Proof of Proposition 4.4. Let r ≥ 0 and ρ := ⌊1 + r 1/t ⌋. In particular, ρ ≥ 1. Then we can write any n ∈ N as n = pρ + q with p ∈ Z + and q = 1, . . . , ρ, and this representation is unique. Therefore, since ρ ≥ r 1/t and sin 2 (α) ≤ min{1, α 2 } for α ∈ R, we find that

g t (r) = ∞ p=0 ρ q=1 (pρ + q) -1 sin 2 r 1/t pρ + q t = ρ q=1 q -1 sin 2 (rq -t ) + ∞ p=1 ρ q=1 (pρ + q) -1 sin 2 r 1/t pρ + q t ≤ ρ q=1 q -1 + ∞ p=1 ρ(pρ + 1) -1 p -2t ≤ ln ρ + ρ q=1 q -1 -ln ρ + ζ(1 + 2t) ≤ ln(1 + r 1/t ) + C t ,
which implies Proposition 4.4.

A.3. Proof of Proposition 4.5. Considering a given ε > 0, we will show that g t (r) is at distance at most ε ln r from ln r/2t for r large enough. For that, we decompose the sum over N into different zones which are summarized in Figure 1.

Step 1: treatment of the large values of n. We set (A.9)

δ = min 1 2t + 2ε -1 + 2 , ε 2ε -1 + 4 .
Then 0 < δ ≤ ε. Let u n (r) := 1 n sin 2 r n t be the generic term of the series which defines g t (r). Then, | sin y| ≤ |y| yields (A.10)

n≥r 1 t +δ |u n | ≤ n≥r 1 t +δ r 2 n -1-2t r 2 r -2t( 1 t +δ) = r -2tδ ≤ ε ln r,
for r large enough.

Step 2: decomposition of u n . We write

(A.11) u n (r) = 1 2n - v n (r) + iv n (r) 2 with v n (r) = 1 n e 2irn -t .
From (A.9) and the asymptotics of the harmonic series, we deduce (A.12) where ⌈y⌉ denotes the smallest integer greater or equal to y. Note that (A.9) guarantees that δ < (t + K) -1 . Using again the asymptotics of the harmonic series, we get (A.13) Note that by (A.9), the intervals I k and J k are non-empty.

Step 4: contribution of the small regions J k for k = 0, . . . , K. Using (A.9) and for all α ∈ R and P j (y + h j+1 ) = P j (y) + h j+1 0 P ′ j (y + s) ds = P j (y) mod S(y 2 j t-t-j-2 ), Q j (y + h j+1 ) = Q j (y) mod S(y 2 j t-2 ).

Combining the previous estimates, A(y) becomes A(y) = y 2 j t-t-j + (2 j ttj)h j+1 y 2 j t-t-j-1 + P j (y) mod S(y 2 j t-t-j-2 ) y 2 j t + Q j (y)

y 2 j t-t-j + P j (y) y 2 j t + 2 j th j+1 y 2 j t-1 + Q j (y) mod S(y 2 j t-2 )

= -(j + t)h j+1 y 2 j+1 t-t-j-1 + P j+1 (y) , (A. [START_REF] Pastur | Spectra of Random and Almost-Periodic Operators Grundlehren der Mathematischen Wissenschaften[END_REF] for some P j+1 ∈ S(y 2 j+1 t-t-j-2 ). Similarly, B(y) = y 2 j t mod S(y 2 j t-1 ) y 2 j t mod S(y 2 j t-1 ) = y 2 j+1 t + Q j+1 (y), (A.20) for some Q j+1 ∈ S(y 2 j+1 t-1 ). Eventually, (A.18) together with (A. [START_REF] Pastur | Spectra of Random and Almost-Periodic Operators Grundlehren der Mathematischen Wissenschaften[END_REF]) and (A.20) imply that the conclusions of the lemma hold true for j + 1 and then for all j ∈ Z + .

Step 6: the iterative Van der Corput argument. We will use a standard technique to prove the uniform distribution of sequences called the Van der Corput inequality. A version of this result is stated in the following lemma whose proof can be found in [16, (3.2)] (see also [START_REF] Rauzy | Propriétés statistiques de suites arithmétiques[END_REF]Chapter 2]). Mimicking the notations of (A.16), we recognize b e ib (1) n (h 1 ) ≤ ε 2 0 8 =: ε 1 , for all 1 ≤ h 1 < H 1 := ⌈4ε -2 0 ⌉. Iterating this argument, it is enough to prove that, for some J ∈ N,

1 N -h 1 -• • • -h J N -h 1 -•••-h J n=1 e ib (J)
n (h 1 ,...,h J ) ≤ ε J , for all 1 ≤ h j < H j with 1 ≤ j ≤ J. Here, ε J > 0 and H j ∈ N only depend on ε 0 (and not on b n or N ), but we assume that N > H 1 + • • • + H J .

for r large enough. Using Lemma A.5 to estimate the sum over I ℓ for ℓ = 1, . . . , L and (A.31) to estimate the sum over I ∞ , we get (A.32)

n∈I k v n ≤ εt 2K n∈I k 1 n + 1 ≤ εt 2K n≤r 1 t 1 n ≤ ε K ln r,
for r large enough.

Step 8: conclusion. Combining (A.10) for the large values of n, (A.12) for the main contribution, (A.13) for the small values of n, (A.15) for the contribution of J k and (A.32) for the contribution of I k , we obtain 

g t (
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 1 Almost periodic functions. Let C b (R d ) be the non separable Banach space of bounded functions f ∈ C(R d ) with norm

  i) The function (3.29) B 2 ∋ ω -→ Tr P ω ∈ Z + ∪ {∞}, is almost surely constant. (ii) Either Tr P ω = 0 almost surely or Tr P ω = ∞ almost surely. Proof. (i) By the weak measurability of P ω , the function defined in (3.29) is P-measurable. By (3.28), we have Tr P ω = Tr P T ξ ω , ξ ∈ R 2 , ω ∈ B 2 , i.e. Tr P ω is invariant under the action of the ergodic group {T ξ } ξ∈R 2 . By [7, Proposition 9.1], Tr P ω is almost surely constant. (ii) By Part (i), there exists n ∈ Z + ∪ {∞} such that almost surely (3.30) Tr P ω = E(Tr P ω ) = n.
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 1 Figure 1. The different regions considered in the proof of Proposition 4.5.
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 1 +δ + O(1) = ln r 2t + ̺ with |̺| ≤ ε ln r, for r large enough. It remains to study the sum of v n for n < r 1 t +δ . Step 3: treatment of the small values of n. Let K = ⌈ε -1 ⌉ ∈ N,

1 t+K 1 t+K

 11 -δ + O(1) ≤ ln r t + K ≤ ε ln r,for r large enough. It remains to study the contribution of r

a≤n≤b 1 n

 1 ≤ ln bln a + 1,

Lemma A. 2 .

 2 Let {b n } n∈N be a sequence of real numbers. Then, for all 1 ≤ H ≤ N , we have b n+h -bn) .

( 1 ) 1 N -h 1 N -h 1 n=1

 1111 n (h) = b n+hb n in the right hand side of the last equation. Then, if we want to show that 1 N N n=1e ibn ≤ ε 0 , for some ε 0 > 0, it is enough to prove that

≤

  5ε ln r, for r large enough. This ends the proof of Proposition 4.5.

  B d be the Bohr compactification of R d (see e.g.[START_REF] Shubin | Almost periodic functions and partial differential operators, (Russian) Uspehi Mat. Nauk[END_REF] Section 1]). We recall that B d is a compact Abelian group which is not metrizable and hence not first countable (see e.g. [6, Remark 1.7 (b) and Theorem 1.3 (a)]). Further, there exists a continuous homomorphism ι : R d → B d such that ι(R d ) is dense in B d . As in R d , we denote by "+" the group operation in B d . Note that ι induces an isomorphism between CAP (R d ) and C(B d ). In particular, for each f ∈ CAP (R d ) there exists a unique φ ∈ C(B d ) such that

  which is weakly measurable by Corollary 3.5. Thus we find that Tr 1 (-∞,λ) (H ω ) is almost surely constant, which implies that σ(H ω ), σ ess (H ω ) and σ disc (H ω ) are almost surely constant. Let H ac ω , H sc ω and H pp ω be the absolute continuous, the singular continuous and pure point part of H ω respectively. By (3.27), equality (3.28) holds true for P ω = 1 (-∞,λ) (H ♯ ω ) with ♯ = ac, sc, pp. By [15, Section 3], Corollary 3.5 implies that the family of operators

  4.18) dim Ker H = ⌊t -1 ⌋.Remark. (i) Assume the hypotheses of Theorem 4.8. In particular, (3.2) holds true and the set J(b) is bounded. Suppose moreover that t < 1. Then, (4.18) implies that the zero eigenvalue of H is of finite multiplicity. This result doesn't contradict Theorem 3.2 (iii) which holds true almost surely. On the other hand, by Corollary 3.3, H cannot have isolated eigenvalues of finite multiplicity which, in this particular case, follows also from[START_REF] Shubin | Almost periodic pseudodifferential operators, and von Neumann algebras[END_REF] Theorem 10.1]. Hence, we have 0 ∈ σ ess (H). Of course, this last fact is also implied by Proposition 4.7.(ii) Theorem 4.8 is valid under much more general hypotheses concerning the family {γ k } K k=1 ⊂ S 1 , In particular, if γ k are defined as in(4.16

  Ker a * is equivalent to u = e ϕ f with entire f . Under our hypotheses, e ϕ ≥ 1 so that u ∈ L 2 (R 2 ) implies f ∈ L 2 (R 2 ). Hence, f vanishes identically which implies (4.28).

		-1 ⌋, the second inequality in (4.23) gives
		2m -2(1 + ε)	K + 1 Kt	> -2,
	and the last integral in (4.27) is divergent. Then dim Ker a < ⌊t -1 ⌋ + 1 which combined with (4.26) implies (4.19). Let us now prove that
	(4.28)	dim Ker a * = 0.
	By (4.4), u ∈ Putting together (4.19) and (4.28), and taking into account (4.2), we obtain (4.18).
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Appendix A. Asymptotics of Dirichlet series A.1. Proof of Proposition 4.3. First, we estimate the contribution of the large n's in (4.14). Consider M > 1. Using | sin y| ≤ |y| and -s < -1, we deduce n≥M r 1/t n -s+2t sin 2 r n t ≤ n≥M r 1/t n -s+2t r 2 n -2t

≤ Cr 2 (M r 1/t ) 1-s = CM 1-s r 1-s+2t t . (A. [START_REF] Aharonov | Ground state of a spin-1 2 charged particle in a two-dimensional magnetic field[END_REF] Here and in the sequel, C will denote a positive constant which may only depend on s and t.

We now deal with the contribution of the small n's. Consider ε > 0. Using that | sin y| ≤ 1 and -s + 2t > -1, we obtain (A.2)

It remains to deal with the n's of size r

and

In particular,

where R is a constant which may depend on s, t, ε, M . Inequalities (A.3) and (A.4) imply

Summing this estimate over n gives

Changing the variable y = r 1/t u -1/t , we find that

for all 1 ≤ a < b, we deduce (A.15)

for r large enough.

Step 5: the iterated derivatives. It remains to study the contribution of the bands I k for k = 0, . . . , K -1. Here, we can not bound directly the sum and must use some cancelations. For that, we first define the derivatives of the phase function 2rn -t with respect to n.

For {h j } j∈N ⊂ N and y ∈ [1, ∞), we define a (j) y (h 1 , . . . , h j ) by induction over j ∈ Z + by a (0) y = 2ry -t and (A. [START_REF] Kuipers | Uniform Distribution of Sequences[END_REF])

Roughly speaking, a

y is the j st discrete derivative of a

y with respect to y. Set

, w > 0 being an appropriate weight function. We will write

Lemma A.1. For any j ∈ Z + , there exist symbols P j ∈ S(y 2 j t-t-j-1 ) and Q j ∈ S(y

Remark. The functions P j , Q j may depend on h 1 , . . . , h j ∈ N. Note that the prefactor never vanishes since t > 0. When t is an integer, P j , Q j are polynomials in n.

Proof of Lemma A.1. We show this property by induction over j ∈ Z + . By definition, it is satisfied for j = 0 with P 0 = Q 0 = 0. We assume that it holds true for some j ∈ Z + . Then, using the shorthand notation (A.17)

we can write

y 2 j t-t-j + P j (y) (y + h j+1 )

The Taylor formula implies

Step 7: contribution coming from the interval I k . Let us fix k ∈ {0, . . . , K -1} and consider n 0 ∈ I k ∩ N. We define (A.21)

From (A.16), this quantity is nothing more than a (k+1) n 0 (h 1 , . . . , h k , n). Our next lemma contains a useful estimate of d n :

Lemma A.3. For 0 ≤ n ≪ n 0 , we have

Proof. We follow the proof of Lemma A.1 with y = n 0 . Using (A.18), we can write

C k being defined in (A.17),

uniformly for 0 ≤ n ≤ n 0 /2. Analogously, we have

uniformly for 0 ≤ n ≤ n 0 /2. Summing up, we deduce

Here, it is important to note that (A.14) yields

for n 0 ∈ I k . Thus, the sequence {d n } n is slowly increasing for n ≪ n 0 . Let us define

which is roughly speaking the primitive period of d n /M modulo 2π. In other words, N (n 0 ) is such that d N (n 0 ) ≈ 2πM ∈ 2πZ. From (A.14), this period satisfies

for r large enough. Summing e idn over a period leads to Lemma A.4. Let h 1 , . . . , h k ∈ N be fixed. For r large enough, we have

uniformly for n 0 ∈ I k .

Proof. Lemma A.3 implies

On the other hand, (A.25) and (A. [START_REF] Shubin | Almost periodic functions and partial differential operators, (Russian) Uspehi Mat. Nauk[END_REF] give

Now the lemma follows from (A.27) and the last two inequalities.

Let H be a fixed integer. Combining (A.21), (A.26) and Lemma A.4, we get

r -δ(t+k) , for r large enough, where r -δ(t+k) tends to 0 as r → ∞. Then, the iterative Van der Corput argument below Lemma A.2 with J = k implies that, for r large enough, we have

We now estimate the sum of v n defined in (A.11). For n ∈ [n 0 , n 0 + N (n 0 ) -1], (A.26) yields

for some C > 0. Applying (A.28) and two times (A.29), we deduce