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Abstract

Analyzing pseudo-telepathy graph games, we propose a way to build con-
textuality scenarios exhibiting the quantum supremacy using graph states.
We consider the combinatorial structures generating equivalent scenarios.
We introduce a new tool called multipartiteness width to investigate which
scenarios are hard to decompose and show that there exist graphs generating
scenarios with a linear multipartiteness width.
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1. Introduction

Contextuality is an active area of research that describes models of correla-
tions and interpretations, and links to some fundamental questions about the
natural world. It also provides a framework where one can utilize the under-
standing of quantum mechanics (and quantum information) in order to better
analyze, understand, and interpret macroscopic phenomena [10, 34, 24, 21, 49].

The theoretical and experimental study of quantum world has proven that a
scenario involving many parties (each having access to a local information) can
contain correlations that do not possess any classical interpretation that relies
on decomposition of these correlations using local functions. Frameworks for
contextuality provide a tool to describe the combinatorial structures present
in these correlations.

Contextuality has been well studied in literature, see for instance [14, 48],
and a large family of them [7, 2, 45, 6, 3] are based on a model introduced by
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Abramsky and Brandenburger [1] which uses sheaf theory to naturally relate
issues surrounding the consistency of interpretation to the pre-sheaf struc-
ture obtained by a distribution functor on the sheaf of events. The authors
introduce three levels of contextuality: (i) Probabilistic contextuality, which
corresponds to the possibility of simulating locally and classically a proba-
bility distribution over outcomes for each allowed context of measurements.
It extends the celebrated Bell’s theorem [12] which shows that quantum
probabilities are inconsistent with the predictions of any local realistic theory;
(ii) Logical contextuality or possibilistic contextuality, which generalizes the
kind of contextuality present in Hardy’s construction [32] and considers only
the support of a probability distribution; (iii) Strong contextuality, which
generalizes the kind of contextuality present in local measurements of the
GHZ state [29] and relies on the existence of a global assignment consistent
with the support.

More recently Aćın, Fritz, Leverrier, and Belén Sainz [8] have presented
contextuality scenarios defined as hypergraphs, in which vertices correspond to
outcomes and hyperedges are called measurements. A general interpretation
model is an assignment of non negative reals to the vertices that can be
interpreted as a probability distribution for any hyperedge (weights of the
vertices of each hyperedge sum to 1). Each hypergraph H admits a set C(H)
(resp. Q(H), G(H)) of classical (resp. quantum, general probabilistic) models
with C(H) ⊆ Q(H) ⊆ G(H).

They have shown that the Foulis Randall product of hypergraphs [25]
allows one to describe the set of no-signaling models in product scenarios
G(H1 ⊗H2). They have also investigated the multipartite case, showing that
the different products for composition of local interpretation models produce
models that are observationally equivalent.

Non locality is a particular case of contextuality, exhibited for example
in the pseudo-telepathy games [13]. These are games that can be won by
non-communicating players that share quantum resources, but cannot be won
classically without communication.

A family of pseudo-telepathy games based on graph states have been intro-
duced in [9]. The pseudo-telepathy game associated with a graph G of order
n (on n vertices), is a collaborative n-player game where each player receives
a binary input (question) and is asked to provide, without communication, a
binary output (answer). Some global pairs of (answers—questions) are forbid-
den and correspond to losing positions. We associate a hypergraph to each
pseudotelepathy game, with its vertices labelled by pairs (answers—questions)
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representing a contextuality scenario. In order to quantify its multipartiteness,
we define the multipartiteness width: a scenario built from a game on n
parties has a multipartiteness width less than k if it has an interpretation
(assignment of real positive numbers to the vertices) that can be obtained
interpretations of contextual scenarios on less than k parties as resources.

It has been shown in [17] that even though GHZ type scenarios are
maximally non local (strongly contextual), they can be won with 2 partite
nonlocal boxes. So the multipartiteness width is different from the usual
measures of contextuality [28, 4]. However, it has potential application for
producing device independent witnesses for entanglement depth [37].

In section 2, we define the graph pseudo-telepathy games, investigate in
detail the quantum strategy and link them to contextuality scenarios. The
quantum strategy consists in sharing a particular quantum state called graph
state [33]. Graph states have multiple applications in quantum information
processing, e.g. secret sharing [40, 27, 39], interactive proofs [15, 38, 44], and
measurement-based quantum computing [46, 22, 23, 18, 43, 42]. We show in
section 3 that provided that the players share multipartite randomness, it is
enough to perfectly win the associated pseudo-telepathy game, in order to
simulate the associated quantum probability distribution. In section 4, we
prove that graphs obtained by a combinatorial graph transformation called
pivoting correspond to equivalent games. Finally, we prove that there exist
graphs for which the multipartiteness width is linear in the number of players,
improving upon the previous logarithmic bound given in [9].

Note that even though the rules of these graph games appear non-trivial,
they naturally correspond to the correlations present in outcomes of a quantum
process that performs X and Z measurements on a graph state. Thus, they
might be easy to produce experimentally. Furthermore even if the space of
events is quite large, the scenarios have the advantage of possessing concise
descriptions, quite similar to the separating scenarios using Johnson graphs in
[26]. Requiring such large structures to achieve possibilistic contextuality for
quantum scenarios seems to be unavoidable. Indeed, it has been shown that
multiparty XOR type inequalities involving two-body correlation functions
cannot achieve pseudo-telepathy [30].
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2. Pseudo-telepathy graph games, multipartiteness and contextu-
ality scenarios

Graph notations. We consider finite simple undirected graphs. Let G =
(V,E) be a graph. For any vertex u ∈ V , NG(u) = {v ∈ V | (u, v) ∈ E} is
the neighborhood of u. For any D ⊆ V , the odd neighborhood of D is the
set of all vertices which are oddly connected to D in G: Odd(D) = {v ∈ V :
|D ∩ N(v)| = 1 mod 2}. Even(D) = V \ Odd(D) is the even neighborhood
of D, and loc(D) = D ∪Odd(D) is the local set of D which consists of the
vertices in D and those oddly connected to D. See Figure 1.

For any D ⊆ V , G[D] = (D,E∩D×D) is the subgraph induced by D, and
|G[D]| its size, i.e. the number of edges of G[D]. Note that Odd can be realized
as a linear map (where we consider subsets as binary vectors), which implies
that for any two subset of vertices A,B, Odd(A⊕ B) = Odd(A)⊕Odd(B)
where ⊕ denotes the symmetric difference.

Figure 1: Even and odd neighborhoods.

We introduce the notion of involvement :

Definition 1 (Involvement). Given a graph G = (V,E), a set D ⊆ V
of vertices is involved in a binary labelling x ∈ {0, 1}V of the vertices if
D ⊆ supp(x) ⊆ Even(D), where supp(x) = {u ∈ V |xu = 1}.

In other words, D is involved in the binary labelling x, if all the vertices in D
are labelled with 1 and all the vertices in Odd(D) are labelled with 0. Notice
that when G[D] is not a union of Eulerian graphs1, there is no binary labelling
in which D is involved. On the other hand, if G[D] is a union of Eulerian
graphs, there are 2|Even(D)|−|D| binary labellings in which D is involved.

1 The following three properties are equivalent: (i) D ⊆ Even(D); (ii) every vertex of
G[D] has an even degree; (iii) G[D] is a union of Eulerian graphs. Notice that D ⊆ Even(D)
does not imply that G[D] is Eulerian as it may not be connected.
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Collaborative games. A multipartite collaborative game G for a set V of
players is a scenario characterised by a set L ⊆ {0, 1}V × {0, 1}V of losing
pairs: each player u is asked a binary question xu and has to produce a
binary answer au. The collaborative game is won by the players if for a given
question x ∈ {0, 1}V they produce an answer a ∈ {0, 1}V such that the pair
formed by a and x, denoted (a|x), is not a losing pair, i.e. (a|x) /∈ L.

A game is pseudo-telepathic if classical players using classical resources
cannot perfectly win the game (unless they cheat by exchanging messages after
receiving the questions) whereas using entangled states as quantum resources
the players can perfectly win the game, giving the impression to a quantum
non believer that they are telepathic (as the only classical explanation to a
perfect winning strategy is that they are communicating).

An n-player strategy here is viewed as a protocol without communication
where each player has access to some kind of resources (shared randomness,
quantum states, k-partite non local boxes) that they access locally in a
sequence using a finite number of rounds before producing their output. We
use the term classical to refer to the case where the players have access only
to shared randomness.
Example 1: The losing set associated with the Mermin parity game [41] is
LMermin = {(a|x) :

∑
xi = 0 mod 2 and

∑
ai +(

∑
xi)/2 = 1 mod 2}. Notice

that the losing set admits the following simpler description: LMermin =
{(a|x) : 2|a| = |x|+ 2 mod 4}, where |x| = |supp(x)| is the Hamming weight
of x.
Collaborative graph games MCG(G): A multipartite collaborative game
MCG(G) associated with a graph G = (V,E), where V is a set of players,
is the collaborative game where the set of losing pairs is LG := {(a|x) : ∃D
involved in x s.t.

∑
u∈loc(D) au = |G[D]| + 1 mod 2}. In other words, the

collaborative game is won by the players if for a given question x ∈ {0, 1}V
they produce an answer a ∈ {0, 1}V such that for any non-empty D involved
in x, ∑

u∈loc(D)

au = |G[D]| mod 2

.
Example 2: Consider MCG(Kn) the collaborative game associated with
the complete graph Kn of order n. When a question x contains an even
number of 1s the players trivially win since there is no non-empty subset of
vertices involved in such a question. When x has an odd number of 1s, the
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set of players (vertices) involved in this question is D = supp(x). In this case,
all the players are either in D or Odd(D) thus the sum of all the answers

has to be equal to |G[D]| = |D|(|D|−1)
2

= |D|−1
2

mod 2. Thus for the complete

graph Kn, LKn = {(a|x) : |x| = 1 mod 2 and |a| = |x|−1
2

+ 1 mod 2} =
{(a|x) : 2|a| = |x| + 1 mod 4}. Note that for this particular graph, the
constraints are global in the sense that the sum of the answers of all the
players is used for all the questions. Notice also that the set of losing pairs
LKn = {(a|x) : 2|a| = |x| + 1 mod 4} is similar to the one of the Mermin
parity game, LMermin = {(a|x) : 2|a| = |x| + 2 mod 4}. In section 4, we
actually show the two games simulate each other.
Quantum strategy (Qstrat): In the following we show that for any graph
G, the corresponding multipartite collaborative game can be won by the
players if they share a particular quantum state. More precisely the state
they share is the so-called graph state |G〉 = 1√

2|V |

∑
y∈{0,1}V (−1)|G[supp(y)]| |y〉,

and they apply the following strategy: every player u measures his qubit
according to X if xu = 1 or according to Z if xu = 0. Every player answers
the outcome au ∈ {0, 1} of this measurement.

This quantum strategy QStrat, not only produces correct answers, but
provides all the good answers uniformly:

Lemma 2. Given a graph G = (V,E) and question x ∈ {0, 1}V , the proba-
bility p(a|x) to observe the outcome a ∈ {0, 1}V when each qubit u of a graph
state |G〉 is measured according to Z if xu = 0 or according to X if xu = 1
satisfies:

p(a|x) =

{
0 if (a|x) ∈ L
|{D involved in x}|

2|V |
otherwise.

Proof: According to the Born rule, the probability to get the answer a ∈
{0, 1}V to a given question x ∈ {0, 1}V is:

p(a|x) = 〈G|

 ⊗
v∈V \supp(x)

I + (−1)avZv

2

⊗
 ⊗

u∈supp(x)

I + (−1)auXu

2

 |G〉
=

1

2n

∑
D⊆V

(−1)
∑

u∈D au 〈G|ZD\supp(x)XD∩supp(x) |G〉

The basic property which makes this strategy work is that for any u ∈ V ,
Xu |G〉 = ZN(u) |G〉. As a consequence, since X and Z anti-commute and
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X2 = Z2 = I, for any D ⊆ V , XD |G〉 = (−1)|G[D]|ZOdd(D) |G〉. Thus,

p(a|x) =
1

2n

∑
D⊆V

(−1)|G[D∩supp(x)]|+
∑

u∈D au 〈G|Z(Odd(D∩supp(x)))⊕(D∩\supp(x)) |G〉

Where⊕ denotes the symmetric difference. Since 〈G|ZC |G〉 =

{
1 if C = ∅
0 otherwise

,

p(a|x) =
1

2n

∑
D⊆V,D\supp(x)=Odd(D∩supp(x))

(−1)|G[D∩supp(x)]|+
∑

u∈D au

=
1

2n

∑
D1⊆supp(x)

∑
D0⊆V \supp(x),D0=Odd(D1)

(−1)|G[D1]|+
∑

u∈D0∪D1
au

=
1

2n

∑
D1⊆supp(x),Odd(D1)∩supp(x)=∅

(−1)|G[D1]|+
∑

u∈loc(D1)
au

=
1

2n

∑
D1involved in x

(−1)|G[D1]|+
∑

u∈loc(D1)
au =

|R(x,a)
0 | − |R(x,a)

1 |
2n

where R
(x,a)
d = {D involved in x : |G[D]| +

∑
u∈loc(D) au = d mod 2}. If

(a|x) /∈ L, then R
(x,a)
1 = ∅, so p(a|x) = |{D involved in x}|

2n
> 0 since ∅ is involved

in x. Otherwise, there exists D′ ∈ R
(x,a)
1 . Notice that R

(x,a)
0 is a vector

space (∀D1, D2 ∈ R(x,a)
0 , D1 ⊕D2 ∈ R(x,a)

0 ) and R
(x,a)
1 an affine space R

(x,a)
1 =

{D′ ⊕D | D ∈ R(x,a)
0 }. Thus |R(x,a)

0 | = |R(x,a)
1 | which implies p(a|x) = 0. �

The probability distribution produced by QStrat depends on the number
of sets D involved in a given question x. Notice that a set D ⊆ supp(x) is
involved in x if and only if D ∈ Ker(Lx), where Lx linearly2 maps A ⊆ supp(x)
to Odd(A)∩supp(x). Thus |{D involved in x}| = 2|x|−rkG(x), where rkG(x) =
log2(|{Lx(A) : A ⊆ supp(x))}|) is the rank of Lx = A 7→ Odd(A) ∩ supp(x).

Contextuality scenario.
With any multipartite collaborative game MCG(G), we associate a hyper-

graph which describes a contextuality scenario in the sense of the hypergraph
approach to contextuality[8]. The vertices are the pairs (a|x) and each
hyperedge corresponds, roughly speaking, to a constraint.

2Lx is linear for the symmetric difference: Lx(D1 ⊕D2) = Lx(D1)⊕ Lx(D2)

7



The hyperedges can be decomposed into two subsets : those (HNsigV )
which guarantee no-signaling and those (HG), depending on the graph G,
which avoid the losing pairs:

• HNsigV is the hypergraph representing the no-signaling polytope. It
corresponds [8] to the Bell scenario B|V |,2,2 where |V | parties have access
to 2 local measurements each, each of which has 2 possible outcomes (see
Figure 2), which is obtained as a product3 of the elementary scenario
B1,2,2.

• The hypergraph HG defined on the same vertex set, corresponds to
the game constraints: for each question4 x ∈ {0, 1}V we associate an
hyperedge ex containing all the answers which make the players win on
x i.e., ex = {(a|x) ∈ {0, 1}V × {0, 1}V , (a|x) /∈ L}.

Given a graph G = (V,E), MCG(G) is a pseudo-telepathy game if it
admits a quantum model (Q(HG ∪ HNsigV ) 6= ∅) but no classical model
(C(HG ∪ HNsigV ) = ∅). It has been proven in [9] that MCG(G) is pseudo-
telepathic if and only if G is not bipartite.
Example 3: In a complete graph Kn of order n, there exists a non-empty
set D involved in a question x ∈ {0, 1}V if and only if |x| = 1 mod 2. With
each such question x, the associated hyperedge is ex = {(a|x) ∈ {0, 1}V ×
{0, 1}V s.t. 2|a| 6= |x|+ 1 mod 4}.

When n = 3 , the scenario obtained has vertices (a|x), with a, x ∈ {0, 1}3.

• HNsig{1,2,3} =min ⊗3
i=1HNsigi whereHNsigi = {{(0|0), (1|0)}, {(0|1), (1|1)}}

are the hyperedges ensuring non-signaling.

3The Foulis Randall product of scenarios [8] is the scenario HA ⊗ HB with vertices
V (HA ⊗ HB) = V (HA) × V (HB) and edges E(HA ⊗ HB) = EA→B ∪ EA←B where
EA→B := {∪a∈eA{a} × f(a) : ea ∈ EA, f : eA → EB} and EA←B := {∪b∈eAf(b) × {b} :
eb ∈ Eb, f : EB → EA}. In the multipartite case there are several ways to define products,
however they all correspond to the same non-locality constraints [8]. Therefore one can
just consider the minimal product min ⊗n

i=1 Hi which has vertices in the cartesian product
V = ΠVi and edges ∪k∈[1,n]Ek where Ek = {(v1 . . . , vn), vi ∈ ei ∀i 6= k, vk ∈ f(−→v )} for
some edge ei ∈ E(Hi) for every party i 6= k and a function −→v 7→ f(−→v ) which assigns to
every joint outcome −→v = (v1 . . . vk−1, vk+1, . . . vn) an edge f(−→v ) ∈ E(Hk) (the kth vertex
is replaced by a function of the others).

4Note that for the questions x for which there exists no D involved in x, all the answers
are allowed thus the constraints represented by the associated edge is a hyperedge of
no-signaling scenario HNsig.
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Figure 2: HNsig2 : hyperedges of the Bell sce-
nario B2,2,2 from [8] Figure 3: Paley Graph of order 13

• HG = {e001, e010, e001, e111} where

e001 = {(000|001), (011|001), (101|001), (110|001)},
e010 = {(000|010), (011|010), (101|010), (110|010)},
e001 = {(000|001), (011|001), (101|001), (110|001)},
e111 = {(100|111), (010|111), (001|111), (111|111)}.

Example 4: In the graph Paley 13 (see Figure 3), Odd({0, 1, 4}) =
{2, 7, 8, 9, 11, 12} thus if {0, 1, 4} is involved in x i.e. xi = 1 for i ∈ {0, 1, 4}
and xi = 0 for i ∈ {2, 7, 8, 9, 11, 12} then the associated pseudo-telepathy
game requires that the sum of the outputs of these nine players

∑
i 6∈{3,5,6,10} ai

has to be odd. This corresponds to 8 hyperedges ejkl for j, k, l ∈ {0, 1} in the
contextuality scenario where ejkl = {(a|x),

∑
i 6∈{5,6,10} ai = 1 mod 2, xi = 1

for i ∈ {0, 1, 4}, xi = 0 for i ∈ {2, 7, 8, 9, 11, 12}, x5 = j, x6 = k, x10 = l}.
For any contextuality scenario (hypergraph), one can choose an integer n,

label the vertices with (a|x) with a, x ∈ {0, 1}n, add some new vertices to have
22n vertices, add the non signaling hyperedges induced by the labeling and try
to find a model consistent with the original hyperedges and the nonsignaling
ones. Thus it seems interesting to lift the properties observed in our model
to the scenario itself, by considering the possible labelings. Note that as
pseudotelepathy is a special case of nonlocality, for the families of scenarios
that we build, the labelling and the non signaling condition are already fixed.

It is interesting to go back to the models of contextuality defined in [1] as
the probabilistic contextuality is what was considered in [9] as it corresponds
to investigating the possibility of simulating a probability distribution of a
quantum strategy playing with graph states.
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Furthermore, the two other levels of contextuality can gain some new
perspectives when viewed as games: indeed the possibilistic contextuality is
similar to the fact that the players cannot give all the good answers with
non zero probability using classical local strategies, and strong contextuality
is similar to the case where classical players cannot win the game (even by
giving a strict subset of the good answers).

Definition 3. An interpretation p : {0, 1}V × {0, 1}V → [0, 1] is k-
multipartite if it can be obtained by a strategy without communication using
nonlocal boxes that are at most k-partite: for any set I ⊂ V with |I| ≤ k, each
player has access to one bit of a variable λI(aI |xI) that has a no-signaling
probability distribution.

In other words, a k-multipartite interpretation can be obtained with no-
signaling correlations involving at most k players. For example the strategy
to win the Mermin game proposed in [17] where each pair among n players
share a (2-partite) non localbox and each player outputs the sum of his boxes’
ouputs is a 2-multipartite interpretation. Similarly, the result in [11] where
they prove that a probability distribution that can be obtained by 5 players
measuring a quantum state cannot be simulated without communication using
any number of bi-partite non local boxes shows that it is not a 2-multipartite
interpretation.5

Definition 4 (multipartiteness width). A scenario has a multipartite-
ness width k if it admits a k-multipartite interpretation but no (k − 1)-
multipartite interpretation.

In a contextual scenario, the more hyperedges one adds the less possible
interpretations exist (the interpretations of a hypegraph with one extra hyper-
edge are a subset of the interpretations of the one with one less constraint).
A scenario has a multipartiteness width k if its hyperedges already forbids
all the interpretations of a product of Bell scenarios on less than k parties.
For a scenario, having a classical interpretation means being decomposable
: one can think of the probability distribution as local actors acting each
on his bit and that’s a classical interpretation. The multipartiteness width

5The probability distribution described in [11] corresponds to the quantum winning
strategy on the graph state obtained from a cycle with 5 vertices.

10



measure how non-decomposable a scenario is : it can not be decomposed with
interpretations where each subspace has a small width.

It implies that the players cannot perfectly win the game if they have only
quantum systems on less than k qubits, this corresponds to using k separable
states as ressources as defined in [31].

Note that from the observations in [9] the multipartiteness width of the sce-
nario generated by the Paley graph on 13 (see figure 3) is strictly larger than 4.

In the next section, we will show how for the scenarios we describe,
being able to give only good answers allows for simulation of the quantum
distribution with random variables. Thus, the contextuality lies in the
combinatorial structure of the graph and the three levels collapse for these
games.

3. Simulating a probability distribution is the same as winning the
pseudo-telepathy graph game

In [9] it was proven that for some graphs, the probability distributions of
the quantum strategy using the graph states cannot be simulated using non
local boxes on less than k parties, we show here that any strategy that allows
to win the game can be extended using random variables shared between
neighbors (in the graph) to simulate the uniform probability distribution
arising from the quantum strategy.

We start by describing a classical strategy CStrat based on shared random
variables rather than quantum states. We show that CStrat is a winning
strategy if and only if the graph is bi-partite. We also show that CStrat can
be used to make any winning strategy a uniform winning strategy, i.e. each
valid answer to a given question are equiprobable. We show that CStrat can
be locally adapted to collaborative games on graphs that can be obtained by
a sequence of local complementations.
Classical strategy (Cstrat): Given a graph G = (V,E), pick uniformly
at random λ ∈ {0, 1}V . Each player u ∈ V receives a pair of bits (λu, µu),
where µu =

∑
v∈NG(u) λu mod 2. Given a question x ∈ {0, 1}V , each player

u ∈ V locally computes and answers au = (1− xu).λu + xu.µu mod 2.

Lemma 5. Given a graph G = (V,E) and a question x ∈ {0, 1}V , CStrat
produces an answer uniformly at random in {a ∈ {0, 1}V | ∃D ⊆ S, (A ⊕
Odd(A⊕D))∩S = ∅ where A = supp(a) and S = supp(x)}.
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Proof: Given a graph G = (V,E), a question x ∈ {0, 1}V and a ∈ {0, 1}V ,
the probability that CStrat outputs a is

p(a|x) = p (∀u∈V \S, au=λu) p(∀u∈S, au=
∑

v∈N(u)

λv mod 2 | ∀u∈V \S, au=λu)

= p (A \ S = Λ \ S) p(A ∩ S = Odd(Λ) ∩ S|A \ S = Λ \ S)

where S = supp(x), A = supp(a) and Λ = supp(λ). Since p (A \ S = Λ \ S) =
1

2n−|x|
, p(a|x) = 1

2n−|x|
p (A ∩ S = Odd(Λ ∩ S ⊕ Λ \ S) ∩ S|A \ S = Λ \ S)

= 1
2n−|x|

p (A ∩ S = Odd(D ⊕ (A \ S)) ∩ S|A \ S = Λ \ S), where D = Λ ∩ S.
If A ∩ S 6= Odd(D ⊕ (A \ S)) ∩ S for all D ⊆ S, then p(a|x) = 0. Otherwise,
the set of subsets D of S which satisfy the condition is the affine space
{D0 ⊕D|D ⊆ S ∧Odd(D) ∩ S = ∅}, where D0 is a fixed set which satisfies

A ∩ S = Odd(D0 ⊕A \ S) ∩ S. Thus the p(a|x) = 1
2n−|x|

. |{D⊆S|Odd(D)∩S=∅}|
2|x|

=

2|x|−rkG(x)−n, which is independent of a, proving the uniformity of the answer.
Finally notice ∃D0 ⊆ S,A ∩ S = Odd(D0 ⊕ (A \ S)) ∩ S if and only if
∃D1 ⊆ S, (A⊕Odd(A⊕D1))∩S = ∅, by taking D1 = D0 ⊕ (A ∩ S). �

We consider some standard graph transformations: Given a graph G =
(V,E) the local complementation [16] on a vertex u ∈ V produces the graph
G ∗ u = (V,E ⊕KN(v)) where the sum is taken modulo 2 (it is the symmetric
difference) and KU is the complete graph on U ⊂ V . G ∗ u is obtained from
G by exchanging the edges by non edges and vice versa in the neighborhood
of the vertex u. Pivoting using an edge (u, v), is a sequence of three local
complementations G ∧ uv = G ∗ u ∗ v ∗ u. We denote by δloc(G) [35, 36, 19]
(resp. δpiv(G)) the minimum degree taken over all graphs that can be obtained
from G through some sequence of local complementations (edge pivots).

Given the shared randomness (λv, µv)v∈V associated with G, if player u
replaces its first bit by the XOR of its two bits, and each of his neighbors
replaces his second bit by the XOR of his two bits, one gets the shared
randomness associated with G ∗ u. (proof given in Appendix)

Lemma 6. Given the probability distribution (λv, µv)v∈V associated with G,
if player u replaces its first bit by the XOR of its two bits, and each of its
neighbors replaces their second bit by the XOR of their two bits, one gets the
probability distribution associated with G ∗ u.

Thus the probability distribution corresponding to the classical strategy
for G can be locally transformed into the probability distribution associated
with the G∗u, thus one can use local complementation to optimise the cost of
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preparing the shared randomness. For instance the classical strategy CStrat
for a graph G requires shared random bits on at most ∆loc(G) + 1 players,
where ∆loc(G) = min(∆(G′), s.t. ∃u1, . . . , uk, G′ = G∗u1 ∗ . . .∗uk) and ∆(G)
is its maximum degree. If there is no pre-shared random bits, the probability
distribution can be prepared using at most 2|G|loc communications in-between
the players, where |G|loc = min(|G′|, s.t. ∃u1, . . . , uk, G′ = G ∗ u1 ∗ . . . ∗ uk)
is the minimum number of edges by local complementation.

Now we show how, using the classical strategy CStrat , one can simulate
the quantum strategy QStrat given an oracle that provides only good answers.

Lemma 7. For any collaborative game on a graph G, for any strategy Q
that never loses, there exists a strategy Q′ using the outputs of Q and shared
random variables that simulate QStrat .

Proof:
Given a collaborative graph game on a graph G, let Q be a strategy that

always outputs permissible outputs for any set of inputs x, so we have pairs
(a|x) 6∈ L. We consider the strategy which combines Q and CStrat for this
graph: For a given question x, Q′ outputs the XOR of the Q answer and
CStrat answer for x. First we prove that such an answer is a valid answer and
then the uniform probability among the possible answer to a given question.
Given a question x ∈ {0, 1}V , suppose Q′ outputs a′ ∈ {0, 1}V : ∀u ∈ V ,
a′u = au + (1−xu)λu +xuµu where au is the answer produced by Q and λ and
µ are as defined in the classical strategy. By contradiction, assume (a′|x) ∈ L,
so there exists D involved in x such that

∑
u∈loc(D) a

′
u = |G[D]|+ 1 mod 2.∑

u∈loc(D) a
′
u =

∑
u∈loc(D) (au + (1− xu)λu + xuµu) mod 2 =∑

u∈loc(D) au +
∑

u∈loc(D)\supp(x) λu +
∑

u∈loc(D)∩supp(x) µu mod 2 =∑
u∈loc(D) au +

∑
u∈Odd(D) λu +

∑
u∈D

∑
v∈N(u) λv mod 2 =

∑
u∈loc(D) au +∑

u∈Odd(D) λu +
∑

v∈Odd(D) λv mod 2 =
∑

u∈loc(D) au mod 2. Thus

(a|x) ∈ L which is a contradiction thus p(a′|x) = 0 if (a′|x) ∈ L.
Now we prove that p(a′|x) = 2|x|−n−rkG(x). First assume Q is de-
terminist, thus p(a′|x) is the probability that the classical strategy
outputs a + a′ := (au + a′u mod 2)u∈V . Since this probability is
non zero it must be 2|x|−n−rkG(x). If Q is probabilistic, p(a′|x) =∑

a∈{0,1}V p(Q outputs a on x)p(classical strategy outputs a+ a′ on x) ≤
2|x|−n−rkG(x)

∑
a∈{0,1}V p(Q outputs a on x) ≤ 2|x|−n−rkG(x). Thus each

answer a produced by the strategy on a given question x is s.t.
(a|x) /∈ L and occurs with probability at most 2|x|−n−rkG(x). Since
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|{a ∈ {0, 1}V | (a|x) /∈ L}| = 2|x|−n−rkG(x), each of the possible answers is
produced by the strategy and occurs with probability 2|x|−n−rkG(x). �

4. Locally equivalent games

A pseudo telepathy game G locally simulates another pseudo telepathy
game G ′ if any winning strategy for G can be locally turned into a winning
strategy for G ′:
Definition 8 (Local Simulation). Given two pseudo telepathy games G
and G ′ on a set V of players which sets of losing pairs are respectively LG
and LG′, G locally simulates G ′ if for all u ∈ V , there exist f1, . . . , fn :
{0, 1} → {0, 1} and g1, . . . , gn : {0, 1} × {0, 1} → {0, 1} s.t. ∀x, a ∈ {0, 1}V
(g(a, x), x) ∈ LG′ ⇒ (a|f(x)) ∈ LG where f(x) = (fu(xu))u∈V and g(a, x) =
(gu(au, xu))u∈V .

Assuming G locally simulates G ′ and that the players have a strategy to win
G, the strategy for G ′ is as follows: given an input x of G ′, each player u applies
the preprocessing fu turning her input xu into fu(xu), then they collectively
play the game G with this input f(x) getting an output a s.t. (a|f(x)) /∈ LG.
Finally each player u applies a postprocessing gu which depends on her output
au and her initial input xu to produce the output gu(au, xu) to the game G ′.
This output is valid since, by contradiction, (g(a, x), x) ∈ LG′ would imply
(a|f(x)) ∈ LG.
Definition 9 (Local Equivalence). G and G ′ are locally equivalent games
if G locally simulates G ′ and G ′ locally simulates G.

In the following we give two examples of locally equivalent games (the
proofs of equivalence are given in Appendix): first we show that the games
associated with the complete graphs are locally equivalent to Mermin parity
games, and then that pivoting, a graph theoretical transformation, produces
a graph game locally equivalent to the original one:

Lemma 10. For any n, the game associated with the complete graph Kn is
locally equivalent to the Mermin parity game on n players.

Lemma 11. Given a graph G = (V,E) and (u, v) ∈ E, the games associated
with G and G ∧ uv are locally equivalent.

Therefore, the important quantity for the pre-shared ran-
domness for the strategies defined with a graph is ∆piv(G) =
min{∆(G′), G′ pivot equivalent to G}.
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5. Scenarios with linear multipartiteness width

We prove that there exist contextuality scenarios with linear multipartite-
ness width. We use a graph property called k-odd domination which is related
[9] to the classical simulation of the quantum probability distribution obtained
by playing the associated graph game. Since bipartite graphs correspond to
graph games that can be won classically [9], we focus on the non-bipartite
case by showing that there exist non-bipartite 0.11n-odd dominated graphs
of order n.

Definition 12 (k-odd domination [9]). A graph G = (V,E) is k-odd
dominated (k-o.d.) iff for any S ∈

(
V
k

)
, there exists a labelling of the

vertices in S = {v1, . . . , vk} and C1, . . . Ck, s.t. ∀i, Ci ⊆ V \ S and
Odd(Ci) ∩ {vi, . . . vk} = {vi} and Ci ⊆ Even(Ci).

Lemma 13. For any k ≥ 0, r ≥ 0 and any graph G = (V,E) a graph of order
n having two distinct independent sets V0 and V1 of order |V0| = |V1| = bn−r2 c,
G is k-odd dominated if for any i ∈ {0, 1}, and any non-empty D ⊆ V \ Vi,
|OddG(D) ∩ Vi| > k − |D|

Proof: Given S0 ⊆ V0, S1 ⊆ V1, and S2 ⊆ V2 = V \ (V0 ∪ V1) s.t. |S0| +
|S1| + |S2| = k, we show that for any u ∈ S = S0 ∪ S1 ∪ S2, there exists
Cu ⊆ V \ S s.t. Odd(Cu) ∩ S = {u} and Cu ⊆ Even(Cu). For any u ∈ S,
there exists i ∈ {0, 1} s.t. u ∈ Si ∪ S2. Let Li : 2Si∪S2 → 2V1−i\S1−i be
the function which maps D ⊆ Si ∪ S2 to Li(D) = OddG(D) ∩ (V1−i \ S1−i).
Li is linear according to the symmetric difference. Li is injective: for any
D ⊆ Si ∪ S2, Odd(D) ∩ (V1−i \ S1−i) = ∅ implies Odd(D) ∩ V1−i ⊆ S1−i, thus
|Odd(D) ∩ V1−i| ≤ |S1−i|. notice that |D| ≤ |Si|+ |S2|, so |Odd(D) ∩ V1−i| ≤
|S1−i| ≤ |S0|+ |S1|+ |S2| − |D| = k− |D|, so D = ∅. The matrix representing
Li is nothing but the submatrix Γ[Si∪S2,V1−i\S1−i] of the adjacency matrix Γ
of G. So its transpose Γ[V1−i\S1−i,Si∪S2] is surjective which means that the
corresponding linear map LT

i : 2V1−i\S1−i → 2Si∪S2 = C 7→ OddG(C) ∩ (V1−i \
S1−i) is surjective, so ∃Cu ⊆ V1−i \ S1−i s.t. OddG(Cu) ∩ (Si ∪ S2) = {u},
which implies, since V1−i is an independent set, that OddG(Cu) ∩ S = {u}
and Cu ⊆ Even(Cu). �

Theorem 14. For any even n > n0, there exists a non-bipartite b0.110nc-odd
dominated graph of order n.
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Proof: Given n, r ≤ n s.t. r = n mod 2, and k ≥ 0. Let p = (n − r)/2,
and let G = (V0 ∪ V1 ∪ V2, E) s.t. |V0| = |V1| = p, |V2| = r be a random
graph on n vertices s.t. for any u ∈ Vi, v ∈ Vj there is an edge between u
and v with probability 0 if i = j and with probability 1/2 otherwise. For

any i ∈ {0, 1}, and any non empty D ⊆ V \ Vi s.t. |D| ≤ k, let A
(i)
D be the

bad event |OddG(D) ∩ Vi| ≤ k − |D|. Since each vertex of Vi is in OddG(D)

with probability 1/2, Pr(A
(i)
D ) =

∑k−|D|
j=0

(
p
j

)
2−p ≤ 2p[H(

k−|D|
p

)−1]. Another
bad event is that G is bipartite which occurs with probability less than
(7
8
)pr. Indeed, the probability that given u ∈ V0, v ∈ V1, w ∈ V2, (u, v, w) do

not form a triangle is 7
8
, so given a bijection f : V0 → V1, the probability

that ∀u ∈ V0,∀w ∈ V2, (u, f(u), w) do not form a triangle is (7
8
)pr. Let X

be the number of bad events. E[X] = 2
∑k

d=1

(
p+r
d

)∑k−d
j=0

(
p
j

)
2−p + (7

8
)pr ≤

2
∑k

d=1 2(p+r)H( d
p+r

)+pH( k−d
p

)−p + (7
8
)pr ≤ 2

∑k
d=1 2pH( d

p+r
)+pH( k−d

p
)−p+r + (7

8
)pr.

The function d 7→ pH( d
p+r

) + pH(k−d
p

) − p + r is maximal for d = k(p+r)
2p+r

.

Thus, E[X] ≤ 2k22pH( k
2p+r

)−p+r + (7
8
)pr. By taking r = 1, and k = 0.11n =

0.11(2p+ 1), E[X] < 1 when p large enough, thus G has no bad event with a
non zero probability. �

Corollary 15. There exist contextuality scenarios with linear multipartite-
ness width: for any even n > n0, there exist graph games on n players
producing contextuality scenarios of multipartiteness width at least b0.11nc.

Proof: Using the result from [9], for any non bipartite graph of order n
being 0.11n-o.d ensures that the probability distribution obtained by using
the quantum strategy cannot be simulated using non local boxes involving
at most 0.11n parties. Thus lemma 7 allows to conclude that the associated
pseudo-telepathy game cannot be won classically. Therefore there is no
interpretation that is k-multipartite with k < 0.11n which means that the
contextuality scenario has linear width. �

6. Conclusion

We have shown that there exist graphs with linear multipartiteness width,
however the proof is non constructive and the best known bound for explicit
families is logarithmic. A natural future direction of research would be to find
explicit families with linear multipartiteness width or to improve the bounds
proven for the Paley graph states. An other important question is to consider
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lower bounds for the scenarios associated with the graph games. A promising
area of investigation for multipartite scenarios is: what happens if we limit
the width of shared randomness? Indeed, for the proof of how winning the
game allows to simulate the quantum probability distributions, one needs only
shared random variables that are correlated in local neighborhoods in the
graph. One can also consider the link with building entanglement witnesses
for graph states, generalizing the construction of [33]. It would be also
very interesting to link the multipartiteness width with the structures of the
groups of the associated binary linear system defining the two-player bipartite
non-local games [47]. Very recently, Chao and Reichardt [20] proposed a
test separating quantum theory form k-local theories, where players can use
k-local boxes. A future work could consist in defining new tests associated
with our games, proving bounds on how far they are from being winnable
in k-local theories. Finally, one can expect that the multipartiteness width
of the Paley graph states might have cryptographic applications to ensure
security against cheating for some protocols for example.
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