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Positive harmonic functions on the Heisenberg group II

Introduction

In this paper, we present the classification of the positive harmonic functions on the discrete Heisenberg group G = H 3 (Z).

Positive harmonic functions

Let µ = s∈S µ s δ s be a positive measure on G with finite support S ⊂ G. We recall that a function h on G is said to be µ-harmonic if it satisfies the equality h = P µ h where P µ h(g) := s∈S µ s h(sg) for all g in G. We want to describe the cone H + µ of positive µ-harmonic functions h on G. By Choquet Theorem, it is enough to describe its extremal rays.

The main aim of this paper is to prove that the extremal positive µharmonic functions on G are proportional either to a character of G or to a translate of a function which is induced of a character on an abelian subgroup (Theorem 1.1).

The special case where µ is the southwest measure was handled in the introductory paper [START_REF] Benoist | Positive harmonic functions on the Heisenberg group I[END_REF]. This case was striking because the classical partition function h(x, y, z) := p y (z) with p y (z):= number of partition of z by y non-negative integers occurs as one of these extremal positive harmonic functions. This partition function p y (z) is the simplest instance of a "harmonic function induced from the character of an abelian subgroup" that we will introduce in this paper.

Construction of harmonic functions

The simplest examples of µ-harmonic functions are µ-harmonic characters. Those are the characters χ : G → R >0 such that s∈S µ s χ(s) = 1. Such a function h = χ is an extremal positive µ-harmonic function on G which is invariant by the center Z of G, see Lemma 2.1.

We now introduce another construction of extremal positive µ-harmonic functions by inducing harmonic characters. Let S 0 ⊂ S be a non-empty abelian subset and G 0 be the subgroup of G generated by S 0 . Denote by µ 0 := s∈G 0 µ s δ s the measure restriction of µ to G 0 . Let χ 0 be a µ 0harmonic character of G 0 . We extend χ 0 as a function on G, still denoted χ 0 , which is 0 outside G 0 . This function χ 0 is µ-subharmonic, so that the sequence P n µ χ 0 is increasing. We set h G 0 ,χ 0 = lim n→∞ P n µ χ 0 .

We will tell exactly for which pairs (G 0 , χ 0 ) the function h G 0 ,χ 0 is finite, in Lemma 3.6 and in Propositions 5.1, 5.4 and 5.5. When it is finite, the function h G 0 ,χ 0 is an extremal positive µ-harmonic function on G, see Lemma 3.1.

We will call h G 0 ,χ 0 the harmonic function on G induced of the µ 0 -harmonic character χ 0 of G 0 .

For g in G, we denote by ρ g : g → g g the right translation by g on G. Whenever a function h is µ-harmonic, the function h g := h • ρ g is also µ-harmonic.

Main results

Our main theorem tells us that conversely these three constructions are the only possible ones.

Theorem 1.1. Let G = H 3 (Z) be the discrete Heisenberg group and µ be a positive measure on G whose support S is finite and generates the group G. Then every extremal positive µ-harmonic function h on G is proportional either to a character χ of G or to a translate h G 0 ,χ 0 • ρ g of a function induced of a harmonic character of an abelian subgroup. Remark 1.2. Theorem 1.1 can not be extended to all nilpotent groups G. Indeed, the conclusion of Theorem 1.1 is not always valid for a probability measure µ on the nilpotent group G of rank 4 with cyclic center. Theorem 1.1 has been announced in [START_REF] Benoist | Positive harmonic functions on the Heisenberg group I[END_REF]. It will be proven in Chapter 4. Indeed it is a direct consequence of Propositions 4.6 and 4.8. We will give a more precise description of the extremal positive µ-harmonic functions h in Theorem 5.10. In particular, we will say exactly when and how many of these new examples occur. Here are two corollaries of Theorem 5.10 that we will prove in Section 5.4. The first corollary tells us that these new examples always vanish somewhere.

Corollary 1.3. Same notation. Let h be an extremal positive µ-harmonic function on G which does not vanish. Then h is a character of G.

The second corollary tells us exactly when no new example occurs. We denote by G + µ the semigroup generated by S.

Corollary 1.4. Same notation with µ(G) = 1. The following are equivalent:

(i) Every extremal positive µ-harmonic function h on G is a character of G. (ii) G + µ contains two non-central elements whose product is in Z {0}.
This corollary 1.4 is illustrated in the figures of Section 5.4.

Previous results

The study of harmonic functions on groups has a very long history. I will just point out the part of it which is relevent for our purposes.

As a general motivation, let us recall that the extremal bounded µharmonic functions on a group G form the Poisson boundary of (G, µ). They are used to study random walks on G-spaces. The extremal positive µharmonic functions on G are related to the Martin boundary of (G, µ). They are used to study more precisely the behavior of these random walks, see [START_REF] Ancona | Théorie du potentiel sur les graphes et les variétés[END_REF], [START_REF] Gouëzel | Martin boundary of random walks with unbounded jumps in hyperbolic groups[END_REF], [START_REF] Sawyer | Martin boundaries and random walks[END_REF] or [START_REF] Woess | Random walks on infinite graphs and groups[END_REF].

Abelian groups

This part of the history begins with the Choquet-Deny Theorem in [START_REF] Choquet | Sur l'équation de convolution µ = µ * σ[END_REF] :

Let G be a finitely generated abelian group and µ be a positive finite measure on G whose support generates G as a group. Then every extremal positive µ-harmonic function h on G is proportional to a character.

Indeed the proof of this theorem is very short : one notices that the harmonicity equation (2.1) is a decomposition of h as a sum of positive harmonic functions and hence all the terms in this sum are proportional to h.

Bounded harmonic functions

The Choquet-Deny theorem has been extended to nilpotent groups when µ has mass 1 and h is bounded. This is due to Dynkin and Maljutov in [START_REF] Dynkin | Random walk on groups with a finite number of generators[END_REF] :

Let G be a finitely generated nilpotent group and µ be a probability measure on G whose support generates G as a group. Then every bounded µ-harmonic function on G is constant.

When S generates G as a semigroup

The Choquet-Deny theorem has also been extended to nilpotent groups for h unbounded under an extra assumption. This is due to Margulis in [START_REF] Margulis | Positive harmonic functions on nilpotent groups[END_REF] :

Let G be a finitely generated nilpotent group and µ be a positive measure on G whose support generates G as a semigroup. Then every extremal positive µ-harmonic function on G is proportional to a character.

The Heisenberg group

The main significance of our Theorem 1.1 is that even though Choquet-Deny theorem can not be extended to finitely generated nilpotent groups without this extra assumption. However, for the Heisenberg group, one can describe all the positive harmonic functions. Note that, because of Margulis theorem, most of our paper will deal with a positive measure whose support generates G as a group but does not necessarily generate G as a semigroup.

Many recent works focus on the random walks on the discrete Heisenberg group G as in [START_REF] Breuillard | Local limit theorems and equidistribution of random walks on the Heisenberg group[END_REF], [START_REF] Diaconis | Random walk on unipotent matrix groups[END_REF] and [START_REF] Göll | A Wiener lemma for the discrete Heisenberg group[END_REF], or on nilpotent groups as in [START_REF] Breuillard | Equidistribution of dense subgroups on nilpotent Lie groups[END_REF] and [START_REF] Guivarc | h. Groupes nilpotents et probabilité[END_REF], or on the geometry of words in G as in [START_REF] Lind | A survey of algebraic actions of the discrete Heisenberg group[END_REF] and [START_REF] Vershik | Asymptotics of the number of geodesics in the discrete Heisenberg group[END_REF]. We mention these related results even though we will not use them.

Strategy of proof

We now explain the strategy of proof of Theorem 1.1 and the organization of the paper.

In Chapter 2, we recall well-known facts on positive harmonic functions and notations for the discrete Heisenberg group G and its positive measures µ with a finite support S.

In Chapter 3, we begin the proof of Theorem 1.1. When h is an extremal µ-harmonic function on G, we focus on the equality h(g) = P n µ h(g) where the right-hand side is written as a weighted sum of values h( ẇg) for words w of length n in S, as in Equation (2.2). In Lemmas 3.1 and 3.2, we check that when the contribution in this sum of the words w whose letters are in a proper subgroup of G, is not negligeable, then h is an induced harmonic function. In Lemma 3.8, we prove a useful generalization: we allow w to be a concatenation of k subwords whose letters are in a proper subgroup with k ≥ 1 fixed. The proofs are very general and do not assume G to be nilpotent.

In Chapter 4, we assume that h is not induced, and we want to prove that h is invariant by the center Z of G. The main idea is to construct a symmetric relation R n among the words in S n such that two related words w and w have same weight and their image ẇ and ẇ in G differ by a nontrivial element z of Z. A key point is to be able to compare the number of words related to w and the number of words related to w , see Lemma 4.2. This allows us to prove that h is proportional to one of its translate h z , see Proposition 4.1. The last step is to prove that h is indeed equal to its translate h z . This is done in Propositions 4.6 and 4.8. The key point there, Lemma 4.9 is based on a counting argument that again involves the partition function.

In Chapter 5, we give a complete classification of the extremal µ-harmonic functions that are induced of a character, see Theorem 5.10. Their existence is an important new feature of this article. The proof of this classification in Propositions 5.1, 5.4 and 5.5 uses a transience property for random walks on Z similar to the large deviation inequality, see Lemma 5.3.

Notation and preliminary results

We introduce in this chapter notations that will be used all over this article.

The cone of µ-harmonic functions

We first recall classical facts on positive µ-harmonic functions.

Let G be a finitely generated group and µ be a positive measure with finite support S ⊂ G. We denote by G + µ the subsemigroup of G generated by S and by G µ the subgroup of G generated by S.

A positive function h

: G → [0, ∞[ is said to be µ-harmonic if it satisfies the equality h = P µ h where P µ h : g → s∈S µ s h(sg). (2.1) 
A positive µ-harmonic function is said to be extremal or µ-extremal if every smaller positive µ-harmonic function h ≤ h is a multiple of h.

A function h is said to be µ-superharmonic, respectively µ-subharmonic, if it satisfies the inequality h ≥ P µ h, respectively h ≤ P µ h.

We will often write the n th power of the operator P µ under the form

P n µ h(g) = w∈S n µ w h( ẇg), (2.2) 
where, for a word w = s 1 . . . s n ∈ S n of length w = n, the constant µ w > 0 is the product

µ w := µ s 1 • • • µ s n > 0 and where the element ẇ ∈ G is the product ẇ := s 1 • • • s n in G.
Let H + µ be the convex cone of positive µ-harmonic functions h on G and E be the set of µ-extremal ones. We endow H + µ with the topology of the pointwise convergence. When G + µ = G the cone H + µ has a compact basis, this means that there exists a compact subset of H + µ that meets all rays of H + µ . In general, the cone H + µ might not have a compact basis but it is well-capped, this means that it is a union of closed convex subcones H + µ,i with compact basis such that H + µ H + µ,i is also convex. This cone H + µ is also reticulated, this means that every two positive µ-harmonic functions h 1 and h 2 admit a maximal µ-harmonic lower bound h m and also a minimal µ-harmonic upper bound h M . Indeed one has

h m = lim n→∞ P n µ (min(h 1 , h 2 )) ≥ 0 ; and h M = lim n→∞ P n µ (max(h 1 , h 2 )) ≤ h 1 + h 2 < ∞.
By Choquet Theorem, it is enough to describe the extremal rays of this cone H + µ . Indeed, every positive µ-harmonic function h can be written as an average of non-proportional extremal µ-harmonic functions : h = E f dα(f ), and this writing is unique in the sense that the class of the image of this probability measure α on the set P(E) of extremal rays is unique.

In this paper a character will always mean a multiplicative morphism χ : G → R >0 . A character χ is µ-harmonic if and only if it satisfies the equation s∈S µ s χ(s) = 1.

Harmonic characters

We discuss here harmonic characters on nilpotent groups.

Let G be a nilpotent finitely generated group and µ be a positive finite measure on G with finite support generating G. Lemma 2.1. Every µ-harmonic character of G is an extremal positive µharmonic function.

Proof of Lemma 2.1. Assume that χ = h + h with both h and h positive and µ-harmonic. We want to prove that the function h := χ -1 h is constant. We notice that the measure µ := χµ on G is a probability measure and the function h is a bounded µ-harmonic function. Therefore by Dynkin-Maljutov theorem, see Section 1.4, the function h is constant.

The Heisenberg group

We gather here notation that we will use in this article for the discrete Heisenberg group.

Recall that the discrete Heisenberg group G := H 3 (Z) is the set Z 3 of triples seen as matrices (x, y, z)

:=   1 x z 0 1 y 0 0 1   . It is endowed with the product (x, y, z) (x , y , z ) = (x + x , y + y , z + z + xy ) .
(2.3)

We will denote by 0 := (0, 0, 0) the identity element of G, and by z 0 the generator z 0 := (0, 0, 1) of the center Z of G.

For two elements g = (x, y, z), g = (x , y , z ) of G, we will denote by c g,g the integer c g,g := xy -yx so that gg g -1 g

-1 = z 0 c g,g .

(2.4)

Let G := G/Z Z 2 be the abelianization of G that we embed in the real vector space

V := G ⊗ Z R R 2 .
Let µ be a positive measure on G with finite support S. We denote by µ the image of µ in G and by S its support.

We denote by V µ the vector subspace of G generated by S and by V + µ the smallest convex cone of V containing S. Note that, when G µ = G, one always has V µ = V , and, when G + µ = G, one always has V + µ = V . The description of H + µ , when G µ = G will heavily depend on the shape of V + µ . We will often distinguish the three cases :

V + µ = the plane, a half-plane, or a properly convex cone.

(2.5)

Induced harmonic functions

In this chapter we present general facts on µ-harmonic functions on a finitely generated group G. These facts will be particularly useful when G is the Heisenberg group.

Construction of induced harmonic functions

The following lemma gives us a method to construct µ-harmonic functions starting from a harmonic function for a smaller measure µ 0 . This lemma will be mainly useful when µ 0 is the restriction of µ to a proper subgroup G 0 .

Let G be a finitely generated group and µ and µ 0 be positive measures on G with finite support such that µ 0 < µ, i.e. such that µ 1 := µ -µ 0 is also a positive measure. 

P n µ 0 h. (iii) Moreover when h 0 is µ 0 -extremal then h is µ-extremal too.
Proof of Lemma 3.1. (i) We first notice that, since h 0 = P µ 0 h 0 ≤ P µ h 0 , the sequence P n µ h 0 is increasing. Hence, when this sequence is bounded it converges to a µ-harmonic function.

(ii) Since h = P µ h ≥ P µ 0 h ≥ P µ 0 h 0 = h 0 , the sequence P n µ 0 h is decreasing and converges to a µ 0 -harmonic function h 0 := lim n→∞ P n µ 0 h such that h 0 ≥ h 0 . We want to prove that the function h 0 := h 0 -h 0 is zero. Since h 0 ≤ h 0 ≤ h, one also has P n µ h 0 ≤ P n µ h 0 ≤ h. Therefore one also has lim n→∞ P n µ h 0 = h and hence lim n→∞ P n µ h 0 = 0. Since h 0 is µ 0 -harmonic, this last sequence is increasing and hence one has h 0 = 0.

(iii) Assume now that h 0 is µ 0 -extremal and assume that h is the sum of two positive µ-harmonic functions h = h +h . We want to prove that h and h are proportional. By (ii), the functions h 0 = lim n→∞ P n µ 0 h and h 0 = lim n→∞ P n µ 0 h are µ 0 -harmonic and give a decomposition h 0 = h 0 + h 0 . Therefore, one has h 0 = λ h 0 and h 0 = λ h 0 for positive constants λ and λ with λ + λ = 1. One has the inequalities h ≥ lim n→∞ P n µ h 0 = λ h and h ≥ lim n→∞ P n µ h 0 = λ h. Since h = h + h , these inequalities are equalities: one has h = λ h and h = λ h. This proves that the function h is µ-extremal.

Recognizing induced harmonic functions

The following lemma is a converse of Lemma 3.1. It tells us how to recognize a µ-harmonic function that is induced of a µ 0 -harmonic function.

Let G be a finitely generated group and µ 0 < µ be positive measures on G with finite support. Proof of Lemma 3.2. The argument is very similar to Lemma 3.1 (i) Since the function h is positive and µ-harmonic, the sequence P n µ 0 h is decreasing. Hence it has a limit h 0 which is µ 0 -harmonic.

(ii) By assumption, this limit h 0 is non-zero. By construction, one has the inequality h ≥ h 0 . Since h is µ-harmonic, the sequence P n µ h 0 is bounded by h and, by Lemma 3.1, the limit h := lim n→∞ P n µ h 0 exists, is µ-harmonic and is bounded by h.

(iii) Assume now that h is µ-extremal. Then one has h = λ h for some constant λ ≥ 0. Again by Lemma 3.1, one also has

h 0 = lim n→∞ P n µ 0 h = λ lim n→∞ P n µ 0 h = λ h 0 . (3.1) 
Therefore one has λ = 1. It remains to check that h 0 is µ 0 -extremal. Assume that h 0 = h 0 + h 0 with both h 0 and h 0 positive µ 0 -harmonic. The limit h := lim n→∞ P n µ h 0 is a µ-harmonic function bounded by h. Hence one has h = λ h and by the same computation as (3.1), one gets h 0 = λ h 0 . This proves that h 0 is extremal.

The following definition relies on the previous lemmas :

Definition 3.3. A µ-harmonic function h on G is said to be induced from a subgroup G 0 if lim n→∞ P n µ 0 h = 0.
where µ 0 is the restriction of µ to G 0 . When h is µ-extremal this means that h = h G 0 ,h 0 • ρ g where g is in G and h 0 is an extremal µ 0 -harmonic function on G 0 , and h G 0 ,h 0 := lim n→∞ P n µ h 0 . A µ-harmonic function is said to be induced, if there exists a subgroup G 0 of infinite index in G such that h is induced from G 0 . It is said to be non-induced otherwise.

Corollary 3.4. Let G be a finitely generated group and µ a positive measure on G with finite support. A µ-harmonic character χ of G is never induced.

Proof. Let µ 0 < µ. Since P µ χ = χ, one has P µ 0 χ = αχ with some constant α < 1. Therefore, one has lim n→∞ P n µ 0 χ = 0, and, by Lemma 3.1, the µ-harmonic function χ is not induced of a µ 0 -harmonic function h 0 .

Double induction

The following lemma tells us that two successive inductions of a positive harmonic function is equivalent to a direct induction.

Let G be a finitely generated group. 

n µ 0 h 0 ≤ P n µ 0 h ≤ P n µ h ≤ h and h 0 ≤ h. Therefore, one also has the inequali- ties P n µ h 0 ≤ P n µ h ≤ h and h ≤ h. (ii) =⇒ (i) Since h 0 ≤ h 0 , one has P n µ h 0 ≤ P n µ h 0 and h ≤ h .

Induction of characters

We give now a few conditions that have to be satisfied in order for the induction of a harmonic character to be a finite function.

Let G be a finitely generated group and µ be positive measures on G with finite support S such that G = G µ . We write µ = µ 0 + µ 1 as a sum of two positive measures and set G 0 := G µ 0 . Let χ 0 be a µ 0 -harmonic character of G 0 that we extend by 0 as a function on G. We denote by

Z G (G 0 ) := {g ∈ G | gg 0 = g 0 g for all g 0 in G 0 }
the centralizer of G 0 in G, and by

N G (G 0 , χ 0 ) := {g ∈ G | gg 0 g -1 ∈ G 0 and χ 0 (gg 0 g -1 ) = χ 0 (g 0 ) for all g 0 in G 0 } the normalizer of (G 0 , χ 0 ) in G. Lemma 3.6. If the induced µ-harmonic function h G 0 ,χ 0 is finite, then : (i) The measure µ 0 is the restriction of µ to G 0 and S 0 = S ∩ G 0 . (ii) The subgroup G 0 has infinite index in G. (iii) One has G + µ 1 ∩ G 0 = ∅. (iv) One has G + µ 1 ∩ Z G (G 0 ) = ∅. (v) One has G + µ 1 ∩ N G (G 0 , χ 0 ) = ∅.
Remark 3.7. -In particular, the supports S 0 of µ 0 and S 1 of µ 1 are disjoint and the semigroup G + µ 1 does not meet the center Z of G. -Note also that if one wants h G 0 ,χ 0 to be µ-extremal, the group G 0 must be generated by S 0 .

-The above conditions are not the only necessary conditions, as we will see in Chapter 5.

Proof of Lemma 3.6. (i) This means that µ 1 (G 0 ) = 0 and follows from (iii).

(ii) This follows from (iii). Indeed pick an element s 1 in the support of µ 1 , if the index were finite, there would exist a positive power

s d 1 belonging to G 0 . (iii) This follows from (v) because G 0 ⊂ N G (G 0 , χ 0 ). (iv) This follows from (v) because Z G (G 0 ) ⊂ N G (G 0 , χ 0 ). (v)
This point is the main content of Lemma 3.6. We proceed by contraposition. Let S 1 be the support of µ 1 and w 1 = s 1 . . . s ∈ S 1 , with ≥ 1 be a word such that ẇ1 belongs to N G (G 0 , χ 0 ).

The proof relies on a cautious analysis of the words that occur in Equality (2.2). We recall the notation µ 1,w 1 := µ 1,s 1 • • • µ 1,s > 0. We will denote P w 1 for the operator of left translation by ẇ1 := s 1 • • • s ∈ G; it is given by P w 1 h(g) = h( ẇ1 g) for all function h on G and all g in G. One computes

P n+ µ χ 0 ( ẇ-1 1 ) ≥ 1≤i≤n µ 1,w 1 P i µ 0 P w 1 P n-i µ 0 χ 0 ( ẇ-1 1 ) = 1≤i≤n µ 1,w 1 P i µ 0 P w 1 χ 0 ( ẇ-1 1 ) because χ 0 is µ 0 -harmonic = 1≤i≤n µ 1,w 1 w 0 ∈S i 0 µ 0,w 0 χ 0 ( ẇ1 ẇ0 ẇ-1 1 ) by definition of P µ 0 = 1≤i≤n µ 1,w 1 w 0 ∈S i 0 µ 0,w 0 χ 0 ( ẇ0 ) because ẇ1 normalizes χ 0 = 1≤i≤n µ 1,w 1 χ 0 (0) = nµ 1,w 1 because χ 0 is µ 0 -harmonic.
This goes to infinity with n, and the induced function is not finite.

Negligeable trajectories

We now discuss a lemma on non-induced extremal positive µ-harmonic functions. This lemma will be useful for the proof of the Z-semiinvariance of these functions on the Heisenberg group.

Let G be a finitely generated group and µ be a positive measure on G with finite support S generating G.

For every word w = s 1 . . . s n ∈ S n , we define k w ≥ 0 to be the smallest integer k for which we can write w = w 0 . . . w k as a concatenation of nongenerating subwords w j . Non-generating means that there exists an infinite index subgroup G j of G containing all the letters s i occuring in the subword w j . The following lemma tells us that the words with k w bounded are negligeable in the sum (2.2) for a non-induced µ-harmonic function.

Lemma 3.8. Let h be a non-induced positive µ-harmonic function on G Then, for all k ≥ 0, and g in G, the partial sums

I n,k (g) := w∈S n , kw≤k µ w h( ẇg) . (3.2) 
converge to 0 when n → ∞.

Proof of Lemma 3.8. We argue by induction on k. Since h is non-induced, the claim (3.2) is true for k = 0. Now let k ≥ 1 and g in G. For w in S n we introduce the maximal nongenerating suffix σ of w. Suffix means that one can write w = w σ. We denote by S 0,w the set of letters of σ and by 0,w the length of σ. Since there are only finitely many non-generating subsets S 0 of S, we can write I n,k (g) as a finite sum I n,k (g) = I n,k,S 0 (g) where I n,k,S 0 (g) involves the words w for which S 0,w = S 0 .

Fix ε 0 > 0. We choose 0 such that, one has P 0 µ 0 h(g) ≤ ε 0 for all restriction µ 0 of µ to a non-generating subset S 0 of S. We decompose the sum I n,k,S 0 (g) as a sum of two terms

I n,k,S 0 , 0 (g) = I n,k,S 0 , 0 (g) + I n,k,S 0 , 0 (g)
where I n,k,S 0 , 0 (g) involves the words w for which 0,w ≥ 0 and I n,k,S 0 , 0 (g) involves the words w for which 0,w < 0 .

Bounding I n . One computes, using the µ-harmonicity of h,

I n,k,S 0 , (g) ≤ w 0 ∈S 0 0 µ w 0 w 1 ∈S n-0 µ w 1 h( ẇ1 ẇ0 g) ≤ w 0 ∈S 0 0 µ w 0 h( ẇ0 g) ≤ ε 0
Bounding I n . One decomposes I n,k,S 0 , as a finite sum

I n,k,S 0 , (g) = σ µ σ I n,k,σ (g) 
over the finitely many words σ of length < 0 where

I n,k,σ (g) ≤ w ∈S n-, k w ≤k-1 µ w h( ẇ σg) ≤ I n-,k-1 ( σg) .
Therefore by the induction hypothesis one has lim n→∞ I n,k,σ (g) = 0. Since ε 0 can be chosen arbitrarily small, one deduces that lim n→∞ I n,k (g) = 0.

When G + µ meets the center

There is a simple case where the semiinvariance of µ-harmonic functions is easy to prove, namely when G + µ meets the center.

We fix ε 0 > 0. By Lemma 3.8, one can find k 0 ≥ 2 + 2ε -1 0 such that the first sum limited at the trajectories w for which k w < k 0 is bounded by ε 0 . Using the fact that the fibers of the maps R n → S n ; (w, w ) → w have cardinality k w , one gets

D ≤ ε 0 + (w,w )∈R n , kw≥k 0 ( µ w k w h( ẇ) - µ w k w 0<|p|≤p 0 h( ẇ z p 0 ) ) .
By Lemma 4.2, the element ẇ is equal to at least one of those ẇ z p 0 , therefore one gets

D ≤ ε 0 + (w,w )∈R n , kw≥k 0 µ w k w -k w k w k w h( ẇ) .
By Lemma 4.2, one has |k w -k w | ≤ 2, and 2/k w ≤ 2/(k 0 -2) ≤ ε 0 , and

D ≤ ε 0 + ε 0 (w,w )∈R n µ w k w h( ẇ) .
Using again that k w is the cardinality of the fiber and using the harmonicity of h, one gets

D ≤ ε 0 + ε 0 w∈S n µ w h( ẇ) = ε 0 + ε 0 h(0) .
Since ε 0 can be chosen arbitrarily small, this gives D ≤ 0 as expected.

End of proof of Proposition 4.1. Lemma 4.3 tells us that the positive harmonic function h is bounded by a finite sum of µ-harmonic functions h z with z ∈ Z non zero. Since all the positive µ-harmonic functions h and h z are extremal, and since the cone H + µ is reticulated, h has to be proportional to one of these translates h z .

Remark 4.4. We now want to deduce from the semi-invariance of h proven in Proposition 4.1, the Z-invariance of h. This is not a general fact. Indeed, the harmonic function h in Case 3.b) of Theorem 5.10 can be Z-semiinvariant but is not Z-invariant. Hence, we have to use once more the assumption that h is not induced. One technical difficulty comes from the fact that, when G + µ = G, the cone H + µ often does not have a compact basis. This prevent us from using the same arguments as in [START_REF] Margulis | Positive harmonic functions on nilpotent groups[END_REF]. h(0) = 1. Since the cone V + µ contains a line, there exists two words w 0 in S n 0 and w 0 in S n 0 whose product is in the center: ẇ0 ẇ 0 = z a for some a in Z.

Since the cone V + µ is not a line, there exists also a word w 1 in S n 1 such that ẇ0 ẇ1 ẇ-1

0 ẇ-1 1 = z b for some b ≥ 1.
Assume, by contradiction that q > 1. Choose an integer ≥ 1 such that C := µ w 0 µ w 0 q a+b > 1. Notice the equality, for all k ≥ 1,

ẇk 0 ẇ 1 ẇ 0 k ẇ- 1 = z ak+b k .
And compute with n := kn 0 + n 1 +kn 0 ,

h( ẇ- 1 ) = P n µ h( ẇ- 1 ) ≥ µ k w 0 µ w 1 µ k w 0 h( ẇk 0 , ẇ 1 ẇ 0 k ẇ- 1 ) ≥ µ k w 0 µ w 1 µ k w 0 q ak+b k = µ w 1 C k
Since C > 1 and since this inequality is valid for all integer k ≥ 1 one gets a contradiction. This proves that q ≤ 1.

Working similarly with the equality ẇ 0 k ẇ 1 ẇk 0 ẇ-1 = z ak-b k , one proves that q ≥ 1. And hence one has q = 1.

Z-invariance when V + µ contains no line

In this section, we finish the proof of our main Theorem 1.1 when the cone V + µ is properly convex, see (2.5).

Proposition 4.8. Keep notation (4.1), assume that V + µ contains no line and that the µ-harmonic function h is not induced. Then h is Z-invariant.

Beginning of proof of Proposition 4.8. The proof is by induction on the cardinality of the support S of µ. We will use the induction hypothesis inside the proof of Lemma 4.10.

First step

We begin the proof by a few reduction steps. This allows us to write the above sum (4.3) as

1 = n 1 +n 2 =n w 1 ∈S n 1 1 w 2 ∈S n 2 2 w∈Bw 1 ,w 2 µ w h( ẇ) . (4.4) 
For every w in B w 1 ,w 2 , we write ẇ = ẇ2 ẇ1 z nw 0 for some integer n w ≥ 1. (4.5)

Then Equality (4.4) becomes

1 = n 1 +n 2 =n w 1 ∈S n 1 1 w 2 ∈S n 2 2 µ w 1 µ w 2 h( ẇ2 ẇ1 ) ( w∈Bw 1 ,w 2 q nw ) . (4.6)
To pursue our analysis, we will need the following lemma which bounds this last sum.

Lemma 4.9. For all w 1 in S n 1 1 and w 2 in S n 2 2 , one has

w∈Bw 1 ,w 2 q nw ≤ η(q) -1 < ∞. (4.7) 
where η(q) := i≥1

(1 -q i ) > 0.

Note that this upper bound does not depend on (w 1 , w 2 ).

Proof of Lemma 4.9. For each word w = s 1 . . . s n in B w 1 ,w 2 , we set 

m w := |{(i, j) | 1 ≤ i < j ≤ n
m w = (i n 2 -n 2 ) + • • • + (i 2 -2) + (i 1 -1) .
Therefore, for all m ≥ 1, the number

p(n 1 , n 2 , m) := |{w ∈ B w 1 ,w 2 | m w = m}|
is equal to the number of partitions of m by n 2 non-increasing integers a 1 , . . . , a n 2 bounded by n 1 :

p(n 1 , n 2 , m) = |{n 1 ≥ a 1 ≥ . . . ≥ a n 2 ≥ 0 and m = a 1 + • • • + a n 2 }| .
This quantity is bounded by the partition function

p(m) = |{a 1 ≥ . . . ≥ a k ≥ . . . ≥ 0 and m = a 1 + • • • + a k + • • • }|.
The generating function of the partition function is

m≥0 p(m)q m = i>0 (1 + q i + q 2i + • • • ) = i>0 (1 -q i ) -1 = η(q) -1 .
We now collect the sequence of inequalities we have just proven

w∈Bw 1 ,w 2 q nw ≤ w∈Bw 1 ,w 2 q mw = m≥0 p(n 1 , n 2 , m)q m ≤ m≥0 p(m)q m = η(q) -1
and we obtain the bound (4.7) we were looking for.

End of proof of Proposition 4.8. We plug Inequality (4.7) in Formula (4.6) and we obtain, for all n ≥ 1 If S 1 is abelian, this follows from the assumption that h is non-induced. If S 1 is not abelian, we will use our induction hypothesis. Assume by contradiction that the µ 1 -harmonic function h := lim where, as before, µ 0 is the probability measure χ 0 µ 0 . Let p w be the number of letters of w that belong to S 0 Z and α := µ 0 (S 0 Z) < 1. One goes on :

n 1 +n 2 =n P n 1 µ 1 P n 2 µ 2 h(0) ≥ η(q) > 0 . ( 4 
F i ≤ k≥0 w∈S k 0 µ 0,w q -pw 0 = k≥0 j≤k j k α j (1 -α) k-j q -j 0 = k≥0 (1 -α + αq -1 0 ) k = α -1 (1 -q -1 0 ) -1 < ∞ .
This proves the finiteness of F i , of Q ∞ (g) and of the function h G 0 ,χ 0 .

Existence of harmonic characters

We recall in this section when harmonic µ-characters on abelian groups do exist.

Let G 0 = Z d and µ 0 be a positive measure with finite support S 0 generating G 0 as a group. For a character χ 0 of G 0 we set E(χ 0 ) := s∈S 0 µ 0,s χ 0 (s).

The map χ 0 → E(χ 0 ) is the Laplace transform of µ 0 . We denote by λ(µ 0 ) := inf χ 0 E(χ 0 ) (5.10) the minimum of this Laplace transform. Here is an example where it is easy to compute λ(µ 0 ).

Remark 5.7. If S 0 is included in a properly convex set, one has λ(µ 0 ) = µ 0 (0). More generally, if S 0 is included in a half-space bounded by a hyperplane H 0 , one has λ(µ 0 ) = λ(µ 0 | H 0 ).

Lemma 5.8. There exists a µ 0 -harmonic character if and only if λ(µ 0 ) ≤ 1.

We can choose it so that µ 0 := χ 0 µ 0 is not centered if and only if λ(µ 0 ) < 1.

Proof. Lemma 5.8 follows from the following three remarks: -A character χ 0 is µ-harmonic if and only if E(χ 0 ) = 1.

-The group of characters is isomorphic to R d , hence it is connected.

-Since S 0 contains non-zero elements one has sup χ 0 E(χ 0 ) = ∞. 

Lemma 3 . 1 .

 31 Let h 0 be a positive µ 0 -harmonic function on G such that the function h := sup n≥1 P n µ h 0 is finite. (i) Then one has h = lim n→∞ P n µ h 0 and h is a positive µ-harmonic function. (ii) One can recover h 0 from h as h 0 = lim n→∞

Lemma 3 . 2 .

 32 Let h be a positive µ-harmonic function on G such that the function h 0 := inf n≥1 P n µ 0 h is non-zero. (i) Then one has h 0 = lim n→∞ P n µ 0 h and h 0 is a positive µ 0 -harmonic function. (ii) One has the inequality h ≥ lim n→∞ P n µ h 0 . (iii) Moreover when h is µ-extremal, one has the equality h = lim n→∞ P n µ h 0 and h 0 is µ 0 -extremal too.

Lemma 3 . 5 .

 35 Let µ 0 < µ 0 < µ be positive measures on G with finite support. Let h 0 be a positive µ 0 -harmonic function on G. The following are equivalent: (i) the function h := lim n→∞ P n µ h 0 is finite. (ii) the functions h 0 := lim n→∞ P n µ 0 h 0 and h := lim n→∞ P n µ h 0 are finite. In this case, the two induced µ harmonic functions are equal h = h . Proof of Lemma 3.5. (i) =⇒ (ii) Since h 0 ≤ h, one has the inequalities P

. 8 ) 10 Lemma 4 . 10 .n 1 µ 1 P n 2 µ 2 h = 0 . ( 4 . 9 )

 81041049 This contradicts the following Lemma 4.With the same notation. In particular µ = µ 1 + µ 2 with S 1 and S 2 disjoint, and h is a non-induced µ-harmonic function on G. a) One has lim n→∞ P n µ 1 h = 0 and lim n→∞ P n µ 2 h = 0. b) One also has n 1 +n 2 =n P Proof of Lemma 4.10. a) Let us prove it for µ 1 .

n→∞ P n µ 1 h

 1 is non-zero. By Lemma 3.2, this function h is µ 1 -extremal and satisfies lim n→∞ P n µ h = h. (4.10)

m

  in Case 2.b, no harmonic function is induced of a character of an abelian subgroup G 0 .In Case 2.a, exactly two harmonic functions are induced of a character of G 0 = G µ 0 , and no other. In Case 3.a, only one harmonic function is induced of a character of G 0 = G µ 0 , and one or infinitely many are induced of a character of G 1 = G µ 1 .In case 3.b, infinitely many harmonic functions are induced of a character of G 0 = G µ 0 and one or infinitely many are induced of a character of G 1 = G µ 1 .

  and s i ∈ S 1 , s j ∈ S 2 }|. ≤ n w for all w in B w 1 ,w 2 A word w = s 1 . . . s n in B w 1 ,w 2 is determined by the increasing sequence 1 ≤ i 1 < i 2 < . . . < i n 2 ≤ n of places i where s i belongs to S 2 , and m w is given by

	Condition (4.2) implies that
	m w

Let G be a finitely generated group, Z be the center of G and µ be a finite positive measure on G. Lemma 3.9. Assume that an element z of Z belongs to the semigroup G + µ . Then, for every extremal positive µ-harmonic function h on G there exists a constant q > 0 such that h z = qh.

We recall that h z is the function g → h(gz).

Proof of Lemma 3.9. This is a slight generalization of the Choquet-Deny Theorem. Let n ≥ 1 be an integer such that z is in the support of µ * n . The equality h = P n µ h is of the form h = αh z + h where α > 0 and h is a positive function. Since the function h z is also µ-harmonic, the extremality of h implies that h z is proportional to h.

Z-Invariance of harmonic functions

In all this chapter we keep the following notation : G = H 3 (Z) is the Heisenberg group, Z is the center of G, µ is a positive measure with finite support S such that G µ = G, h is a positive µ-harmonic function on G. In this chapter we will mainly focus on non-induced µ-harmonic functions, and we will prove that they are Z-invariant, see Definition 3.3. Note that, in the Heisenberg group, the subgroups of infinite index are exactly the abelian subgroup. Therefore h is non-induced, if and only if lim n→∞ P n µ 0 h = 0, for all restriction µ 0 of µ to an abelian subset S 0 of S.

Semiinvariance of harmonic functions

In this section we prove that h is semiinvariant by one central element.

Proposition 4.1. Keep notation (4.1) and assume that h is µ-extremal and non-induced. Then there exist z = 0 in Z and q > 0 such that h z = qh.

Proof of Proposition 4.1. By Lemma 3.9, we can assume S ∩ Z = ∅.

For n ≥ 2, we introduce a symmetric relation on S n given by R n : = {(w, w ) ∈ S n × S n | w = w 0 ss w 0 and w = w 0 s sw 0 where w 0 ∈ S i , w 0 ∈ S n-i-2 , s ∈ S, s ∈ S with ss = s s}.

This means that w and w are obtained from one another by switching two consecutive non-commuting letters. For a word w ∈ S n we let k w = the number of pairs of consecutive non-commuting letters in w.

Since G is the Heisenberg group H 3 (Z) and since S ∩ Z = ∅, this number k w is the same as the one occuring in Lemma 3.8. Indeed, there exists a unique partition S = S 0 ∪ . . . ∪ S of G such that two elements s, s of S commute if and only if they belong to the same S i . To go on the proof of Proposition 4.1, we will need the following two lemmas.

We denote by p 0 := max Proof of Lemma 4.3. Replacing h by its translate h g , we can assume that g = 0. We want to prove that the following difference is non-positive :

Using notations (2.2), we compute D as

z-invariance and Z-invariance

We first notice that in order to prove the Z-invariance of a positive µ-harmonic function h on the Heisenberg group G, it is enough to check that it is invariant under one non trivial element of Z. 

Proof of Lemma 4.5. We write z = z p 0 . We can assume that p is the smallest positive integer for which h z = h. We can also assume that h is extremal in the convex cone of z-invariant positive µ-harmonic functions. Therefore the functions h z i 0 , for i = 1, . . . , p, are non-proportional functions which are extremal in this cone, and the function f

0 is µ-harmonic, Z-invariant and it is extremal among the µ-harmonic functions on G/Z. Since G/Z is abelian, by the Choquet-Deny Theorem, this function f is a µ-harmonic character of G. Therefore, by Lemma 2.1, this function f is µ-extremal and one has p = 1. This means that h is Z-invariant.

Z-invariance when V + µ contains a line

In this section, we finish the proof of our main Theorem 1.1 when the cone V + µ is the plane or a half-plane, see (2.5).

Proposition 4.6. Keep notation (4.1), assume that V + µ contains a line and that the µ-harmonic function h is not induced. Then h is Z-invariant.

Proof of Proposition 4.6. We can assume that h is µ-extremal and apply Proposition 4.1. Then our claim follows from the following slightly stronger Proposition 4.7. This stronger version will also be useful in Chapter 5.

Proposition 4.7. Keep notation (4.1) and assume that the cone V + µ contains a line. Assume also that there exists z = 0 in Z and q > 0 such that h z = qh. Then the function h is Z-invariant.

Proof of Proposition 4.7. According to Lemma 4.5, it is enough to prove that q = 1. Replacing h by a multiple of a suitable translate, we can assume that We can assume that h is µ-extremal, so that, by Proposition 4.1, there exist z = z p 0 = 0 in Z and q > 0 such that h z = qh. According to Lemma 4.5, it is enough to prove that q = 1.

a. We can assume z = z 0 . Because we can replace h by the function f := q -1 0 h z 0 + • • • + q -p 0 h z p 0 where q 0 > 0 is chosen so that q p 0 = q. This function f is µ-harmonic and Z-semiinvariant. It might not be µ-extremal, but this property will not be used in the argument below.

b. We can assume S ∩ Z = ∅. Indeed, by a, if µ Z is the restriction of µ to the center, one has P µ Z h = λh for a constant 0 ≤ λ < 1. But then the function h is harmonic for the measure (1 -λ) -1 (µ -µ Z ). It might not be extremal for this measure, but, as we just said, this is not important.

c. We can assume h(0) = 1. Because we can replace h by a multiple of a suitable translate.

d. We can assume q < 1. Because we can replace the generator z 0 by its inverse. We are now looking for a contradiction.

Second step

We now can enter the key argument of the proof. Since the cone V + µ is properly convex and since S ∩ Z = ∅, we can find a partition of the support of µ in two non-empty subsets

We will use the decomposition µ = µ 1 +µ 2 where µ 1 := 1 S 1 µ and µ 2 := 1 S 2 µ.

The proof again starts with the equality (2.2) which tells us that, for all n ≥ 1,

We will cut this sum into pieces parametrized by pairs (w By Lemma 3.5, this µ 1 -harmonic function h is not induced and, since S 1 is smaller than S, the function h is a µ 1 -harmonic character of the group G µ 1 . Since this group G µ 1 has finite index in the group G µ , Lemma 3.6.ii tells us that the function lim n→∞ P n µ h is not finite. This contradicts (4.10). b) The argument is the same as for Lemma 3.8, but is simpler. We fix g in G and ε 0 > 0. According to point a), there exists N 1 ≥ 1 such that P N 1 µ 1 h(g) ≤ ε 0 . Let I n be the left-hand side of (4.9). We decompose I n (g) as the sum of two terms

where I n (g) involves the terms with n 1 ≥ N 1 and I n (g) involves the terms with n 1 < N 1 Bounding I n . One computes, using the µ-harmonicity of h,

Bounding I n . One decomposes I n (g) as a finite sum

over the finitely many words w 1 of length n 1 < N 1 . By point a), all terms of the sum go to 0 so that one has lim n→∞ I n (g) = 0.

Since ε 0 can be chosen arbitrarily small, one deduces lim

This ends the proof of Proposition 4.8.

Existence of induced harmonic functions

In this chapter we keep the following notations :

(5.1)

We will give in this chapter a necessary and sufficient condition for the induced µ-harmonic function h G 0 ,χ 0 to be finite.

In Lemma 3.6.iv, we have already found that the following condition is necessary :

We will assume that it is satisfied. We distinguish two cases according to the rank of the abelian group G 0 .

5.1 Induction of characters when rank G 0 = 1

In this section we give the necessary and sufficient condition for the induced function h G 0 ,χ 0 to be finite when rank G 0 = 1 or equivalently when G 0 ∩ Z = {0}. Proposition 5.1. Keep notation (5.1). Assume (5.2) and rank G 0 = 1. Then the induced harmonic function h := h G 0 ,χ 0 is finite if and only if the probability measure µ 0 := χ 0 µ 0 on G 0 is not centered. Remark 5.2. -The measure µ 0 = χ 0 µ 0 is a probability measure because χ 0 is a µ 0 -harmonic character.

-The condition µ 0 centered means, as usual, that s∈S 0 µ 0,s s = 0 in V , where s is the image of s in V .

-This condition µ 0 non-centered is always satisfied when V + µ contains no line. Proof of Proposition 5.1. We can assume that

Let τ : G 0 → Z be the morphism given by τ (g 0 ) = x for g 0 = (x, 0, 0).

First case When µ 0 is centered. We fix s 1 in S 1 and we compute, as in Lemma 3.6, for n ≥ 1,

The words w that contribute to this sum must satisfy s 1 ẇs -1 1 ẇ-1 ∈ G 0 , i.e. τ ( ẇ) = 0. Hence letting n go to ∞, one gets

If we write w = s 1 . . . s n and x i := τ (s i ), and if we think of these letters s i as independent random variables with same law µ 0 , this inequality can be rewritten as

But since the random variables x i ∈ Z are centered, the expected number of passage at 0 of the walk x 1 + • • • + x k is infinite, and the function h is not finite.

Second case When µ 0 is not centered. The computation is similar but more involved since we want to prove finiteness of h(g) at every point g in G.

We want a uniform upperbound for

The only words w that contribute to this sum are those for which ẇg is in G 0 .

By assumption (5.2), if we extract from w the maximal subword σ = s 1 . . . s whose letters are in S 1 , the length of σ is uniformly bounded by an integer 0 . Therefore we can split the above sum into a finite sum

where

We want to bound the limit

For i ≤ , let σ i := s 1 • • • s i ∈ G and b i ≥ 1 be the integer given by

so that one has

Writing σ g = g 0 z c 0 with g 0 in G 0 and c in Z one gets

If we think of all the letters occuring in one of the words w 1 , . . . , w as independent random variables with same law µ 0 , this equality can be written as

where S i,k i := τ ( ẇi ). Then the finiteness of Q ∞ (g) follows from the following Lemma 5.3. Lemma 5.3. Let (X i,k ) i≤ , k≥1 , be independent real variables with same law. Assume this law has finite support and is not centered. Let (b i ) i≤ be positive numbers and c be a real number. Set S i,k := X i,1 + • • • + X i,k . Then one has

(5.7)

Proof of Lemma 5.3. We adapt the classical proof of the large deviation inequality. We set X = X 1,1 . Assume for instance that E(X) > 0. One can choose ε > 0 so that all the expectations

are smaller than 1. Then one computes

therefore, summing all these inequalities, we find the following upperbound for the left-hand side L of (5.7)

This ends the proof of the lemma and of Proposition 5.1.

Induction of characters when rank G 0 = 2

In this section we give the necessary and sufficient condition for the induced function h G 0 ,χ 0 to be finite when rank G 0 = 2 or equivalently when G 0 ∩ Z = {0}.

We split the statement into two cases depending on the shape of the convex cone V + µ . Proposition 5.4. Keep notation (5.1). Assume (5.2) and rank G 0 = 2. Assume moreover that the cone V + µ contains a line. Then the induced harmonic function h := h G 0 ,χ 0 is not finite.

Proof of Proposition 5.4. This follows from Proposition 4.7. Indeed, let z be a non-zero element of G 0 ∩ Z and q := χ 0 (z). Assume by contradiction that the function h is finite. By Lemma 3.1, this function h is µ-extremal, By construction this function h is semiinvariant : one has h z = qh. Hence by Proposition 4.7, one has q = 1 and by Lemma 4.5 the µ-harmonic function h is Z-invariant. Therefore, by the Choquet-Deny Theorem, this function h is a µ-harmonic character of G. But by Corollary 3.4, a µ-harmonic character is never induced. Contradiction. Proposition 5.5. Keep notation (5.1). Assume (5.2) and rank G 0 = 2. Assume moreover that the cone V + µ contains no line. Then the induced harmonic function h := h G 0 ,χ 0 is finite if and only if there exist s 0 in S 0 and s 1 in S 1 such that χ 0 (s 0 s 1 s -1 0 s -1 1 ) > 1 . (5.8)

Remark 5.6. Since Assumption (5.2) is satisfied and since the cone V + µ is properly convex, this condition (5.8) is equivalent to for all s 0 in S 0 Z and s 1 in S 1 one has χ 0 (s 0 s 1 s -1 0 s -1 1 ) > 1 .

(5.9)

Proof of Proposition 5.5. The calculation is the same as for Proposition 5.1, but the interpretation is different. We can assume that

Let τ : G 0 → Z be the morphism given by τ (g 0 ) = x for g 0 = (x, 0, z).

Proof of =⇒ We already know that the half-line V + µ 0 is extremal in the convex cone V + µ . Assume by contraposition, that for all s 0 in S 0 and s 1 in S 1 one has χ 0 (s 0 s 1 s -1 0 s -1 1 ) ≤ 1. We fix s 1 in S 1 and we compute, for n ≥ 1, as in (5.3),

Proof of ⇐= As for Proposition 5.1, one can find 0 and split P n µ χ 0 (g) as a sum parametrized by words σ = s 1 . . . s with letters in S 1 and ≤ 0 :

, where, as in (5.4),

As in (5.5) , we want to bound the limit

The only words w that contribute to this sum are those for which ẇg is in G 0 . For i ≤ , let σ i := s 1 • • • s i ∈ G and b i ≥ 1 be the integer given by

for all g 0 in G 0 .

Using Equality (5.6), one gets

where, for all i ≤ ,

We want to prove that the sums F i are finite. We will denote by q 0 > 0 the real number such that for all i in Z such that z i 0 is in G 0 , one has χ 0 (z i 0 ) = q i 0 . By assumption, one has q 0 > 1. One computes then

, Corollary 5.9. a) If µ 0 (S 0 ) ≤ 1, µ 0 -harmonic characters exist. b) If µ 0 (S 0 ) < 1, we can choose it so that µ 0 := χ 0 µ 0 is not centered. c) If µ 0 (S 0 ) > 1 and µ 0 is centered, µ 0 -harmonic characters do not exist.

Proof. This follows from Lemma 5.8 and the inequality λ(µ 0 ) ≤ µ 0 (G 0 ).

Conclusion

We sum up in the following theorem the main results we have obtained in this paper.

Let G = H 3 (Z) be the Heisenberg group, Z be the center of G, µ be a positive measure on G with finite support S such that G µ = G. We use notation of Section 2.3.

Theorem 5.10. The extremal positive µ-harmonic functions on G are proportional either to a character of G or to a translate of a function h induced of a character on an abelian subgroup. Here is the list when µ(G) = 1. 1) When V + µ is the plane. There is no induced µ-harmonic function. 2) When V + µ is a half-plane. Let V 0 be the boundary line of V + µ and G 0 ⊂ G be the subgroup generated by the elements of S above V 0 and µ 0 := µ| G 0 . Then h is equal to a function h G 0 ,χ 0 induced of a µ 0 -harmonic character χ 0 of G 0 .

a) If G 0 ∩ Z = {0} there are exactly two such

µ is properly convex. Let V + i , i = 0, 1, be the two extremal rays of V + µ , let G i ⊂ G, be the two subgroups generated by the elements of S above V + i and µ

Remark 5.11. In the nine figures, we have drawn a rough approximation of the shape of the semigroup G + µ ⊂ G and its subsemigroups G + µ 0 and G + µ 1 , in order to illustrate the different cases that occur in Theorem 5.10. In these pictures the center is the vertical axis.

Proof of Theorem 5.10. The first claim follows from Proposition 4.6 and Proposition 4.8. Moreover, Case 1) and the first claims of Cases 2) and 3) follow from Lemma 3.6.iv.

-Case 2.a) Since rank G 0 = 1, by Proposition 5.1, χ 0 must be a µ 0 -harmonic character of G 0 with χ 0 µ 0 non centered. Since µ 0 (G 0 ) < 1 and since µ 0 is not supported by a half-line, there are exactly two such χ 0 . -Case 2.b) Since rank G 0 = 2, this follows from Proposition 5.4. -Case 3.a) Since rank G i = 1, by Proposition 5.1, χ i must be a µ i -harmonic character of G i with χ i µ i non centered. Since µ i (G i ) < 1 and since µ i is supported by a half-line, there is exactly one such χ i . -Case 3.b) Since rank G i = 2, by Proposition 5.5, χ i must be a µ i -harmonic character of G i satisfying (5.8). Since µ(G i ) < 1, and since µ i is supported by a half-space delimited by Z, there are uncountably many such χ i .

Remark 5.12. -When µ is not assumed to be a probability measure, the formulation of Theorem 5.10 has to be modified. Indeed, if µ({0}) ≥ 1, positive µ-harmonic functions cannot exist. More precisely, each of the three cases -Here is the definition, motivated by Condition (5.8), of the constants λ(µ Z ) i . For instance, for i = 0, we choose s j ∈ supp(µ j ) Z, j = 0 or 1, and set λ(µ Z ) 0 := inf{ s∈Z µ s χ Z (s) | χ Z character of Z, χ Z (s 0 s 1 s -1 0 s -1 1 ) > 1} . We now can deduce from Theorem 5.10 the corollaries in the introduction :

Proof of Corollary 1.3. The support of h G 0 ,χ 0 is the semigroup generated by G 0 and S -1 . In the cases where a µ-harmonic function h G 0 ,χ 0 induced of a character is finite, by Lemma 3.6.iv, one has V + µ 1 ∩ V µ 0 = {0}, and this semigroup is never equal to G. Condition (i) means that there exist q > 0 and a non-zero element z in Z such that h z = qh.

Proof of Corollary 5.13. Both conditions (i), (ii) are true in Cases 1), 2.b) and 3.b). Both conditions are not true in Cases 2.a) and 3.a).