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We study the ground state phase diagrams of two-photon Dicke, the one-dimensional Jaynes-
Cummings-Hubbard (JCH), and Rabi-Hubbard (RH) models using mean field, perturbation, quan-
tum Monte Carlo (QMC), and density matrix renormalization group (DMRG) methods. We first
compare mean field predictions for the phase diagram of the Dicke model with exact QMC results
and find excellent agreement. The phase diagram of the JCH model is then shown to exhibit a single
Mott insulator lobe with two excitons per site, a superfluid (SF, superradiant) phase and a large
region of instability where the Hamiltonian becomes unbounded. Unlike the one-photon model,
there are no higher Mott lobes. Also unlike the one-photon case, the SF phases above and below
the Mott are surprisingly different: Below the Mott, the SF is that of photon pairs as opposed to
above the Mott where it is SF of simple photons. The mean field phase diagram of the RH model
predicts a transition from a normal to a superradiant phase but none is found with QMC.

PACS numbers: 05.30.Jp 05.30.Rt 42.50.Pq

I. INTRODUCTION

Continued progress in controlling and tuning interac-
tions between photons and individual atoms has made
possible the realization of elementary quantum electro-
dynamics building blocks[1] using two-level atoms in
cavities[2] or Josephson junctions on solid state chips[3–
7] (circuit QED). Generally speaking, such couplings of
photons to two-level systems are well described by the
Rabi model[8, 9]. In what is referred to as the strong
coupling limit, g/ω . 0.1, (see below) one can apply the
random wave approximation (RWA) and ignore “counter
rotating” (CR) terms which do not conserve the num-
ber of excitons (the number of photons plus the number
of excited atoms). When these terms are ignored, we
obtain the Jaynes-Cummings model[10] which, due its
U(1) symmetry, conserves the number of excitons and
can be solved exactly for a single cavity. An ensemble
of such cavities can be connected (here we consider a
one-dimensional chain) by tuning the tunneling rate of
the photon modes between near neighbor cavities result-
ing in a lattice model, the Jaynes-Cummings-Hubbard
model, which consists of itinerant bosons (photons) hop-
ping between near neighbor sites and interacting with
localized two-level atoms (“spins” or qubits). The prop-
erties of this model were shown to be very similar to those
of the one-dimensional Bose-Hubbard model (BHM)[12]
exhibiting a superfluid phase (of excitons) and incom-
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pressible Mott insulator (MI) lobes[13–20]. The MI
is essentially a product single site states composed of
a superposition of photons and excited atoms[19] and
exhibits behavior similar to photon blockade[11] where
there is a finite energy gap opposing the addition of
a photon. Long range frustrated hopping[21] and dy-
namic properties of this model have also elicited much
interest[22–26]. When the coupling becomes of the order
of the photon frequency, g/ω, the “ultra-strong coupling”
regime which has been achieved experimentally[27–31],
the RWA is no longer valid and the counter rotating
terms come into play reducing the symmetry from U(1)
to Z2. This has several consequences: (a) CR terms
cause the exciton number not to be conserved thus ex-
cluding the possibility of any Mott phases, (b) the sys-
tem is now in the universality class of the Ising model
with two phases, a disordered and an ordered (coherent)
phase, (c) due to the discrete nature of the symmetry,
it can break spontaneously in one dimension. Conse-
quently, the ordered coherent phase is a photon Bose-
Einstein condensate (BEC) and the transition between
this phase and the disordered phase exhibits Ising critical
exponents[32–35]. This transition resembles the incoher-
ent/coherent (normal/superradiant) phase transition in
the Dicke model[36, 37].

Multi-photon processes have also attracted scrutiny
as more experimental systems are being realized where
such physics enters into play. For example, the two-
photon Rabi model has been used as an effective model
to describe second order processes in Rydberg atoms in
cavities[38] and quantum dots[39, 40], and mechanisms
have been proposed to realize it in circuit QED[41]. Un-
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like the one-photon case, the two-photon Rabi model un-
dergoes spectral collapse, where the Hamiltonian is no
longer bounded from below, when the coupling exceeds
a certain value[42–49]. As in the one-photon case, in
the strong coupling limit where the CR terms can be
ignored, the Hamiltonian has U(1) symmetry. In the
ultra strong coupling limit, where the CR terms must
be restored, the symmetry is reduced to Z2n for the n-
photon case, i.e. Z4 in the two-photon case. The ground
state of the many-body two-photon model was studied
in the context of the Dicke model[50] using mean field
methods[51]. A quantum phase transition between a nor-
mal (disordered) and superradiant phase was predicted.
In this model, however, the term superradiant is used to
indicate a macroscopic change in the average number of
photons but which remains relatively small. This is to be
contrasted with the one-photon case where there is a very
large number of photons in the superradiant phase and
they form a BEC[32–35]. The spectral collapse region
was also found.

In this paper we will first use exact QMC simulations
to determine the phase diagram of the two-photon Dicke
model and compare with mean field results[51]. This also
serves to verify our QMC method. We then use our QMC
algorithm, and also DMRG calculations, to study the
phase diagram of another many-body system, namely the
one-dimensional two-photon Jaynes-Cummings-Hubbard
(JCH) model. The numerical results are compared with
perturbation and mean field calculations. Finally, we use
our numerical methods to study the full Rabi-Hubbard
model.

Our results below show that the mean field phase dia-
gram of the Dicke model is in agreement with our exact
QMC simulations. In addition, we find that, surprisingly,
the Jaynes-Cummings-Hubbard model exhibits only one
Mott insulating lobe before the systems becomes unsta-
ble. Furthermore, doping above the MI yields a photon
superfluid phase, while doping below the MI yields an un-
expected photon pair superfluid phase. QMC simulations
suggest that the Rabi-Hubbard model does not exhibit a
phase transition from a normal to a superradiant phase.

The paper is organized as follows. In section II we
describe the models and the physical quantities we will
study. In section III we review the mean field calculation
for the Dicke model and discuss our exact QMC results.
In section IV we show our perturbation and exact QMC
results for the JCH model followed by section V where
we discuss the RH model. We present some conclusions
in section VI followed by appendices A, B, and C where
we show details of some of our calculations.

II. MODELS

We will first study the two-photon Dicke model where
N two-level systems (qubits) couple to a single photon

mode and which is governed by the Hamiltonian

HD = ωâ†â +
ωq

2

N
∑

j=1

σz
j +

g

N

N
∑

j=1

σx
j (â

2 + â†2)

= ωâ†â +
ωq

2

N
∑

j=1

σz
j

+
g

N

N
∑

j=1

(σ+
j + σ−

j )(â
2 + â†2). (1)

This model was examined with mean field in Ref. 51.
Here, ω is the photon frequency, ωq the qubit energy
spacing, g the coupling constant, â (â†) is the photon
destruction (creation) operator, σz

i and σx
j = σ+

j + σ−
j

are Pauli matrices acting on the jth qubit, σ+
j (σ−

j ) is

the corresponding raising (lowering) operator. A related
model is the Rabi-Hubbard (RH) model,

HRH = −J
N
∑

i=1

(

â†i âi+1 + h.c.
)

+

N
∑

i=1

(

ωâ†i âi + ωqσ
+
i σ

−
i

)

+g

N
∑

i=1

(

σ+
i + σ−

i

)

(

â2i + â†2i

)

, (2)

where now N is the number of sites (or cavities) and âi
is the photon mode in the ith cavity. Note that photon
modes can tunnel between sites. Ignoring in Eq. (2) the

CR terms, (σ+
i â

†2
i +σ−

i â
2
i ), yields the Jaynes-Cummings-

Hubbard (JCH) model in which the number of excitons
is conserved.
In both models, Eq. (1) and Eq. (2), when the CR

terms are dropped, the system is invariant under the gen-
eralized rotation operator,

R(θ) = exp
(

iθâ†j âj + i2θσ+
j σ

−
j

)

, (3)

withR(θ)†âjR(θ) = eiθâj , andR(θ)†σ−
j R(θ) = ei2θσ−

j

for any θ, thus exhibiting U(1) symmetry. However,
the action of R(θ) on the CR terms introduces a phase
exp(i4θ) thus reducing the symmetry to Z4, in other
words, the system is left invariant by the rotation only for
θ = n2π/4, n = 0, 1, 2, 3. Therefore, when the CR terms
are ignored, the U(1) symmetry results in the conserva-
tion of the number of excitons, Nexc = Nphoton + 2N+

where N+ is the number of qubits in the excited state.
De-exciting a qubit generates two photons and vice versa.
On the other hand, in the presence of the CR terms, Nexc

is not conserved, and quantum phase transitions would
be expected to reflect the discrete Z4 symmetry. Note
that this discrete symmetry can break spontaneously for
a one-dimensional quantum system in its ground state.
To characterize the various possible phases, we calcu-

late several Green functions,

Gα,β(r) ≡
1

2N

∑

i

〈αiβi+r + h.c.〉, (4)
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where α and β denote creation and annihilation operators

of the photons (â†i and âi ) or the qubits (σ+
j and σ−

j ).
For example, the photon Green function at equal time is
given by,

Ga†,a (r) =
1

2N

∑

i

〈â†i âi+r + â†i+râi 〉. (5)

The qubit Green function is,

Gσ−,σ+(r) =
1

2N

∑

i

〈σ−
i σ

+
i+r + σ−

i+rσ
+
i 〉, (6)

and the following two functions will be particularly use-
ful:

Gσ+,a(r) =
1

2N

∑

i

〈âiσ+
i+r + σ−

i+râ
†
i 〉, (7)

and

Gσ+,a2(r) =
1

2N

∑

i

〈â2iσ+
i+r + σ−

i+râ
†2
i 〉. (8)

Power law decay of one of these Green functions would in-
dicate quasi-long range order for the corresponding quan-
tity. We also measure the average number of excitons,

Nexc =
∑

i

〈â†i âi + 2σ+
i σ

−
i 〉, (9)

and the superfluid density,

ρs =
〈W 2〉

2tβLd−2
, (10)

where W is the winding number of an exciton and d the
dimensionality. To study the phase diagrams of these
models, we use several methods: Mean field, perturba-
tion expansion, QMC and DMRG.

III. THE DICKE MODEL

First, we will review briefly the mean field results of
Ref. 51 and then discuss our QMC results. First the total
angular momentum operators are defined, Ĵz ≡∑i σ

z
i /2

and Ĵ± ≡ ∑

i σ
±
i . Then using the Holstein-Primakoff

(HP) transformation, they define the bosonic operators:

Ĵ+ = b̂†
√

N − b̂†b̂ , Ĵ− =

√

N − b̂†b̂ b̂ , Ĵz = b̂†b̂ −N
2
,

(11)

where [b̂, b̂†] = 1. Then the bosonic operators are re-

placed by the average value in the ground state, b̂ →
b̄ = 〈GS|b̂|GS〉. Making the substitutions in the Hamil-
tonian, Eq. (1), yields,

HMF
D = ωâ†â+ gb̄(â

2 + â†2) + ωq|b̄|2 −
ωqN

2
, (12)

with

gb̄ =
g

N
(b̄+ b̄∗)

√

N − |b̄|2. (13)

The Hamiltonian is now a quadratic in the photon oper-
ators and can be diagonalized exactly giving the ground
state energy, EG, which is to be minimized with respect
to b̄. This determines the value of the order parameter,
b̄ as a function of the other parameters ω, ωq and g. It

was found that for g < gc =
√

ωωqN/4, EG is minimum

for b̄ = b̄∗ = 0. For g > gc, the ground state is twofold
degenerate and the order parameter, acquires a nonzero
value, b̄ = b̄∗:

b̄ = ±
√

N

2

(

1−
√

1− µ

4µ2λ2 − µ

)1/2

(14)

λ =
ω

2ωqN
≥ 0 (15)

µ =
4g2

ω2
. (16)

Therefore, the system exhibits two phases, a normal
phase (b̄ = 0) and a superradiant phase (b̄ 6= 0) separated

by the transition line gc =
√

ωωqN/4. Furthermore, for
g > ω/2, the argument of the square root in Eq. (14)
becomes negative indicating that the Hamiltonian is un-
bounded. These results map out the phase diagram as
shown in Ref. 51.
It is interesting to examine the accuracy of mean

field calculations in various situations. We therefore
performed QMC simulations using the stochastic Green
function (SGF) method[52, 53], both to verify our QMC
simulations and obtain the numerically exact ground
state phase diagram. To map out the phase diagram, we
choose ω = 1 to set the energy scale, and we calculate the
order parameter for many values of g at fixed Nωq. Mak-
ing several such cuts for different Nωq yields the phase
diagram in the (Nωq, g) plane. In the mean field calcu-
lation, the order parameter was b̄ = 〈GS|b|GS〉; in the
QMC simulations, we take the order parameter to be
〈Nq〉, the average number of excited qubits which cor-
responds to |b̄|2 in the mean field case. Figure 1 shows
such a cut in g for a 16-particle system at Nωq = 0.1 and
several values of the inverse temperature, β. It is seen
that the finite temperature effects are very pronounced
for small values of the coupling g, and that to detect the
transition properly, the temperature must be very low,
and gets lower with increasing N .
Next, we study the finite size effects on the behavior

of the order parameter. This is presented in Fig. 2 where
the top panel shows the dependence of 〈Nq〉/N on N and
g. The values of β are chosen large enough so that the
system is in its ground state. It is seen that there is a
change in curvature as g increases, and that the point
of maximum slope shifts to smaller values of g as N in-
creases. On the other hand, the lower panel shows that
the average photon density does not exhibit any sudden
changes; it increases mildly with g. This was remarked
with the mean field results in Ref. 51.
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0.1 0.15 0.2 0.25
g

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

<
N

q>
/N

β=300
β=400
β=600
β=750
β=900
β=1050

N=16, Nωq=0.1, ω=1

FIG. 1. (Color online) The order parameter, 〈Nq〉/N , ob-
tained with QMC, versus the coupling, g. We see that for
small g, β must be very large for the system to probe the
ground state. The error bars are smaller than the symbol
size.

0

0.05

0.1

0.15

0.2

0.25

<
N

q>
/N

N=8, β=800
N=12, β=700
N=16, β=1050
N=20, β=1200

0.15 0.2
g

0.000

0.002

0.004

<
N

ph
>

/N

ω=1.0, Nωq=0.1

FIG. 2. (Color online) Top: The order parameter, 〈Nq〉/N ,
versus g for several system sizes. The β values were chose
such that the system is in the ground state. The solid curves
going through the points are given by Padé approximants (see
text). Bottom: The average photon density versus g.

In order to determine the transition point for each sys-
tem size, we fit Padé approximants to the order param-
eter as a function of g for each system size. The approx-
imants we use are of the form,

P (x) =
a+ bx+ cx2 + dx3

1 + ex+ fx2 + hx3
; (17)

the maximum of the derivative yields the transition point
for that system size. We then extrapolate the value of
the critical g to the thermodynamic limit. To determine
the boundary between the superradiant phase and the

0 0.2 0.4 0.6 0.8 1
Nωq

0

0.1

0.2

0.3

0.4

0.5

g

MFT
QMC

Normal phase

Superradiant

Unbounded

FIG. 3. (Color online) Phase diagram of the Dicke model
given by mean field and SGF QMC simulations. The QMC
results are extrapolated to the thermodynamic limit.

unstable region, we calculate 〈Nph〉/N as a function of g
for a fixed Nωq. We find that as g → 1/2, the photon
density increases very rapidly and becomes unmanage-
able at g = 1/2 indicating the instability. This way we
map the phase diagram shown in Fig. 3 and which agrees
very well with the MF solution. This excellent agreement
can be understood as being due to the fact that the pho-
ton mode is coupled to all particles and introduces an
effective long range interaction.

IV. THE JAYNES-CUMMINGS-HUBBARD

MODEL

We now consider the JCH model given by Eq. (2) but
ignoring the CR terms,

HJC = −J
N
∑

i=1

(

â†i âi+1 + h.c.
)

+

N
∑

i=1

(

ωâ†i âi + ωqσ
+
i σ

−
i

)

+g

N
∑

i=1

(

σ+
i â

2
i + σ−

i â
†2
i

)

. (18)

In what follows, we set the energy scale by fixing g = 1.

A. Perturbation

We start in the J ≪ 1 limit where perturbation in J
can be expected to give accurate results.
In the J = 0 limit, the model can be solved exactly

since the eigenstates are dressed excitons labeled by the
exciton number, n, and upper or lower branch, ±, which
can be written as a superposition of a Fock state with n
photons plus atomic ground state, |n, g〉, and a Fock state
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with n− 2 photons plus atomic excited state, |n− 2, e〉,

|n,+〉 = sin θn|n, g〉+ cos θn|n− 2, e〉
|n,−〉 = cos θn|n, g〉 − sin θn|n− 2, e〉 (19)

with the angle tan θn = 2g
√

n(n− 1)/(∆ + Rn),

Rn(∆) =
√

4g2n(n− 1) + ∆2, and the detuning param-
eter ∆ = ωq − 2ω.

The corresponding eigenvalues are

En± = nω +∆/2±Rn(∆)/2. (20)

The zero-exciton state |0−〉 is a special case with E0− =
0. The energy difference Rn(∆) defines the Rabi split-
ting of the upper and the lower branches. By comparing
the energy of neighboring exciton number n = 2 , we ob-
tain the border ωωq < 1 between vacuum and the n = 2
Mott state. Leaving the n = 2 Mott state or the vac-
uum at ωq > 1 by increasing exciton number, renders
the Hamiltonian unbounded from below and makes the
system unstable at ω = 1. The J = 0 phase diagram is
shown in Fig. 4.

0 0.5 1 1.5 2 2.5 3
ω

0

0.5

1

1.5

2

ω
q

ωωq=1

triple point, ω =ωq ≈1

n=0

n=2 Mott

Unbounded

FIG. 4. (Color online) Phase diagram of the two-photon JC
Hubbard model in the J = 0 limit. The horizontal dashed
line at ωq = 0.4 will be discussed below.

At small nonzero tunneling, J ≪ 1, we ignore the up-
per exciton branch and perform a perturbation calcula-
tion to second order in J to obtain the phase diagram
of the JCH model. The ground state energy of the Mott
phase, EM , that of the state with one additional exciton,
Ed, and that of the state with two additional excitons
E2d are calculated. We find that the energy at the line
determined by EM = Ed is smaller than E2d at the same
ω. This tells us that the upper Mott boundary is de-
termined by doping with a single exciton (adding one

photon). The boundary is given by,

2ω + (R2 −R3)− 4Jt
(3)2
−− + 8J2

[

t
(2)2
−−

(

−
∑

σ=±

2t
(3)2
σ−

∆− 2R2 − σR3
+

t
(3)2
−−

∆− 2R2 +R3

)

+
∑

σ=±

t
(4)2
σ−

∆−R2 −R3 − σR4

+
t
(3)2
+− t

(3)2
−+

−2R2 − 2R3
− t

(3)2
+− t

(3)2
−−

R3
− t

(3)2
−− t

(3)2
−+

−2R2

]

= 0,

(21)

where the matrix elements

t(n)σν = 〈n, σ|â†|n− 1, ν〉, (22)

and σ, ν = ±, can be expressed in terms of the angle θn
and exciton number n. See Appendix C for details.

To determine the lower Mott boundary, we remove one
exciton (single holon doping) and calculate Eh, and also
remove two excitons (double holon doping) and calculate
E2h. The energy Eh is always higher than E2h at ω deter-
mined by EM = E2h indicating that the lower boundary
of the Mott phase is given by EM = E2h,

4ω +∆−R2 + 16J2t
(2)
−−

[

t
(3)2
−−

∆+R3 − 2R2

+
t
(3)2
+−

∆−R3 − 2R2
− 1

∆−R2

]

= 0.

(23)

It is very interesting that, whereas single exciton doping
determines the upper boundary, two excitons should be
removed to determine the lower Mott boundary. This is
confirmed by numerical calculations and has other con-
sequences which will be discussed below. The natures of
the phases above and below the Mott lobe will be dis-
cussed below.

The boundary between the vacuum and a state with at
least two excitons is determined by the equation E2e =
E0− = 0, where E2e is the energy of the 2-exciton state:

4w +∆−R2 +
16J2t

(2)2
−−

∆−R2
= 0. (24)

The resulting phase diagram, with the choice ωq = 0.4,
is shown in Fig. 5. Details of our perturbation calcu-
lation are shown in Appendix C. In addition, Fig. 5
shows the mean field boundary (see Appendix B for de-
tails), Eq. (B6), between stable thermodynamic phases
and the unstable region where the Hamiltonian is un-
bounded from below. For comparison, we also show in
Fig. 5 the phase boundaries obtained with DMRG. As
expected, we see very good agreement between pertur-
bation and DMRG for small values J .
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
J

-3

-2.5

-2

-1.5

-1

-ω

Second order perturbation
 Mean field instability boundary
DMRG
Mott tip

n=2, Mott

Vacuum, n=0 SF

ωq=0.4

FIG. 5. (Color online) The phase diagram of the two-photon
JCH model. The phase boundaries from second order per-
turbation are given by the circles. The mean field instability
boundary is shown by the solid line. For comparison, we
include the phase boundaries from DMRG calculations (see
below). We do not show all the numerical results here to keep
the figure uncluttered (see Fig. 9).

B. Numerical results

To obtain the phase diagram with exact numerical
methods, we employ the SGF[52, 53] quantum Monte
Carlo method and DMRG[54, 55] using the ALPS[56]
library. The SGF and DMRG methods offer complemen-
tary advantages and allow us to map out the phase di-
agram more precisely. Some typical running times for
the SGF QMC simulations are: 216 hours for N = 24 at
β = 768 and 192 hours for N = 20 at β = 640. These
long running times and large values of β are necessary to
ensure convergence to the ground state. As for DMRG,
we typically took the maximum number of photons/site,
Nmax = 5, 500 states, and 500 sweeps. These values
are typical but the details depend on the couplings and
the phase of the system. In all cases, we verified that
increasing these values did not change the results.

As in the previous section, here we set the energy scale
by fixing g = 1 and take ωq = 0.4. We start with grand
canonical QMC simulations using the SGF algorithm.
Figure 6 shows the density of excitons as a function of
the photon frequency, ω, for several values of the inverse
temperature β. This allows us to determine how large β
needs to be to probe the ground state. Note that in the
grand canonical ensemble, ω is minus the photon chem-
ical potential. We see a clear incompressible Mott insu-
lator (MI) plateau surrounded by compressible regions.
We note that the MI becomes fully formed only for very
large β. This is due to the small value of J we chose
for the figure; larger values of J do not require such high
values of β, but, of course, at larger J , the MI is not as
wide (see Fig. 5).

1 1.5 2 2.5 3 3.5
ω

0

0.5

1

1.5

2

2.5

3

3.5

4

N
ex

c/N

β=32
β=64
β=128
β=256

N=16, J=0.1, ωq=0.4

FIG. 6. (Color online) The dependence of the exciton den-
sity on the photon frequency, ω. The horizontal line indicates
the existence of an incompressible Mott insulating phase sur-
rounded by two compressible phases.
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2.5 2.55 2.6 2.65 2.7 2.75 2.8
ω

0

0.005

0.01

0.015

ρ s

ωq=0.4, J=0.6

FIG. 7. (Color online) Top: The exciton density as a function
of ω. Bottom: The corresponding superfluid density, ρs, as a
function of ω. This shows that as the MI is doped with holes,
a superfluid phase appears.

To delineate the nature of the compressible regions sur-
rounding the MI, we show in Figs. 7 and 8 the exciton
density as a function of ω in the top panel, and the su-
perfluid density, ρs, in the bottom panel. We see in both
figures that, as soon as the system leaves the MI phase,
it becomes superfluid. Hole doping, Fig. 7, results in
a very dilute SF before the system eventually becomes
empty as ω ≈ 2.8. Particle doping, Fig. 8, leads to a
SF with ρs approaching 2 before the system starts to be-
come unstable at ω ≈ 2.23. By making several cuts of
this type, we map out the phase diagram shown in Fig. 9
obtained numerically with very good agreement between
SGF and DMRG. The figure shows a single Mott lobe
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FIG. 8. (Color online) Same as Fig. 7 but doping the MI with
particles. A superfluid phase appears here too.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
J
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-2.5
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-1.5
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-ω

DMRG
ω=2J+g
SGF
Mott tip
n=2 SF

Mott, n=2

SF

SF
Vacuum, n=0

Unbounded

ωq=0.4

FIG. 9. (Color online) The phase diagram of the JCH model
from SGF QMC and DMRG calculations. Dash-double dot
line (ω = 2J + g) is the MF boundary between the unstable
and stable regions. The (blue) right triangle indicates the
position of the tip of the Mott lobe. The dashed (red) line
indicates the SF phase with a density of 2 excitons/site. This
is the same as Fig. 5 but not showing the perturbation results
for clarity.

with 2 excitons/site; below this lobe there is a rather
narrow region of SF before the system becomes empty.
Above the Mott lobe, there is an even narrower strip of
SF before the system becomes unstable. It is hard to
pinpoint precisely with SGF and DMRG the boundary
where the system becomes unstable because the number
of photons/site increases very rapidly near the instabil-
ity. Neither DMRG nor QMC performs well under such
conditions and, for that reason, we show in the figure
the stable/unstable boundary given by MF calculations.
Unlike the case of the 1-photon JCM[15], there are no

higher Mott lobes in this 2-photon case due to the insta-
bility triggered by the Hamiltonian becoming unbounded
from below. The Mott lobe terminates in a cusp because
the critical point at the tip is in the BKT universality
class.
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1
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−
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0a
2

r>

<σ+
0a

2
r>

J=0.6, ωq=0.4, ω=2.25

FIG. 10. (Color online) Photon-photon, photon-qubit and
qubit-qubit Green functions from DMRG in the SF region
above the MI. The open, shaded and full symbols are for
N = 30, 40 and 50 respectively.
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✝ 2

0a
2

r> ωq=0.4, J=0.6, ω=2.68

FIG. 11. (Color online) Same as Fig. 10 but below the Mott
lobe. The open, shaded symbols are for N = 30, 50 respec-
tively.

The question arises as to the nature of the SF phase.
In the 1-photon system[15], the photon Green function,

〈â†0âr〉 decays as a power indicating quasi-long range or-
der and a photon SF. At the same time, the photon-qubit
Green function, 〈σ+

0 âr〉, also decays as a power law. We
see the same behavior in Fig. 10 where several two-point
functions are shown on log-log scale. We note, in partic-

ular, that 〈â†0âr〉 decays as a power law, and that, while
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both 〈â†20 â2r〉 and 〈σ+
0 â

2
r〉 decay as powers, they are not

equal. The leading effect in this phase is then the coher-
ent movement of individual photons.
One expects to encounter similar behavior below the

Mott lobe. However, this expectation is not borne out
by the numerical results. Figure 11 shows the same cor-
relation functions as Fig. 10 where we see clearly that,
although the system is in the SF phase, the quantity

〈â†0âr〉 decays exponentially while it exhibited power law
behavior above the MI. The correlation functions 〈σ+

0 σ
−
r 〉

and 〈â†20 â2r〉 both decay as powers showing the SF na-
ture of this phase. In addition, we find that, unlike the
case above the MI (see Fig. 10), the correlation function

〈σ+
0 â

2
r〉 is identical to 〈â†20 â2r〉, and so we do not show it

in Fig.11 to keep the figure clear.
This behavior appears to show that above the MI, we

have a photon SF phase (power law decay for 〈â†0âr〉)
whereas below the MI we have a photon pair SF phase

(exponential decay of 〈â†0âr〉 and power law decay of

〈â†20 â2r〉): Below the Mott insulator the photons appear
to form bound pairs which become superfluid.

V. THE RABI-HUBBARD MODEL
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S
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FIG. 12. (Color online) The mean field phase diagram of the
RH model exhibiting normal and superradiant phases and an
unbounded region. This behavior is similar to that of the
Dicke model.

In Appendix A we show the mean field calculation for
the Rabi-Hubbard model predicting a phase transition
between a disordered (normal) phase and a superradi-
ant phase similar to the Dicke model[51]. The boundary
between the two phases is given by (see Eq. (A21))

EG(b̄ 6= 0, g, J, ω, ωq) = EG(b̄ = 0, g, J, ω, ωq), (25)

where EG is the ground state energy given by (see

Eq. (A21)

EG =
1

2

∑

k

[

√

(−2J cos(k) + ω)2 − 16g2b̄2 + 16g2b̄4

+ ωq b̄
2 − ω

2

]

.

(26)

In addition, the stability condition requires (see
Eq. (A22),

ω − 2J ≥ 2g. (27)

The two phases and the unstable region are shown in
Fig. 12. This phase diagram is the analog of that of the
Dicke model, Fig. 3. However, whereas in the case of the
Dicke model, we found excellent agreement between the
MF and QMC phase diagrams (Fig. 12), this is not the
case for the RH model.

0
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0.1
<

N
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β=300
β=500
mean-field

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
g
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0.15

0.2

0.25

<
N

ph
>

/L
ωq=0.1, ω=1, J=0.1, L=8

FIG. 13. (Color online) Excited qubit density, 〈Nq〉/N , (up-
per panel) and photon density (lower panel) as functions of g.
Various β values are used to make sure the system is in the
ground state.

We show in Fig. 13 the average number of excited
qubits, 〈Nq〉/N , (top) and the average photon density,
〈Nph〉/N , (bottom) as functions of the coupling g for
several values of β. We observe a smooth continuous
increase of both quantities as g increases and no finite
temperature effects. The values are in good agreement
with the mean-field approach described in Appendix B,
which, for the parameters of Fig. 13, predicts a direct
transition from a normal phase to the unbounded region.
On the other hand, since the same mean-field approach
applied to the JCH Hamiltonian is not able to capture the
photon pair SF phase, it is possible that it also misses an
SF phase in the RH model for parameters different from
shown in the figure. In Fig. 14, we show that for suffi-
ciently large β there is no finite size effects. Comparing
the top panels of Figs. 13 and 14 with Fig. 1 emphasizes
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the difference in behavior between the two models and
suggests the absence of a phase transition for the RH
model, at least for the present parameter values. For the
entire range of values of g in Figs.13 and 14, all Green

functions, such as 〈â†0âr〉 and 〈σ+
0 â

2
r〉, decay exponentially

indicating a normal rather than a superradiant phase.
In short, at least for the parameter values we have

considered, the Rabi-Hubbard model seems not to exhibit
a phase transition, even though the underlying discrete
Z4 symmetry allows it. In addition, we have two different
mean-field approaches leading to rather different phase
diagrams, which seems to indicate that the physics of
the Rabi-Hubbard model might be more involved than
the one of the Dicke and the JC models. A thorough
study is beyond the scope of the present paper and will
be presented elsewhere.
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FIG. 14. (Color online) The same as fig. 13 but for different
system sizes showing that finite size effects are negligible.

VI. CONCLUSIONS

In this paper we studied the ground state proper-
ties of the Dicke, Jaynes-Cummings Hubbard, and Rabi-
Hubbard models. We used mean field, perturbation,
QMC, and DMRG calculations to elucidate the phase di-
agrams and the transitions between the various phases.
We found that for the Dicke model, exact QMC results
agree very well with the mean field phase diagram[51]
but that very large β was required to probe the ground
state properties. For the JCH model, we found that at
small hopping, J , the system exhibits a single incom-
pressible Mott insulator with two excitons/site. Doping
above the MI, the system exhibits a photon SF phase be-
fore becoming unstable due to the Hamiltonian becoming
unbounded from below. To dope the system above the
MI, we add one photon at a time. This is in big contrast
to the situation below the MI where we found a sur-
prising photon pair SF: The photons pair up in bound

states. Below the MI, one needs to remove two pho-
tons at a time to dope. For the JCH model in the SF
phase, very large values of β are needed. Interestingly,
we have not found a phase transition between a normal
and a superradiant phase in the case of the RH model;
only a normal phase with exponential decay of the Green
functions. It would be interesting to study how the three-
photon model would differ from what we found here. In
particular,would the JCH model still exhibit a MI phase,
and would doping below it yield a three-photon bound
state superfluid.
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Appendix A: Mean field two-photon RH

In this appendix we outline the mean field calculation
of the phase diagram of the two-photon Rabi-Hubbard
model which proceeds along the same lines as that for
the Dicke model in 51. The RH Hamiltonian is:

HRH = −J
∑

i

(

â†i âi+1 + h.c.
)

+
∑

i

(

ωqσ
+
i σ

−
i + ωâ†i âi

)

+g
∑

i

(

σ+
i + σ−

i

)

(

â† 2i + â2i

)

. (A1)

We apply the Holstein-Primakoff transformation:

σ+
i = b̂†i

√

1− b̂†i b̂i (A2)

σ−
i =

√

1− b̂†i b̂i b̂i , (A3)

with [b̂i , b̂
†
j ] = δij , use the mean field approximation,

b̄∗ = 〈GS|b̂†i |GS〉, (A4)

b̄ = 〈GS|b̂i |GS〉, (A5)

b̄ = b̄∗, (A6)

and ignore fluctuations in the b̂ field. This leads to the
quadratic mean field Hamiltonian,

HMF = −J
∑

i

(

â†i âi+1 + â†i+1âi

)

+ ω
∑

i

â†i âi

+2gb̄
√

1− b̄2
∑

i

(

â† 2i + â2i

)

+Nsωq b̄
2. (A7)

Applying a Fourier transform,

âi =
1√
N

∑

i

e−ikri âk, (A8)
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leads to,

HMF =
∑

k

[

(−2J cos(k) + ω) â†kâk

+2gb̄
√

1− b̄2
(

â†kâ
†
−k + âkâ−k

)

]

+Nsωq b̄
2. (A9)

Now, we use the Bogoliubov transformation:

â†k = cosh(Xk)α̂
†
k − sinh(Xk)α̂−k (A10)

âk = cosh(Xk)α̂k − sinh(Xk)α̂
†
−k. (A11)

To simplify the expressions, we write: ck ≡ cos(k), chk ≡
cosh(Xk), and shk ≡ sinh(Xk). This yields,

HMF =
∑

k

[

(−2Jck + ω)
(

ch2k + sh2k
)

−8gb̄
√

1− b̄2 chkshk

]

α̂†
kα̂k

+
∑

k

[(

2gb̄
√

1− b̄2 (ch2k + sh2k)

−(−2Jck + ω)chkshk

)

α̂†
kα̂

†
−k + h.c.

]

+
∑

k

[

(−2Jck + ω)sh2k

−4gb̄
√

1− b̄2 chkshk

]

+Nsωq b̄
2. (A12)

The first term in Eq. (A12) gives the quasi-particle exci-
tations above the ground state; the second term contains
the nondiagonal terms which we want to eliminate and
the third term gives the ground state energy. When the
coefficient of the nondiagonal term is made to vanish, we
obtain the condition:

2gb̄
√

1− b̄2 (ch2k + sh2k) = (−2Jck + ω)chkshk, (A13)

and using

sinh(2x) = 2sinh(x)cosh(x),

cosh(2x) = sinh2(x) + cosh2(x), (A14)

we get:

tanh(2Xk) =
4gb̄
√

1− b̄2

ω − 2Jcos(k)
. (A15)

Writing

A = 2gb̄
√

1− b̄2, Bk = ω − 2Jcos(k), (A16)

gives:

tanh(2Xk) =
2A

Bk
, (A17)

and,

eXk =

[

Bk + 2A

Bk − 2A

]1/4

. (A18)

The acceptable values satisfy the condition:

− 1 ≤ 2A

Bk
≤ 1. (A19)

Then, the energy that must be minimized with respect
to b̄ is

EG =
∑

k

[

(−2Jck + ω)sh2k − 4gb̄
√

1− b̄2 chkshk

]

+Nsωq b̄
2. (A20)

Note that, putting J = 0, renders all the hyperbolic func-
tions independent of k. Then Eq. (A20) agrees with the
MF equation in Ref. 51 if we take N = 1 and b̄ = b̄∗.
Equation (A20) can be further simplified to the form,

EG =
1

2

∑

k

[

√

(−2J cos(k) + ω)2 − 16g2b̄2 + 16g2b̄4

+ ωq b̄
2 − ω

2

]

. (A21)

The requirement that the argument of the square root be
positive leads to the important condition:

ω − 2J ≥ 2g. (A22)

This is the stability condition for the system: When it is
violated, the Hamiltonian is unbounded from below.
The transition to the superradiant phase is indicated

by a nonzero order parameter of the order parameter, b̄ 6=
0. The boundary between the normal and superradiant
phases is, therefore, given by:

EG(b̄ 6= 0, g, J, ω, ωq) = EG(b̄ = 0, g, J, ω, ωq). (A23)

This relation cannot be solved analytically, we solve it
numerically to get the relation between g, J, ω, ωq which
gives the phase boundary.

Appendix B: Simple mean field for JCH

The mean field calculation in Appendix A applies to
the Rabi-Hubbard model and, by ignoring the counter-
rotating terms, also to the JCH model. However, we can
also perform the mean field calculation on the hopping
term of the photon field rather than on the qubit. We
assume 〈ai〉 = ψi, which reduces the Hamiltonian to a
single-site form:

HMF
i =− J

(

(ψi+1 + ψi−1)a
†
i + h.c.

)

+ ωqσ
+
i σ

−
i + ωa†iai + g

(

σ+
i + σ−

i

)

(

â† 2i + â2i

)

.

(B1)
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Finding the ground state of this Hamiltonian and a self-
consistent solution for the ψi allows us to obtain the
phase diagram. In particular, in the normal phase ψi = 0,
the ground state of HMF

i still depends on the parame-
ters ωq, ω and g, leading, for instance, to the depen-
dence of the qubit and photon densities on the interaction
strength observed in Fig.13.
A further approximation amounts to replacing all the

photonic operators by the mean field value, ψ, thus yield-
ing the leading order contribution which gives the insta-
bility line for the JCH model. In that case, assuming
that ψ is real, the mean field Hamiltonian becomes

HSMF
i = ωqσ

+
i σ

−
i + ωψ2 + g(σ+

i + σ−
i )ψ2 − 2Jψ2.

(B2)

The ground state energy is found by minimizing

EG =
ωq

2
+ (ω − 2J)ψ2 −

√

ω2
q + 4g2ψ4

2
, (B3)

with respect to ψ which gives

ω − 2J =
2g2ψ2

√

ω2
q + 4g2ψ4

. (B4)

Near the unbounded region, ψ ≫ 1 and we can thus
ignore the ωq term and find that for stability we must
have,

ω − 2J ≥ g. (B5)

The boundary of the unstable region is therefore given
by,

ωc − 2J = g. (B6)

Note the similarity between this equation and the stabil-
ity condition for the RHM, Eq. (A22).
We then define the photon density nph = ψ2 and, using

Eq. (B4) we obtain,

nph =
ωq(ω − 2J)

2g

1
√

(g − ω + 2J)(g + ω − 2J)
. (B7)

Now we consider ω near the stable-unstable boundary,
ωc, so that ω − 2J ≈ g. We find that the number of
photons diverges as the unstable region is approached:

nph =
ωq

2
√
2g

1√
2J + g − ω

∝ (δω)1/2, (B8)

with δω = ωc−ω. This divergence makes the result diffi-
cult to demonstrate with QMC and/or DMRG methods.

Appendix C: Perturbation calculation of the phase

diagram of the JCH model

In this appendix we outline the perturbation calcula-
tion of the phase diagram of the two-photon JCH model

which proceeds along the same lines as that for the single-
photon JCH model in 19.
The Hamiltonian of the two-photon JCH model is

HJC = −J
N
∑

i=1

(

â†i âi+1 + h.c.
)

+

N
∑

i=1

(

ωâ†i âi + ωqσ
+
i σ

−
i

)

+g

N
∑

i=1

(

σ+
i â

2
i + σ−

i â
†2
i

)

. (C1)

which can be split into two parts,

HJC = H0 +H1, (C2)

with the perturbation, H1, given by

H1 = −J
∑

i

(a†iai+1 + h.c.), (C3)

and H0 is the rest of H .
It is convenient to introduce the matrix elements

t(n)σν ≡ 〈n, σ|a†|n− 1, ν〉, (C4)

with σ, ν = ±. Using Eq. (19), we have

a†|n− 1,+〉 = t
(n)
++|n,+〉+ t

(n)
−+|n,−〉,

a†|n− 1,−〉 = t
(n)
+−|n,+〉+ t

(n)
−−|n,−〉, (C5)

with

t(n)σν =
√
nασ

nα
ν
n−1 + σν

√
n− 2α−σ

n α−ν
n−1, (C6)

where

α+
n = sin θn,

α−
n = cos θn. (C7)

For the upper boundary of the n = 2 Mott phase, we
compare the ground state energy of the n = 2 Mott state
with that of the state doped by one exciton. However, to
determine the lower boundary of the n = 2 Mott phase,
we need to compare the ground state energy with the
state doped by 2 holons (with two excitons removed from
the system). Similarly, to locate the boundary of vac-
uum, we need to compare the energy of the state doped
by two excitons with vacuum.
We first calculate the energy of the Mott state to sec-

ond order,

EM = E
(0)
M + E

(1)
M + E

(2)
M , (C8)

with

E
(0)
M = 〈ψ(0)

M |H0|ψ(0)
M 〉 = N(2ω +

∆

2
− R2

2
),

E
(1)
M = 〈ψ(0)

M |H1|ψ(0)
M 〉 = 0, (C9)

E
(2)
M = 〈ψ(1)

M |H1|ψ(0)
M 〉 = 4J2N

∑

σ=±

t
(3)2
σ− t

(2)2
−−

∆− σR3 − 2R2
,
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where the zero-th order wavefunction is

|ψ(0)
M 〉 =

N
∏

i

|2,−〉i, (C10)

and the first order wavefunction is

|ψ(1)
M 〉 =

∑

k

|k〉〈k|H1|ψ(0)
M 〉

E
(0)
M − Ek

= −J
∑

i

∑

σ=±

[

t
(3)
σ−t

(2)
−−|1,−〉i|3, σ〉i+1

∏N
l 6=i,l 6=i+1 |2,−〉l

∆− σR3 − 2R2

+
t
(3)
σ−t

(2)
−−|1,−〉i+1|3, σ〉i

∏N
l 6=i,l 6=i+1 |2,−〉l

∆− σR3 − 2R2

]

. (C11)

Now we calculate the lowest energy of the state ob-
tained by doping the n = 2 Mott state, to second order,

Ed = E
(0)
d + E

(1)
d + E

(2)
d , (C12)

with

E
(0)
d = 〈ψ(0)

d |H0|ψ(0)
d 〉

= (N − 1)(2ω +
∆

2
− 1

2
R2) + (3ω +

∆

2
− R3

2
),

E
(1)
d = 〈ψ(0)

d |H1|ψ(0)
d 〉 = −2Jt

(3)2
−− ,

E
(2)
d = 〈ψ(1)

d |H1|ψ(0)
d 〉

= 4J2

[

t
(3)2
−− t

(2)2
−−

∆+R3 − 2R2
+
∑

σ=±

(
(N − 2)t

(3)2
σ− t

(2)2
−−

∆− 2R2 − σR3

+
t
(4)2
σ− t

(2)2
−−

∆−R2 −R3 − σR4
+

t
(3)2
+− t

(3)2
−σ

R3 − R2 − σR2

+
t
(3)2
σ(−σ)t

(3)2
−−

−R3 − σR3 −R2 + σR2
)

]

, (C13)

where

|ψ(0)
d 〉 = 1√

N

∑

i

|3,−〉i
N
∏

l 6=i

|2,−〉l, (C14)

and

|ψ(1)
d 〉 = |ψ(1)

d (1)〉+ |ψ(1)
d (2)〉+ |ψ(1)

d (3)〉, (C15)

with

|ψ(1)
d (1)〉 = 1√

N

∑

i,j,σ=±

−2J

∆− (σ)R3 − 2R2
t
(3)
σ−t

(2)
−−

× (|3, σ〉i|1,−〉i+1 + |1,−〉i|3, σ〉i+1)|3,−〉j 6=i,j 6=i+1

×
∏

l 6=i,l 6=i+1,l 6=j

|2,−〉l,

|ψ(1)
d (2)〉 = 1√

N

∑

i,σ=±

−2J

∆−R2 −R3 − (σ)R4
t
(4)
σ−t

(2)
−−

× (|4, σ〉i|1,−〉i+1 + |1,−〉i|4, σ〉i+1)

×
N
∏

l 6=i,l 6=i+1

|2,−〉l,

|ψ(1)
d (3)〉 = 1√

N

∑

i

[

∑

ν=±

(|3,+〉i|2, ν〉i+1 + |2, ν〉i|3,+〉i+1)

× 2Jt
(3)
+−t

(3)
−ν

2R2 +R3 + νR3

+ (|3,−〉i|2,+〉i+1 + |2,+〉i|3,−〉i+1)
Jt

(3)
−−t

(3)
−+

R2

]

×
N
∏

l 6=i,l 6=i+1

|2,−〉l. (C16)

The equation EM = Ed leads to the upper boundary
Eq. (21) of the n = 2 Mott phase. We mention that we
have also calculated the ground state energy E2d of the
n = 2 Mott state doped by two excitons and find that
the energy at the boundary determined by EM = Ed

is lower than that at the line determined by EM = E2d.
The former also matches the DMRG and the SGF results
well.

To find the lower boundary of the n = 2 Mott lobe, we
calculate the ground energy of the state with two excitons
(holons) removed from (added to) the n = 2 Mott state:

E2h = E
(0)
2h + E

(1)
2h + E

(2)
2h , (C17)

with

E
(0)
2h = 〈ψ(0)

2h |H0|ψ(0)
2h 〉 = (N − 1)(2ω +

∆

2
− R2

2
),

E
(1)
2h = 〈ψ(0)

2h |H1|ψ(0)
2h 〉 = 0,

E
(2)
2h = 〈ψ(1)

2h |H1|ψ(0)
2h 〉

= 4J2

[

(N − 2)(
t
(3)2
−− t

(2)2
−−

∆+R3 − 2R2
+

t
(3)2
+− t

(2)2
−−

∆− R3 − 2R2
)

+
2t

(2)2
−−

∆−R2

]

, (C18)
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where the wave functions are

|ψ(0)
2h 〉 = 1√

N

∑

i

|0,−〉i
N
∏

l 6=i

|2,−〉l, (C19)

|ψ(1)
2h 〉 = 1√

N

∑

i

∑

j 6=i,j 6=i+1

∑

σ=±

[

−2J

∆− 2R2 − σR3
t
(3)
σ−t

(2)
−−

× (|3, σ〉i|1,−〉i+1 + |1,−〉i|3, σ〉i+1)|0,−〉j

×
N
∏

l 6=i,l 6=i+1,l 6=j

|2,−〉l

+
−4Jt

(2)
−−

∆−R2

∑

i

|1,−〉i|1,−〉i+1

N
∏

l 6=i,l 6=i+1

|2,−〉l

]

.

The equation EM = E2h leads to the lower boundary,
Eq. (23) of the n = 2 Mott phase. Note that for the lower
boundary, it is necessary to remove two excitons to obtain
the lowest energy state whereas for the upper boundary,
we add only one exciton. This is confirmed by numerical
calculations and leads to consequences discussed in the

text.
To find the boundary of the vacuum, we need to find

the energy of the state with only 2 excitons.

E2e = E
(0)
2e + E

(1)
2e + E

(2)
2e , (C20)

with

E
(0)
2e = 〈ψ(0)

2e |H0|ψ(0)
2e 〉 = 2ω +

∆

2
− R2

2
,

E
(1)
2e = 〈ψ(0)

2e |H1|ψ(0)
2e 〉 = 0,

E
(2)
2e = 〈ψ(1)

2e |H1|ψ(0)
2e 〉 =

8J2

∆−R2
t
(2)2
−− , (C21)

where the wave functions are

|ψ(0)
2e 〉 =

1√
N

∑

i

|2,−〉i
N
∏

l 6=i

|0,−〉l, (C22)

|ψ(1)
2e 〉 =

−1√
N

4J

∆− R2

∑

i

t
(2)
−−|1,−〉i|1,−〉i+1

N
∏

l 6=i,l 6=i+1

|0,−〉l.

The vacuum boundary, Eq. (24), is given by the equation
E2e = 0.
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