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TWO COMPUTATIONS CONCERNING THE ISOVECTORS OF THE BACKWARD HEAT EQUATION WITH QUADRATIC POTENTIAL

We determine the isovectors of the backward heat equation with quadratic potential term in the space variable. This generalize the calculations of ). These results first appeared in the first author's PhD thesis (Rouen, 2013).

Backward Equation

The fundamental equation of Euclidean Quantum Mechanics of Zambrini is the backward heat equation with potential V (t, q):

     θ 2 ∂η V u ∂t = -θ 4 2 ∂ 2 η V u ∂q 2 + V (t, q)η V u (C (V ) 1 )
η V u (0, q) = u(q) where t represents the time variable, q the space variable, and θ is a real parameter, strictly positive (in physics, θ = √ ). This equation is not well-posed in general, but existence and uniqueness of a solution are insured whenever the initial condition u belongs to the set of analytic vectors for the operator appearing on the right-hand side of the equation (see e.g. [START_REF] Flato | Simple facts about analytic vectors and integrability[END_REF], Lemma 4, p. 429).

We shall denote by η u (t, q) = η 0 u (t, q) the solution of the backward heat equation with null potential :

   θ 2 ∂ηu ∂t = -θ 4 2 ∂ 2 ηu ∂q 2 (C (0) 1 )
η u (0, q) = η 0 u (0, q) = u(q). The authors wish to thank the referees for constructive comments.

1.1. Generalization of results due to Lescot-Zambrini (cf. [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF]).

Theorem 1.1. Let a(t), b(t) and c(t) be continuous functions and

V (t, q) = a(t)q 2 + b(t)q + c(t).
For all initial conditions u, the solution η V u (t, q) of:

θ 2 ∂η V u ∂t = - θ 4 2 ∂ 2 η V u ∂q 2 + V (t, q)η V u (C (V ) 1 )
such that η V u (0, q) = u(q) is given by: η V u (t, q) = ϕ 1 (t, q) η u (ϕ 2 (t, q), ϕ 3 (t, q)) , (1.1) Date: 01 November 2019.

where: η u (t, q) = η 0 u (t, q) and ϕ 1 (t, q), ϕ 2 (t, q), ϕ 3 (t, q) only depend on a(t), b(t) and c(t) (via formulas (1.7), (1.8), (1.9), (1.11), (1.12), (1.13) and (1.14)).

Proof. We shall make formula 1.1 explicit with the following initial conditions:

   ϕ 1 (0, q) = 1 ϕ 2 (0, q) = 0 ϕ 3 (0, q) = q.
In this case : η V u (0, q) = η u (0, q) = u(q). We now differentiate formula 1.1 with respect to t and q; η u and its derivatives will be taken in (ϕ 2 (t, q), ϕ 3 (t, q)).

∂η V u ∂t = ∂ϕ 1 ∂t η u + ϕ 1 ( ∂η u ∂t ∂ϕ 2 ∂t + ∂η u ∂q ∂ϕ 3 ∂t ) , ∂η V u ∂q = ∂ϕ 1 ∂q η u + ϕ 1 ( ∂η u ∂t ∂ϕ 2 ∂q + ∂η u ∂q ∂ϕ 3 ∂q ) , ∂ 2 η V u ∂q 2 = ∂ 2 ϕ 1 ∂q 2 η u + 2 ∂ϕ 1 ∂q ∂η u ∂t ∂ϕ 2 ∂q + ∂η u ∂q ∂ϕ 3 ∂q + ϕ 1 ∂ 2 η u ∂t 2 ( ∂ϕ 2 ∂q ) 2 + ∂ 2 η u ∂q 2 ( ∂ϕ 3 ∂q ) 2 + 2 ∂ 2 η u ∂t∂q ∂ϕ 2 ∂q ∂ϕ 3 ∂q + ∂η u ∂t ∂ 2 ϕ 2 ∂q 2 + ∂η u ∂q ∂ 2 ϕ 3 ∂q 2 and V (t, q)η V u = a(t)q 2 ϕ 1 η u + b(t)q ϕ 1 η u + c(t) ϕ 1 η u .
So, it's enough to have:

θ 2 ϕ 1 ∂ϕ 2 ∂t -θ 2 ϕ 1 ( ∂ϕ 3 ∂q ) 2 + θ 4 2 (2 ∂ϕ 1 ∂q ∂ϕ 2 ∂q + ∂ 2 ϕ 2 ∂q 2 ) = 0 (1.2) θ 4 2 ϕ 1 ( ∂ϕ 2 ∂q ) 2 = 0 (1.3) θ 2 ϕ 1 ∂ϕ 3 ∂t + θ 4 2 (2 ∂ϕ 1 ∂q ∂ϕ 3 ∂q + ϕ 1 ∂ 2 ϕ 3 ∂q 2 ) = 0 (1.4) θ 4 ∂ϕ 2 ∂q ∂ϕ 3 ∂q = 0 (1.5) θ 2 ∂ϕ 1 ∂t + θ 4 2 ∂ 2 ϕ 1 ∂q 2 -ϕ 1 a(t)q 2 + b(t)q + c(t) = 0 . (1.6)
As ϕ 1 (0, q) = 1, the equation (1.3) gives us:

( ∂ϕ2 ∂q ) 2 = 0, then ϕ 2 = ϕ 2 (t)
and (1.5) is then automatically satisfied. So, the equation (1.2) implies:

ϕ 1 (t, q)( ∂ϕ 2 ∂t -( ∂ϕ 3 ∂q
) 2 ) = 0, then for all (t, q) :

∂ϕ 2 ∂t = ( ∂ϕ 3 ∂q ) 2 ∂ϕ 3 ∂q = A(t) ϕ 3 (t, q) = A(t)q + B(t) (1.7) and ϕ 2 (t) = t 0 A 2 (s) ds , (1.8)
then the equation (1.4) gives :

ϕ 1 ∂ϕ 3 ∂t + θ 2 ∂ϕ 1 ∂q ∂ϕ 3 ∂q = 0 ϕ 1 Ȧ(t)q + Ḃ(t) + θ 2 A(t) ∂ϕ 1 ∂q = 0 ϕ 1 (t, q) = k(t) e -1 θ 2 A(t) Ȧ(t)
2 q 2 + Ḃ(t)q , (1.9) therefore :

∂ϕ 1 ∂t = k(t) + k(t) θ 2 A(t) 1 2 ( Ȧ2 (t) A(t) -Ä(t))q 2 + ( Ȧ(t) A(t) Ḃ(t) -B(t))q e -1 θ 2 A(t) Ȧ(t) 2 q 2 + Ḃ(t)q , ∂ϕ 1 ∂q = -1 θ 2 ϕ 1 A(t) ( Ȧ(t)q + Ḃ(t))
and

∂ 2 ϕ 1 ∂q 2 = 1 θ 4 ϕ 1 A 2 (t) Ȧ2 (t)q 2 + 2 Ȧ(t) Ḃ(t)q -θ 2 Ȧ(t)A(t) + Ḃ2 (t) ,
then the equation (1.6) becomes :

k(t) - 1 2 Ä(t) A(t) + Ȧ2 (t) A 2 (t) -a(t) q 2 + k(t) - B(t) A(t) + 2 Ḃ(t) Ȧ(t) A 2 (t) -b(t) q + θ 2 k(t) -k(t)c(t) + k(t) 2 Ḃ2 (t) A 2 (t) -θ 2 k(t) 2 Ȧ(t) A(t) = 0.
As k(t) = 0, the equation (1.6) is equivalent to the following system :

               - 1 2 Ä(t) A(t) + Ȧ2 (t) A 2 (t) -a(t) = 0 - B(t) A(t) + 2 Ḃ(t) Ȧ(t) A 2 (t) -b(t) = 0 θ 2 k(t) -k(t)c(t) + k(t) 2 Ḃ2 (t) A 2 (t) -θ 2 k(t) 2 
Ȧ(t) A(t) = 0
(1.10) knowing that :

           A(0) = 1 B(0) = 0 k(0) = 1 Ȧ(0) = 0 Ḃ(0) = 0
This is due to initial conditions at time t on the functions ϕ 1 (t, q), ϕ 2 (t, q), and ϕ 3 (t, q). Let

A(t) = e t 0 ρ(s)ds , (1.11) then ρ(t) = Ȧ(t) A(t) and ρ(t) + ρ 2 (t) = Ä(t) A(t) ,
therefore the first equation of (1.10) is equivalent to a Riccati equation :

ρ 2 (t) -ρ(t) = 2a(t) ρ(0) = Ȧ(0) A(0) = 0 . (1.12)
The second equation of (1.10) gives: 2 Ȧ(t)

A(t) Ḃ(t) -B(t) = A(t)b(t), then A -2 (t) Ḃ(t) = -2A -3 (t) Ȧ(t) Ḃ(t) + A -2 (t) B(t) = -A -2 (t) 2 Ȧ(t) A(t) Ḃ(t) -B(t) = -A -2 (t) (A(t)b(t)) = - b(t) A(t) , therefore B(t) is the solution of :    Ḃ(t) = -A 2 (t) t 0 b(s) A(s) ds B(0) = 0 . (1.13) Let ∆(t) = t 0 b(s)
A(s) ds and define k by: k

(t) = k(t) θ 2 c(t) -1 2 A 2 (t)∆ 2 (t) + θ 2 2 ρ(t) k(0) = 1.
(1.14) this makes the first equation of (1.7) satisfied.

Remark 1.2. If a(t), b(t) and c(t) were constants, then we could apply the method of Rosencrans (cf. [START_REF] Rosencrans | Perturbation Algebra of an Elleptic Operator[END_REF]).

Particular cases.

i) V(t, q) = a(t)q 2 (semiclassical case).

Then

B(t) = 0 , ∆(t) = 0 , k(t) = k(0) e 1 θ 2 t 0 c(s) - 1 2 A 2 (s)∆ 2 (s) + θ 2 2 ρ(s) ds = e 1 2 t 0 Ȧ(s) A(s) ds = A(t) and η V u (t, q) = A(t) e - q 2 2θ 2 ρ(t) η u (ϕ 2 (t), A(t)q)
is the solution of (C

(V )
1 ) such that η V u (0, q) = η u (0, q) = u(q). In this case, as in the next one, the formulas really involve only A(t). ia) V(t, q) = ω 2 2 q 2 . Then

ρ(t) = -ω tanh(ωt) , A(t) = 1 cosh(ωt) , ϕ 2 (t, q) = 1 ω tanh(ωt)
and according to i)

η V u (t, q) = 1 cosh(ωt) e ω 2θ 2 tanh(ωt)q 2 η u 1 ω tanh(ωt), q cosh(ωt)
is the solution of (C (V ) 1 ). This result is due to Zambrini (cf. [START_REF] Zambrini | From the geometry of parabolic PDE to the geometry of SDE[END_REF], p.227, (51)). The existence of such a formula was mentioned in [START_REF] Miller | Symmetry and separation of variables[END_REF], p. 96, and the similar result for the Schrödinger equation with quadratic potential (with cos(ωt) taking the place of cosh(ωt)) appeared in [START_REF] Miller | Symmetry and separation of variables[END_REF], p. 83. ii) V(t, q) = λ(t)q.

Then ρ(t) = 0,

A(t) = 1, Ḃ(t) = - t 0 λ(s) ds, B(t) = t 0 Ḃ(u) du = - t 0 ( u 0 λ(s) ds) du and η V u (t, q) = k(t) e - 1 θ 2 Ḃ(t)q η u (t, q + B(t))
is the solution of (C

(V ) 1 ), such that η V u (0, q) = η u (0, q) = u(q).
iia) V(t, q) = λq.

Then A(t) = 1, ∆(t) = λt, Ḃ(t) = -λt, B(t) = -λ 2 t 2 , k(t) = e - λ 2 6θ 2 t 3 and η V u (t, q) = e - 1 θ 2 ( λ 2 6 t 3 -λtq) η u (t, q - λt 2 2 )
is the solution of (C

(V ) 1 
). We hereby recover a result of Lescot and Zambrini (cf. [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF], p.219, (1)).

isovectors

Let G V defined by :

G V = {N | L N (I) ⊂ I}
and H V by :

H V = {N ∈ G V | ∂N S ∂S = 0} .
These definitions are taken from Lescot-Zambrini (cf. [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF]).

We remind the reader that a G V is a Lie algebra for the usual Lie bracket of vectors fields, and H V is a Lie subalgebra of G V (cf. [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF], p.210-211).

According to Lescot-Zambrini (cf. [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF], p.214-215, 3.9'-3.29), for all N ∈ H V , we can write :

N q : = 1 2 ṪN (t)q + N (t) N t : = T N (t)
N S : = h(q, t, S) , for σ(t), l(t) and T N (t) satisfying :

-

...

T N q 2 -¨ q + σ + T N ∂V ∂t + 1 2 ṪN q ∂V ∂q + ∂V ∂q + ṪN V - θ 2 4 TN = 0 . (2.1)
Let us set l N = l. Proposition 2.1. Let K V defined by :

K V = {N ∈ H V / N = 0}, then K V is a Lie subalgebra of H V . Proof. Let N 1 , N 2 ∈ K V ;one has [N 1 , N 2 ] q = [N 1 , N 2 ](q) = N 1 (N q 2 ) -N 2 (N q 1 ) = N q 1 ∂N q 2 ∂q + N t 1 ∂N q 2 ∂t -(N q 2 ∂N q 1 ∂q + N t 2 ∂N q 1 ∂t ) = 1 2 ṪN2 ( 1 2 ṪN1 q + N1 (t)) + T N1 ( 1 2 TN2 q + ˙ N2 ) - 1 2 ṪN1 ( 1 2 ṪN2 q + N2 (t)) -T N2 (t)( 1 2 TN1 q + ˙ N1 ) = T N1 (t) ˙ N2 -T N2 (t) ˙ N1 + 1 2 ( N1 (t) ṪN2 -N2 (t) ṪN1 ) + 1 2 (T N1 (t) TN2 (t) -T N2 (t) TN1 (t))q and [N1,N2] = T N1 (t) ˙ N2 -T N2 (t) ˙ N1 + 1 2 N1 (t) ṪN2 -N2 (t) ṪN1 = 0. Then K V is stable by the Lie bracket, therefore K V is a Lie subalgebra of H V . Lemma 2.2. If V 1 (t, q) = V 2 (t, q) + C q 2 (for C a constant), then K V1 = K V2 . Proof. Replacing V 1 (t, q) by
its value in equation (2.1), we get:

-

...

T N q 2 -¨ q + σ + T N ∂V 2 ∂t + 1 2 ṪN q ∂V 2 ∂q -2 C q 3 + ∂V 2 ∂q -2 C q 3 + ṪN V 2 + C q 2 - θ 2 4 TN = 0 ⇔ - 1 4 
...

T N q 2 -¨ q + σ + T N ∂V 2 ∂t + 1 2 ṪN q ∂V 2 ∂q + ∂V 2 ∂q - 2lC q 3 + ṪN V 2 - θ 2 4 TN = 0.
Therefore, if N ∈ K V2 , as l N = 0, we see that n satisfies (2.1) for V = V 1 . Then V 1 et V 2 give the same isovectors such as N = 0 .

Therefore : ...

K V1 = K V2 . Corollary 2.3. If V 1 = C q 2 (C =
T N q 2 -¨ q + σ + 1 2 ṪN q(-2 C q 3 ) + (-2

C q 3 ) + ṪN ( C q 2 ) - θ 2 4 TN = 0, that is - 1 4 
...

T N q 2 -¨ q + σ -θ 2 4 TN -2 C q 3 = 0 . As T N , and σ depend only on t, the system is equivalent to:

       2C = 0 ¨ = 0 σ = θ 2 4 TN
...

T N = 0 .

(2.2)

But C = 0, therefore N = 0 and

H V1 = K V1 = (Lemma 2.2) K V2 ⊂ H V2 .
Remark 2.4. Thus, we recover another result of Lescot and Zambrini(cf. [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF], p.220, (3)).

  0) and V 2 = 0, then H V1 = K V1 = K V2 and therefore: H V1 ⊂ H V2 .Proof. Let N ∈ H V1 , the equation (2.1) becomes :-1 4