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ABSTRACT 

Climate is one of the main factors driving species distributions and global biodiversity patterns. 24 

Obtaining accurate predictions of species’ range shifts in response to ongoing climate change has 

thus become a key issue in ecology and conservation. Correlative species distribution models 26 

(cSDMs) have become a prominent tool to this aim in the last decade and have demonstrated good 

predictive abilities with current conditions, irrespective of the studied taxon. However, cSDMs 28 

rely on statistical association between species’ presence and environmental conditions and have 

rarely been challenged on their actual capacity to reflect causal relationships between species and 30 

climate. In this study, we question whether cSDMs can accurately identify if climate and species 

distributions are causally linked, a prerequisite for accurate prediction of range shift in relation to 32 

climate change. We compared the performance of cSDMs in predicting the distributions of 132 

European terrestrial species, chosen randomly within five taxonomic groups (three vertebrate 34 

groups and two plant groups), and of 1,320 virtual species whose distribution is causally fully 

independent from climate. We found that i) for real species, the performance of cSDMs varied 36 

principally with range size, rather than with taxonomic groups and ii) cSDMs did not predict the 

distributions of real species with a greater accuracy than the virtual ones. Our results 38 

unambiguously show that the high predictive power of cSDMs can be driven by spatial 

autocorrelation in climatic and distributional data and does not necessarily reflect causal 40 

relationships between climate and species distributions. Thus, high predictive performance of 

cSDMs does not ensure that they accurately depict the role of climate in shaping species 42 

distributions. Our findings therefore call for strong caution when using cSDMs to provide 

predictions on future range shifts in response to climate change. 44 

 

Key words: climate change, model evaluation, null models, range shift, spatial autocorrelation, 46 

species distribution models, blocked cross-validation.  
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INTRODUCTION 48 

Climate is one of the main drivers of global diversity patterns along latitudinal and elevation 

gradients (Humboldt 1807, Merriam 1894, Francis and Currie 2003, Willig et al. 2003) and is 50 

unquestionably a major determinant of species distributions regardless of taxa (Woodward 1987, 

Kearney and Porter 2009), as shown by paleoecological data (e.g. Williams et al. 2004), 52 

experimental approaches (e.g. Pigott and Huntley 1980, Rehfeldt et al. 2002) or current 

observations of range shifts in response to climate change (e.g. Walther et al. 2002, Parmesan et 54 

al. 2003). However, a complex array of factors interacts with climate to shape actual species 

distributions. Biotic interactions, dispersal, micro-habitat availability, disturbances (including 56 

anthropogenic habitat changes or local species extirpation) all contribute to displace boundaries 

of species ranges away from the limits of their climatic niche (Sexton et al. 2009) and generate 58 

differences between the climatic requirements of a species (i.e. its fundamental climatic niche in 

the sense of Hutchinson 1957) and its geographic realization (Gaston 2003).  60 

Deciphering the links between climate and species distributions are more crucial than ever: 

robust predictions of species range shifts in response to climate change is a priority for the 62 

conservation of biodiversity and its functions (Coreau et al. 2009, Mouquet et al. 2015), but 

climate-based predictive models of species distributions rely on crucial assumptions on the role 64 

of climate in setting species distribution boundaries (Sexton et al. 2009). These assumptions are 

straightforward for species whose range limits are known to be affected by climate, but they 66 

require a cautious examination in most cases because non-climatic drivers may be important (Guo 

2003). In fact, disentangling the relative influence of climate and other ecological factors on 68 

species distribution, and understanding how these drivers determine species range limits, remains 

particularly challenging (Coreau et al. 2009). 70 

Various approaches have sought to identify the determinants of range limits in plants and 

animals (Gaston 2003, Sexton et al. 2009). Among these, frameworks based on correlations 72 
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between species distributions and climatic variables have a long history (Merriam 1894). Building 

on this legacy, correlative species distribution models (cSDMs, see Jarnevich et al. 2015) 74 

represent the most popular approach by far and have been applied to a wide range of taxa and 

geographic scales (e.g. Thomas et al. 2004, Pereira et al. 2010, Thuiller et al. 2011). Experiments 76 

permit a more direct assessment of the causal role of climatic factors on species distributions (e.g. 

Breeman 1988, Loehle 1998, Morin et al. 2007a), but they are difficult to carry out at large spatial 78 

scales and for all organisms. Mechanistic modeling approaches relying on explicit species 

responses (eg. growth, survival, reproduction, phenology) to climate variables have also been 80 

developed in the last two decades, for plant (e.g. Chuine and Beaubien 2001) and animal species 

(e.g. Kearney & Porter 2009), emphasizing the role of acclimation to cold temperatures (Leinonen 82 

1996), phenology (Chuine 2000), or metabolic rates (Kearney and Porter 2004). However, these 

process-based models have been restricted to a small number of species (see e.g. Morin et al. 84 

2007b, Sinervo et al. 2010, Diamond et al. 2012) because the data needed to implement such tools 

are difficult to collect. 86 

The vast majority of studies aiming at predicting species range shifts in response to climate 

change have therefore used cSDMs based on climatic variables (Guisan and Thuiller 2005, 88 

Pacifici et al. 2015). These “climatic cSDMs” predict local presence probabilities of a species 

from correlations between distribution data (occurrences in most cases, sometimes abundances) 90 

and climatic variables (Elith and Leathwick 2009) and are relatively straightforward to calibrate. 

Non-climatic predictors can also be used in cSDMs (e.g. land cover: Thuiller et al. 2004, Ay et al. 92 

2017, dispersal and biotic interactions: Heikkinen et al. 2007, Cabral and Schurr 2010, Boulangeat 

et al. 2012, Palacio and Girini 2018), but these examples are the exception rather than the rule. 94 

However, the ability of climatic cSDMs to properly identify and quantify the role of climate on 

species distributions is challenged increasingly often. The forecasting abilities of cSDMs can be 96 

tested by comparing their predictions of range shifts between past and current distributions – 
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assessed with historical occurrence data – based on observed climate change with actual range 98 

shifts. Although there are still few examples (Elith and Leathwick 2009), this approach yielded 

mixed results so far: Sofaer et al. (2018) reported that modelling was poor at predicting observed 100 

range change in North American birds, while Fordham et al. (2018) concluded the opposite in 

British birds (but with considerable variation in predictive abilities among species, see e.g. Fig. 3 102 

in Fordham et al. 2018). For butterflies, Kharouba et al. (2009) showed that climate change-

induced range shifts of North American species could be well predicted by SDMs for most of the 104 

160 species tested but also reported a large variation between species in the abilities of the models 

to correctly predict observed range shifts despite high spatial model accuracies during model 106 

training. Another widely used approach to evaluate predicting abilities of cSDMs is to compare 

predicted and observed distribution in invasive areas. Again, this approach produced contrasted 108 

conclusions. For instance, Peterson et al. (2003, plants); Petitpierre et al. (2012, plants) or 

Ramírez-Albores et al. (2016, plants) reported good abilities of cSDMs in predicting invasive 110 

ranges but Broennimann et al. (2007, plants); Beaumont et al. (2009, plants); Gallagher et al. 

(2010, plants); Early and Sax (2014, plants); Goncalves et al. (2014, plants) or Hill et al. (2017, 112 

insects) found opposite conclusions. 

One of the main reasons for the success of climatic cSDMs undoubtedly lies in the strong 114 

accuracy of their results when compared to observed species distributions. Such high goodness-

of-fit under current climatic conditions is often interpreted as evidence for the ability of cSDMs 116 

to represent a causal link between climatic variables and species range (e.g. Pearson and Dawson, 

2003, 2004, and see review by Elith & Leathwick 2009) or as a way to identify key specific 118 

climatic variables driving species range limits (e.g. Bombi et al. 2009, Gogol-Prokurat 2011, 

Javanbakht et al. 2017). However, several studies have questioned the ability of cSDMs to identify 120 

accurately the role of climate in determining species range (Loehle and LeBlanc 1996, Bahn and 

McGill 2007, Beale et al. 2008, Lozier et al. 2009, Fourcade et al. 2018, Rich and Currie 2018). 122 
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A key criticism is that cSDMs rely on correlations that do not necessarily have a causal basis, and 

that they cannot be externally validated since they are typically tested by resampling the dataset 124 

of available occurrences (Dormann et al. 2012).  

Null models represent a more appropriate way to assess the capacity of species distribution 126 

models to detect the causal relationship between species and climate (Gotelli and Graves 1996). 

Only a handful of studies have used null models to assess the robustness of climatic cSDMs in the 128 

past, either by comparing the output of cSDMs obtained on actual species distributions and on 

virtual species distributions (Bahn and McGill 2007, Beale et al. 2008, Jiménez-Valverde et al. 130 

2011) or by using randomized environmental predictors (Boucher-Lalonde and Currie 2016, 

Fourcade et al. 2018). These null model approaches have yielded mixed results. For instance, 132 

Beale et al. (2008) concluded that species-climate associations found by cSDMs were no better 

than chance in a majority of European bird species, while Jiménez-Valverde et al. (2011) found 134 

the opposite conclusion for North American birds. However, most of these studies questioning 

the actual robustness of cSDMs have focused on bird species, and no study that we know of has 136 

used null models to assess the goodness-of-fit of cSDMs across several taxonomic groups, i.e. to 

test whether the robustness of cSDMs may depend on the group of taxa considered.  138 

In this study, we used real species from five taxonomic groups and virtual species 

distributions of the same range size to test whether or not the accuracy of cSDMs calibrated with 140 

climatic variables reflect the role of climate in shaping species distribution. By doing so, we 

assessed the extent to which cSDMs can actually capture the processes linking climate and species 142 

distributions. A key requirement of our approach is the design of appropriate null models. We 

used random diffusion models, unconstrained by climatic gradients, to build virtual species 144 

distributions that have no causal link to climate, then compared the performance of climatic 

cSDMs when predicting real and virtual species distributions. We selected real species in five 146 

groups differing in their ecology and dispersal abilities, which excludes that our findings are 
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explained by biological traits specific to a given group of organisms. Our aim was to answer the 148 

following question: can the distribution of virtual species be predicted with a similar accuracy as 

real species? Doing so, we do not question the role of climate as a major driver of species 150 

distributions (see Merriam 1894, Walther et al. 2005, Chen et al. 2011), or that cSDMs can be 

useful for assessing climate change impacts whenever climate is the main factor limiting a species 152 

range. Instead, what we precisely question is the use of cSDMs to assess the importance of climate 

on species distributions and consequently their use in predicting range shifts in response to climate 154 

change in species where the link between climate and range limits has not been clearly established. 

We focus this study on the Western Palearctic region (Europe, North Africa and the Middle 156 

East) because species distributions there are known with greater accuracy than in most other areas 

and can be associated with reliable climatic data. We selected two plant functional groups 158 

(herbaceous plants and trees), and three vertebrate groups, two ectotherms (reptiles and 

amphibians) and an endotherm (birds). We randomly picked 25 species (hereafter ‘real species’) 160 

of widely variable range size (i.e. prevalence) in each of these five groups. For each real species, 

we generated 10 virtual species distributions with spatial cohesion. We hypothesized that the 162 

predictive power of cSDMs varies across each taxonomic group due to their contrasted ecologies. 

For example, one may expect that plants, amphibians and reptiles could be more influenced by 164 

the variation in climate variables than warm-blooded species such as birds (Gaston 2003). We 

also expect that the predictive accuracy of cSDMs decreases with increasing species range size, 166 

because larger distributions tend to sample broader arrays of climatic conditions than restricted-

range species. Furthermore, we used a newly-proposed rigorous evaluation of models’ outcomes 168 

(Roberts et al. 2017) to strengthen the scope of our findings. We therefore i) assessed the 

sensitivity of our analysis to range size and ii) compared accuracy of cSDM results on real species 170 

distributions between the five species groups, then iii) compared the accuracy of climatic cSDM 
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suitability maps obtained for these virtual species distributions to those obtained for the real 172 

species, across the five groups of taxa.  

 174 

METHODS 

Study area and climatic variables 176 

The study area corresponds to the Western Palearctic ecozone, including the European region of 

Eurasia together with North Africa (north of the Sahara) and the Middle East (Fig. 1). It is located 178 

roughly between the latitudes of 30° to 72° N and the longitudes of 12° W to 68° E and covers an 

area of 33,152,400 km² (i.e. 331,524 pixels of 5 arc-minutes resolution) when excluding oceans 180 

and large water bodies. Using a finer resolution would have been relevant regarding the resolution 

of species distribution. Because pixels are different around the shores to the Caspian Sea, we 182 

redefined the Caspian Sea with a specific mask 

(http://www.naturalearthdata.com/downloads/50m-physical-vectors/). We downloaded 19 184 

climatic variables from the WORLDCLIM database (see Table S1 in Supporting Information, see  

Hijmans et al. 2005 for more details, downloaded in February 2016 from www.worldclim.org, 186 

version 1.4) and added elevation (downloaded from https://lta.cr.usgs.gov/SRTM) because it 

strongly correlates with local climatic conditions in the study area. We used a principal component 188 

analysis (PCA) to reduce the number of predictors to a smaller number of uncorrelated synthetic 

variables. The first six axes of a PCA on all 20 original variables explained ca. 97% of the variance 190 

of the data set (Table S1) and were retained as predictors in all subsequent modeling analyses. 

This was sufficient for our purpose as we did not aim to identify the most relevant climatic 192 

variables influencing the range of a given species. 

 194 

Real species distribution data 
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We first built a species list for birds, amphibians, reptiles and herbaceous plants occurring in 196 

Europe, retaining only species native to Europe that have most of their breeding range within 

Europe. We further excluded seabirds and other strictly coastal or insular bird species. Once the 198 

lists were completed, we randomly selected 25 species for each of these taxa (100 species in total). 

For these four taxonomic groups, species distributions were downloaded from the IUCN Red List 200 

website (http://www.iucnredlist.org). If a distribution was not available for a given species, we 

randomly picked another species of the same group in our list. For trees, we downloaded the 202 

distributions of all 26 available species (at the time of the study in 2016) from EUFORGEN 

(http://www.euforgen.org, San-Miguel-Ayanz et al. 2016). We removed areas of non-native 204 

presence (if any) and non-breeding range for birds, as well as parts of the range located outside 

the study area. We then rasterized species distribution maps into presence-absence data at a 5-206 

minute resolution to match climatic data. Because some of the selected species had small ranges 

(i.e. less than 100 pixels), we anticipated difficulties to fit accurately a distribution model (as 208 

illustrated in other studies, e.g. Stockwell and Peterson 2002). We therefore added three 

supplementary species of amphibians and herbaceous plants to circumvent this issue. In total, we 210 

gathered data for 132 species distributions of five taxonomic groups. The distributions of 88 

species were entirely included within our study zone. The distributions retained for the final 212 

analyses vary from local endemics (minimum of six pixels) to continent-wide presence (maximum 

of 244,492 pixels on 331,524 land pixels, see Metadata S1). 214 

 

Null models 216 

For each real species, we generated 10 virtual species distributions with the same range size 

(prevalence) as the real species (Fig. S1, Fig. 1). We chose to generate spatially cohesive 218 

distributions for virtual species, i.e. the virtual distributions were formed of a single block rather 

than multiple isolated pixels with occurrence data (see discussion). We developed an algorithm 220 
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under the R environment (R Core Team 2016) to generate these virtual species distributions using 

a diffusion model approach (Metadata S2). We started by randomly selecting one pixel in the 222 

study area. The virtual distribution was then extended gradually by colonizing adjacent pixels in 

a direction chosen randomly at each step, until the final range size was reached (i.e. the same 224 

range size as the corresponding real species). Whenever a pixel was selected within a large water 

body, it was exchanged with the closest unoccupied pixel in land. This procedure guaranteed that 226 

sea basins were not a barrier to “colonization” and avoided the mid-domain effect (Colwell and 

Lees 2000), where most distributions would be located in the center of the study area. 228 

 

Distribution modeling 230 

All cSDMs were fitted with the R package BIOMOD2 (Thuiller et al. 2009). We used the same 

modeling workflow for real and virtual distributions (Fig. S1). We used two kinds of algorithms 232 

to fit the cSDMs. First we built generalized additive models (GAMs; Wood 2006) to describe the 

relationships between presence-absence data and the six climatic predictors. GAMs are commonly 234 

used in species distribution modeling because they handle complex responses and are robust to 

data quality as well as to the number of absence data (Barbet-Massin et al. 2012).  236 

As our main aim was to compare real with virtual species, we did not need to split the dataset of 

observed presences as commonly done to test for the validity of the fitted model. Thus we first 238 

fitted GAMs by including all the pixels in our study area (331,524 pixels, from six to 244,492 

presences depending on the species), considering all pixels outside species’ distributions as 240 

absences.  

However, considering all pixels may inflate goodness-of-fit values and thus level differences 242 

between real and virtual species. In most cSDMs-based studies, model validation is assessed on a 

random subsample of the dataset of observed presences or presences-absences different from the 244 

subsample of data used for model calibration. Calibration and validation based on random samples 
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of presence-absence data can underestimate the errors when dependence structures are present in 246 

the data (Roberts et al. 2017), as it is the case with climatic data. In fact, defining separate blocks 

for training and testing model represents a new opportunity to limit effect of spatial structure for 248 

climate and species distribution (Roberts et al. 2017). Block cross-validation can address these 

issues. As recommended by Roberts et al. (2017), we defined two non-randomly chosen blocks 250 

of data, one for cSDM calibration and another one for cSDM validation. To do so, we split the 

study area in two according to the mean latitude of species distribution. We then sampled 5000 252 

absences in each block to insure a minimal value of 10,000 absences in total for the study site 

(Barbet-Massin et al. 2012). When it was impossible to split the study area according to latitude, 254 

we used longitude. We present results for both methods, i.e. with and without cross validation, for 

GAM algorithm. Our general methodology is summarized in Figure S1. 256 

As GAMs are prone to overfitting and may produce response functions that are difficult to 

interpret biologically (Wood 2006), we also used MAXENT (v3.3.3, Phillips et al. 2006, using 258 

only presence data) to assess the robustness of our findings to changes in algorithm. The results 

obtained with MAXENT were qualitatively similar to those obtained with GAMs and are not 260 

detailed here (see Appendix A1 in Supporting Information). Note that overfitting can also affects 

machine learning methods or MAXENT (Elith et al. 2006, Elith and Graham 2009).  262 

 

Models evaluation and statistical analysis 264 

We used the two most common evaluation methods (Fourcade et al. 2018) to calibrate and validate 

GAMs, the Area Under the Receiver Operating Curve (AUC) criterion and the TSS. AUC is 266 

independent from the threshold value used to convert probabilities of presence per pixel into 

presence – absence data (Elith and Leathwick 2009) and is one of the most popular criteria to 268 

evaluate cSDMs. An AUC value of 1 means a perfect fit, while a value of 0.5 corresponds to 

random prediction of a species presence in a given cell. 270 
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To better check whether our conclusions are sensitive to the evaluation metrics used, we also used 

a threshold-dependent metric with the GAM algorithm, the True Skill Statistics (TSS, Allouche 272 

et al. 2006). The TSS is an alternative metric used in cSDMs studies that is not influenced by the 

distribution size. It is based on presence-absence data and varies between -1 (poor fit) and 1 274 

(perfect fit). To convert the probabilities of presence into presence-absence data for TSS, we used 

a threshold value maximizing sensibility and specificity as recommended by Liu et al. (2013). 276 

Two real species and 49 virtual species were not predicted due to the low number of presences 

used to calibrate the model, but the results yielded the same conclusions than the AUC (see Figure 278 

3).  

 To compare the accuracy of cSDMs results for virtual and real species distributions, we 280 

assigned a rank to each real species based on its AUC (or TSS) value compared with the AUC (or 

TSS) values of its 10 corresponding virtual species: if the real species was found to have the 282 

highest AUC (or TSS) it was assigned the first rank, i.e. rank 1, while if it was found to have the 

lowest AUC (or TSS) it was assigned the last rank, i.e. rank 11. We then compared the rank 284 

distribution of the real species to the expected distribution under the null hypothesis that AUC (or 

TSS) values did not differ between real and virtual species. We also used a t-test to test whether 286 

AUC (or TSS) values of cSDMs differed between real and virtual species and an F-test of equality 

of variances I to test if real and virtual species had AUC (or TSS) of equal variance (Stats package 288 

in R).  

Last, we ran a General Linear Model in Statistica version 10 (StatSoft 2011) to examine the effects 290 

of group and prevalence on AUC (or TSS) for real species only. Prevalence was log-transformed 

prior to analysis to reduce non-normality and group was defined as random. We started with the 292 

complete model AUC (or TSS) = log(prevalence) + group + group * prevalence. 

 294 

RESULTS 



13 

Comparison between real and virtual species 296 

The distributions of the real species were generally accurately predicted without cross-validation 

(hereafter “CV”) with AUC values ranging from 0.899 to 1.00 (µAUC = 0.972, σAUC = 0.02), while 298 

AUC values with blocked CV ranged from 0.308 to 0.99 (µAUC-CV = 0.675, σAUC-CV = 0.179, 

Figure S3). The TSS values ranged from 0 to 0.99 without CV (µTSS = 0.844, σTSS = 0.129) and 300 

from 0 to 0.98 with blocked CV (µTSS-CV = 0.323, σTSS-CV = 0.278, Figure S3). The AUC and TSS 

values of cSDMs for virtual species distribution were also higher without CV (µAUC = 0.975, σAUC 302 

= 0.05 ; µTSS = 0.848, σTSS = 0.20), than with blocked CV (µAUC-CV = 0.741, σAUC-CV = 0.16 ; µTSS-

CV = 0.432, σTSS-CV = 0.28). The goodness-of-fit values of models fitted without CV were similar 304 

between virtual and real species (GAM AUC, t-test, t = -1.27, df = 283.62, p = 0.206; GAM TSS, 

t-test, t = -0.39, df = 200.16, p = 0.691). However mean values were different between real and 306 

virtual species distribution fitted with blocked CV (GAM AUC-CV, t-test, t = -4.36, df = 1450, p 

< 0.0001; GAM TSS-CV, t-test, t = -4.20, df = 1450, p < 0.0001), with virtual species showing 308 

higher AUC and TSS values on average.  

The AUC and TSS values of cSDMs for virtual species distribution were more variable than for 310 

real species (AUC: F-test of equality of variances; F131, 1319 = 4.88, p < 0.00001; TSS: F-test of 

equality of variances; F131, 1319 = 2.39, p < 0.00001). However, these differences disappeared with 312 

blocked CV (AUC-CV: F-test of equality of variances; F131, 1319 = 0.832, p = 0.14; TSS-CV, F-

test of equality of variances; F131, 1319 = 1.04, p = 0.75). 314 

Most real species distributions had a lower rank than virtual species distributions, and only eight 

of the 132 real species were ranked first in comparison to their virtual species. The majority of 316 

virtual species distributions were thus predicted with a stronger accuracy than real species 

distributions (Fig. 2, Fig. 3-a & Metadata S1). The proportion of real species ranked first is very 318 

similar to the expected proportion if species rank was randomly assigned, regardless of their 

“status” (i.e. real or virtual): under random expectations, one out of 11 real species should show 320 
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a better fit than its 10 associated virtual species, i.e. a total of 12 (132/11) real species ranked first 

by chance. The results were similar regardless the metric and the methodology used (Fig. 3-b, c, 322 

d & Metadata S1) or the algorithm (Figure S2 & Metadata S1). We can thus conclude that real 

and virtual species’ distribution were predicted with the same accuracy. 324 

 

Effect of prevalence and taxon on the fit of the cSDMs for the real species 326 

Prevalence strongly and negatively affected the cSDMs accuracy (AUC and TSS, without CV and 

with blocked CV) for real species (Table 1). The group did not have a significant effect on AUC 328 

and on TSS with blocked CV, but it significantly affected TSS without CV (Table 1). In this last 

case, the interaction between prevalence and group was also significant. In all cases, AUC or TSS 330 

seemed to decrease more for birds than for the other groups when prevalence increased (Fig. 4).  

 332 

DISCUSSION 

Our main result is that SDMs based on climatic variables (cSDMs) predict equally well the 334 

distribution of real species and of virtual species whose distribution is independent of climate, 

regardless of the method used to fit cSDMs. Using a blocked cross-validation showed that virtual 336 

distributions may be even better predicted with cSDMs than real species distributions. Our 

findings therefore demonstrate that a strong predictive power of cSDMs should not necessarily be 338 

interpreted as an accurate depiction of the link between climate and species distribution, and thus 

calls for a greater caution when using cSDMs to make predictions about future changes in species 340 

distributions in response to climate change. 

 342 

Prevalence and taxonomic groups did not affect our conclusions 

We expected the increase size of the distribution (or prevalence, see Stockwell and Peterson 2002, 344 

Proosdij et al. 2016) increase the accuracy of cSDMs, as previously found in invertebrates 
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(Aguirre-Gutiérrez et al. 2013) and tetrapods (mammals, reptiles, amphibians and birds; Morán-346 

Ordóñez et al. 2017). In agreement with these studies, we found that predictive accuracy of 

cSDMs decreased with increasing range size in real species. Contrary to our expectations, we did 348 

not find a significant variation of predictive performance of cSDMs between taxonomic groups, 

despite a tendency for weaker accuracies for birds (different slope of the AUC – prevalence 350 

relationships, Fig. 4). We might speculate that this tendency for a lower accuracy of climatic 

cSDMs in birds would become significant with a larger sample size per taxonomic group (approx. 352 

25 real species per group in our study), as expected if birds, being endotherms, are less constrained 

by climate than ectotherms and plants (Gaston 2003). The main objective of including several 354 

taxonomic groups in our study was not to test for differences in accuracy among groups, however, 

but to ensure that our main conclusion was not dependent on the taxonomic group used. Therefore, 356 

virtual species distributions can be predicted as accurately as real species distributions, and this 

pattern does not depend on the size of the distribution group and also appears consistent regardless 358 

the ecological characteristics of the real species investigated. 

 360 

Spatial auto-correlation of climatic variables is the most likely culprit to explain our finding 

How to explain that climatic variables can accurately predict a distribution range even when it is 362 

not linked to climate? Bahn and McGill (2007) already suggested that the spatial structure and 

autocorrelation of environmental variables could generate spurious relationships with species 364 

distributions, while Chapman (2010) simulated climatic gradients to demonstrate that the spatial 

structure of climate data drove the fit and the accuracy of cSDMs. Boucher-Lalonde and Currie 366 

(2016) removed all causal links between species distributions (here birds and mammals) and 

climate but retained the spatial autocorrelation structure of environmental variables. They found 368 

that the relation between climatic niche breadth and species range size could be adequately 

explained by the spatial autocorrelation of species ranges and climatic predictors. By using 370 
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pseudo-predictors based on art paintings, Fourcade et al. (2018) recently demonstrated that any 

variable with a strong geographic structure (spatial autocorrelation) can accurately predict the 372 

distribution of a species. 

In this study, we retained actual climatic variables (in contrast to Chapman 2010, Boucher-374 

Lalonde and Currie 2016, Fourcade et al. 2018) but we generated virtual species distributions of 

the same size as real species but built without any causal relationships with climate (as done by 376 

Bahn and McGill 2007 or Beale et al. 2008 for birds). Our approach for generating virtual species 

distributions, using a random diffusion method, generated virtual distributions that had a more 378 

biologically realistic outline than previous studies based on simpler approaches (e.g. Bahn and 

McGill 2007) and retained the autocorrelation of species distributions necessary to build an 380 

appropriate null model, as rightfully advocated by Beale et al. (2008). With an approach similar 

to Beale et al. (2008) but i) using a novel and more rigorous evaluation of models (i.e. blocked 382 

cross-validation) and ii) attaining more generality by incorporating species with more contrasted 

range sizes and ecologies, we confirmed that the spatial structure of climatic predictors allows the 384 

accurate modelling of almost any spatially coherent distribution with a cSDM. In fact, there seems 

always to be a combination of climatic variables that can describe a climatic envelope of a given 386 

distribution with a good accuracy, because of the strong latitudinal and longitudinal gradients of 

most climatic variables in Europe. A proper empirical test of this hypothesis would require 388 

altering the degree of spatial autocorrelation of climatic variables and examine how it affects 

accuracy of cSDMs. 390 

 

Deciphering the role of climate on species distributions   392 

Most studies that used null models to assess the ability of cSDMS to identify causal links between 

climate and species distributions concluded that climatic cSDMs did not perform generally better 394 

than alternative null models (Bahn and McGill 2007, Beale et al. 2008, Boucher-Lalonde and 
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Currie 2016, Fourcade et al. 2018, Rich and Currie 2018; but see Jiménez-Valverde et al. 2011). 396 

Among these studies, some have argued that, because cSDMs based on climatic variables can 

predict null distributions with no relationship to climate as accurately as real species’ distributions, 398 

or because environmental variables added no predictive power beyond what spatial interpolation 

could provide, climate might not be the main factor driving species’ distribution (e.g. Beale et al. 400 

2008, Rich and Currie 2018). We do not share this view.  

In our opinion, the ability of climatic cSDMs to model virtual species’ distributions with the same 402 

accuracy as real species’ distribution tells nothing about the role of climate in shaping species’ 

distributions. These results simply demonstrate that fitting climatic cSDMs is not necessarily an 404 

appropriate tool to test for the role of climate in shaping species distributions. Because climatic 

cSDMs can and will accurately predict distributions that have no link to climate (Bahn and McGill 406 

2007, Beale et al. 2008, our results), we need other approaches to investigate which species 

distributions are limited by climate or by other biotic or abiotic factors.  408 

Testing the role of climate on species distributions is more crucial than ever. If fitting cSDMs 

cannot inform us on the causal link between climate and species occurrence, which possibilities 410 

can be envisaged? Possible alternative approaches include mechanistic models linking 

ecophysiological and/or demographic components to climatic variables on the basis of empirical 412 

and/or experimental data (Chuine and Beaubien 2001, Sinervo et al. 2010, Gutiérrez et al. 2016). 

Although some of the processes embedded in these mechanistic approaches may be sometimes 414 

modelled partly through correlations (for instance if a process relies on bioclimatic thresholds 

inferred from presence-absence observed in distribution maps), the bias is certainly much weaker 416 

than for cSDMs that fundamentally depend on the species range size to be calibrated. Therefore, 

because they mostly rely on response functions that are a priori defined in experimental settings, 418 

they are not biased by spatial autocorrelation, and the effect of climate is directly tested. Another 

promising approach is the experimental manipulation of range limits (reviewed in Hargreaves et 420 
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al. 2014). Last, the current level of climate change offers pseudo-experimental settings to directly 

test the impact of climate on species distribution (Kerr et al. 2007). Whenever actual changes in 422 

range limits as a response to climate change match the predictions of climatic cSDMs, the causal 

role of climate in determining distribution becomes well supported. As mentioned in the 424 

introduction, such approaches have yielded mixed responses within a general pattern of poleward 

and upward range shifts and it is likely that the direct contribution of climate to range limits vary 426 

between taxonomic groups and/or biogeographic regions (see Lenoir and Svenning 2015). 

Unfortunately, none of these alternative approaches is as easy to use or as general as correlative 428 

SDMs. 

 430 

Comparisons with previous studies and the need for repeatability in ecology 

Our work is not the first one to use virtual species distributions to assess the power of cSDMs to 432 

capture actual links between climate and species distributions (see references in the introduction). 

However, we wish to point out here the novel aspects of our study.  434 

Firstly, the most original aspect of this work is clearly the comparison of several taxonomic groups 

of real species. Most previous papers using similar approaches focused on only one group of 436 

species (in most cases avian species), and it could be argued that their results were driven by a 

possible lack of response of birds to climate (in comparison with other kinds of organisms with 438 

physiological requirements more directly related to climate, like plants or ectotherms). In fact, 

one of the previous similar studies (Beale et al 2008) concluded that « the distributions of most 440 

birds in our study are not strongly associated with the climate variables currently available » rather 

than questioning the bases of correlative climatic niche modelling. We are not aware of any study 442 

comparing the performance of cSDMs on virtual and real species for such a wide range of taxa 

(ie., the four main groups of terrestrial vertebrates and two functional groups of plants), thus 444 

comparing species strongly differing in dispersal abilities (from birds and trees to salamanders) 
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and ecophysiology (endotherms vs. ectotherms and plants). We detected some differences 446 

between groups (consistent with the ecology of the groups), yet our conclusions draw a strong 

general trend. Therefore, with studies such as ours, it will be difficult to argue that the lack of 448 

power of cSDMs is restricted to the group(s) investigated.  

Secondly, validation practices rapidly evolve in niche modelling and low performance of cSDMs 450 

compared to null models has also been linked to failure of validation tools. The study by Fourcade 

et al. (2018) concluded on “the inability of current evaluation metrics to assess the biological 452 

significance of distribution models”. Here, we used the most stringent and recent validation tools 

- in addition to the commonly used AUC - and we showed that our conclusions did not change 454 

with the validation tools.   

Last, we also wish to point out that in spite of the previous studies mentioned above, common 456 

practice has not changed much in the field and cSDMs are still widely used for forecasting without 

much caution: cSDMs are more widely used than ever, and the limits of this modelling technique 458 

and philosophy are almost never acknowledged. Like in many other fields, it will take at least a 

series of independent studies by several teams (see Palmer 2000; Kelly 2006; Nagakawa and 460 

Parker 2015 on the need to repeat studies in ecology and evolution) before the cautionary message 

is heard. We thus think that it is important to publish independent studies reinforcing previous 462 

conclusions with different approaches and independent data sets. In that sense, we believe that 

our study based on several groups of species, relying on spatially-explicit virtual distributions 464 

(instead of randomizations) across Europe and using the most recent methods in cSDMs validation 

represents a significant step in this direction. 466 

 

Methodological issues and perspectives of our study 468 

The methods used in this study differ from the classical way of fitting cSDMs in several aspects. 

Firstly, we used polygons of distribution range as presence data, resulting in the spatial 470 
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segregation of presence and pseudo-absence pixels. Many studies using cSDMs used actual 

occurrence data instead, resulting in a mixture of presence and pseudo-absence data inside the 472 

distribution range of species. Such an approach assumes that i) pseudo-absence data inside the 

distribution range of species are more likely to correspond to real absences than to pixels where 474 

the species is actually present but has not been detected and ii) that the environmental factors used 

to model species occurrence differ between presence and pseudo-absence pixels. The first 476 

assumption might be realized in some species with high detectability in well-prospected areas but 

is certainly not verified in most empirical studies that we know of. The second assumption seems 478 

unrealistic in climatic cSDMs based on broad-scale climatic variables (such as the WORLDCLIM 

database), as most of the variables used for modelling certainly do not vary at the spatial scale 480 

corresponding to the spatial resolution of the presence and pseudo-absence data. In other words, 

it is highly unrealistic to use climatic variables varying over regional or continental scales to 482 

explain whether a species is present or absent in particular pixels of a local region. We are 

therefore confident that using polygons of distribution range as presence data does not undermine 484 

our work. We nevertheless checked the sensitivity of our results to this methodological choice by 

modeling real and virtual species distribution after removing 20%, 40%, 60% and 80% of the 486 

presence data and selecting pseudo-absence randomly inside and outside the species range, as 

done in many empirical studies (e.g. Araújo et al. 2005, Barbet-Massin et al. 2012, Elith and 488 

Graham 2009). Using various proportion of presence data did not alter our results and our 

conclusion that real species distributions are not predicted with stronger accuracy than virtual 490 

species distributions therefore remains valid (see Appendix A1 in Supporting Information). 

Secondly, the size of the study area is known to affect the accuracy of modelling results 492 

of cSDMs (Thuiller et al. 2005). If the study area is too large relative to the species distribution, 

there is a risk of overfitting (i.e. increased AUC values) leading to less realistic estimates of niche 494 

characteristics (Anderson and Raza 2010, Barve et al. 2011). This is simply because increasing 
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the range of climate conditions spanned in a study area increases the ability of cSDMs to 496 

discriminate the range of conditions suitable for a given species, but at the cost of decreasing the 

accuracy. In this work, we did not adjust the size of the study area to be proportional to each 498 

distribution (Fig. 1, Metadata S1) because defining a specific study area for every real and virtual 

species distribution would distort the modeling procedure and would not allow a fair comparison 500 

for all species. However, the key point was that real and associated virtual species always had the 

same range size. Furthermore, many real species selected had a large prevalence, so the effect of 502 

large study area relative to species range cannot be responsible for our main conclusion.  

Thirdly, we chose to assess the performance of the model through a blocked cross-504 

validation (Roberts et al. 2017, Fourcade et al. 2018). This method provides a better spatial 

independence between calibration and validation datasets than usually done in cSDMs-based 506 

studies with random cross-validation. Doing so also strengthened the robustness of our results. 

Lastly, the generated virtual distributions were on average less fragmented than the real 508 

species distributions (Fig. 1). This pattern arose because our null models relied on continuous 

distributions obtained through a diffusion model, while real species may have disjointed 510 

distributions, especially those located in mountains and/or at high latitude. It has been shown that 

the aggregation level may influence the goodness-of-fit of cSDMs, with species distribution with 512 

a high level of aggregation usually showing higher AUC values (Beale et al. 2009). Although this 

approach is likely to have a weak impact on our results, a relevant perspective to this work would 514 

be to create a diffusion model allowing to design fragmented distributions, in order to compare 

real and virtual species’ distributions with a similar level of spatial fragmentation and/or 516 

convolutions of distribution limits. However, we do not expect this to affect our main conclusion, 

because our set of real species also includes distributions that have simple shapes and they were 518 

not better predicted than virtual species distributions (for examples see Figure S4), and because, 

alternatively, some of the virtual distributions with a convoluted outline were adequately predicted 520 
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by cSDMs. We are thus confident that the main finding of the present study is robust to this 

limitation about the level of fragmentation of the virtual distributions. 522 

 

Combining various approaches to better predict the impact of climate change  524 

Forecasting distributions (e.g. projecting climate change impact on species distribution) is 

conditioned by two assumptions: that current distributions are mainly limited by climatic variables 526 

and that climatic niches remain stable through time (this is called the “climatically constrained 

hypothesis” by Rich and Currie 2018). It is probably sensible to assume that evolutionary changes 528 

in climatic niche will be rare enough (i.e. be expressed in few species) or small enough (i.e. be of 

low magnitude) at contemporary time scales to have a limited effect on most forecasting attempts, 530 

even if contemporary adaptation to new climate has been documented before (e.g. Colautti and 

Barrett 2013, Geerts et al. 2015, While et al. 2015). However, assuming that all current species 532 

distributions are mainly limited by climatic variables is highly questionable, as explained in the 

introduction and earlier in the discussion. Our results further emphasize that forecasting 534 

distributions with cSDMs should be done with caution: correlative species distribution models 

may be useful to predict changes in species distribution due to climate change whenever climate 536 

is the main factor determining range limits (Lee-Yaw et al. 2016). For instance Kharouba et al. 

(2009) constructed cSDMs under historical conditions for butterfly species and predicted range 538 

shifts reasonably well when climate changed for many (but not all) species. This is consistent with 

the fact that the physiology of many insect species (phenology, survival rates) is strongly 540 

dependent on climate (Chuine and Régnière 2017). Since current distributions are not necessarily 

limited by climatic factors, recent developments of cSDMs have tried to incorporate non-climatic 542 

factors such land use, interspecific interactions or dispersal abilities to improve the modelling 

tools (Thuiller et al. 2004, Cabral and Schurr 2010, Boulangeat et al. 2012). Such efforts have 544 

improved the fit of the models to current distributions and shed light on the role of non-climatic 
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drivers of species distributions, so they certainly represent a promising venue for forecasting the 546 

impact of climate change. The climatic part of these hybrid SDMs remain the same than in classic 

cSDMs in most cases, however, and their forecasting abilities should be rigorously evaluated, for 548 

example using historical distribution data or out-of-range introductions, as has been done with 

classical cSDMs. 550 

 Given these limitations, how can we obtain robust predictions of the impact of climate 

change on species distributions? As written above, although the use of process-based or 552 

experimental approaches is currently expending, they are not straightforward to develop. A first 

attempt to solve this issue may be to limit forecasting with cSDMs to species for which range 554 

shifts have been shown to be predicted with strong accuracy through calibration on historical 

distributions and validation with current distributions (Kerr et al. 2007) or to invasive species 556 

whose invasive areas have been well predicted - although both approaches brought contrasted 

results as reviewed in the introduction. Other possibilities may be to focus on species where the 558 

link between climate and the probability of presence is grounded on solid biological bases, such 

as experiments in controlled conditions (Rehfeldt et al. 2002, Chuine and Régnière 2017) or using 560 

measures of the effects of climate on life-history traits (Pigott and Huntley 1980, Sinervo et al. 

2010), and to select those climatic variables that are biologically meaningful prior to the modelling 562 

steps of cSDMs. Yee-Law et al. (2016) nicely illustrates how climatic cSDMs can provide 

accurate information on niche limits and suitability in a given location when experimental data 564 

demonstrate a causal link between climate and fitness; this was the case for 31 of the 40 plant 

species investigated, so for nearly a quarter (9 out of 40) of the species investigated a link between 566 

suitability as predicted by cSDMs and actual local persistence as assessed by transplant 

experiments was not supported. An even more mixed pattern emerges from studies using human-568 

mediated species translocations as quasi-experiments (see Introduction section), so a direct link 

between climate and current range limits cannot always be taken for granted.    570 
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CONCLUSION 572 

Disentangling the role of climate and other factors in shaping species ranges overreaches 

fundamental ecology and has far-reaching consequences when trying to predict biodiversity 574 

responses to climate change. Fitting cSDMs using climatic variables and using them to predict 

range change in response to climate change rests on the untested hypothesis that climate 576 

determines where a species is found. Our study highlights that fitting correlative SDMs based on 

climatic variables to current species distributions is not enough to assess the effect of climate on 578 

species distribution. This especially calls for caution when forecasting the impact of climate 

change on species range. While cSDMs remain an important tool in the emergence of predictive 580 

ecology (Mouquet et al. 2015), a better understanding of the drivers of species distribution is 

crucial for conservation and climate change impact issues. It will allow the development of more 582 

realistic forecasting models incorporating dispersal, biotic interactions, actual relationships 

between climate and fitness, and non-climatic environmental factors. 584 
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TABLES 

 888 

Table 1. Linear Mixed Model for the effects of group (random) and prevalence on evaluation 

metrics for GAM models with and without blocked cross-validation. The interaction term was 890 

removed from the final model when it was non-significant (p-values between 0.25 and 0.82 for 

the three models with non-significant interaction term). See text for detail. 892 

 

 AUC - no CV  TSS - no CV  AUC - blocked CV  TSS - blocked CV 

  df F p  df F p   df F  p  df  F p 

Group  4, 126 1,98 0,101  
4, 

122 
5,69 <0.001  4, 126 0,91 0,46  4, 126 0,73 0,57 

Ln (Prevalence) 1,126 46,69 < 10-5  
1, 

122 
0,33 0,59  1,126 13,26 <0.001  1,126 23,35 <0.001 

Group * 
Ln(Prev) 

-       
4, 

122 
4,44 0,002   -       -     

 894 
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CAPTIONS AND FIGURES 896 

 

Figure 1: Distribution of Chloris chloris (a, bird), Abies alba (b, tree) and Eryngium alpinum (c, 898 

herbaceaous plant), and two examples of virtual distributions for each of these three species (a1 

and a2 for C. chloris; b1 and b2 for A. alba and c1 and c2 for E. alpinum). 900 

 

Figure 2: Comparison of the AUC values without cross-validation (a) and with blocked cross-902 

validation (b) for real species distributions and virtual species distributions, for each taxonomic 

group. Grey circles correspond to AUC for virtual species, and black dots to the AUC for real 904 

species (Amphibians, Reptiles, Birds, Trees, Herbaceous). Note that y-axis scale is different 

between (a) and (b).  906 

 

Figure 3: Ranks of metrics values (AUC & TSS) of all real species distributions modeled with 908 

GAM algorithm with all data (a-b) and with block cross validation (c-d). Metrics values of real 

species are compared with the 10 corresponding virtual species. (a) Ranks of AUC values f all 910 

real species distributions modeled with GAM algorithm. (b) Ranks of TSS values of all real 

species distributions modeled with GAM algorithm. Note that two real species and 49 virtual 912 

species where not modeled due to the low number of presences used to calibrate the model. (c) 

Ranks of AUC values of all real species distributions modeled with GAM algorithm and a 914 

blocked cross-validation. (d) Ranks of TSS values of all real species distributions modeled with 

GAM algorithm and a blocked cross-validation. Results presented for (c) and (d) correspond to 916 

the validation block (AUC or TSS values of real species compared with the 10 corresponding 

virtual species). 918 

 

Figure 4: Effect of taxonomic group and prevalence on AUC values.   920 
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 922 

Additional Supporting Information for this article, including supplementary tables and figures, 

may be found online. 924 
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