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Adaptive Visual Assistance System for Enhancing the Driver Awareness
of Pedestrians
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In the past decade, Pedestrian Collision Warning Systems have been proposed to detect pedes-
trians and warn drivers of imminent collision. However, such systems are often limited by
eye-off-road and cognitive overload problems. Head Up displays with augmented reality are
being considered as a key technology for changing drivers’ user experiences. In this paper, we
propose a new visual assistance system that can enhance drivers’ perception by dynamically
directing attention to pedestrians to avoid collisions using Augmented Reality cues. The pro-
posed system takes into account driver behaviors through vehicle driving signals analysis, in
order to warn it at the right moments. To that end, we statistically model correct and incorrect
driver behaviors in situations with pedestrians. Based on this model, a warning visual metaphor
is displayed if unawareness is detected and a driving simulator was used to evaluate the con-
cept. The experimental results suggest that our proposed adaptive visual aids can enhance
driver awareness of pedestrians in critical situations.

Keywords: driver behavior, augmented reality, human system interaction, pedestrian safety,
machine learning

1 Introduction

Pedestrians are considered to be among the most vulner-
able road users while also being unpredictable and difficult
to observe in both day-and night-time conditions. A report
from (WHO, 2013) stated that half of the world’s road traf-
fic deaths occur among pedestrians, cyclists, and motorcy-
clists. In high-income countries, pedestrian fatalities are rel-
atively low but still represent a large societal and economic
cost. In developing countries such as India and China, the
problem is much worse, as cars, buses, and trucks share the
roads with large numbers of two-and three-wheelers, bicy-
clists, and pedestrians as presented in (Mock et al., 2004;
Mohan, 2002). Pedestrian safety is therefore a major moti-
vation for research by the scientific community and the au-
tomobile industry. Several car suppliers currently equip their
vehicles with specific Advanced Driver Assistance Systems
(ADAS) known as Pedestrian Collision Warning Systems
(PCWS) (see (Ahmadi and Machiani, 2019; Dagan et al.,
2004)). Such systems detect pedestrians in front of the car,
calculate the time to collision, and warn the driver if the colli-
sion is imminent. However, engineering such systems with-
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out understanding driver attention states and driving styles
can make them extremely distracting and annoying when de-
tecting pedestrians. Moreover, head-down-displays mounted
on the dashboard require the driver to turn their head and
shift their gaze to identify the problem, augmenting the dan-
ger and cognitive overload (Gandhi and Trivedi, 2007).

Head-Up Displays (HUD) in cars become a great oppor-
tunity for a wide range of Augmented Reality (AR) applica-
tions. The work of (Gabbard et al., 2014) focused on naviga-
tion support to display navigational hints in the field of view
of the driver. This helps to decrease the time drivers spend
looking at dashboard displays rather than the road. AR ap-
plications were further studied using simulators in (Charissis
and Papanastasiou, 2011; Kim and Dey, 2009; Schall Jr et al.,
2013) with promising results in the support of elder drivers.
The AR was found to be able to direct driver attention in crit-
ical situations without distraction. In (Fisher and Tan, 1989;
Jonides, 1981), the authors found that a “dynamic blinking”
cue used for highlighting can also be effective for attracting
attention. In (Yeh and Wickens, 2001), the authors studied
the effects of cue reliability and image realism on attention
allocation. They demonstrated that cueing aided target detec-
tion in an aviation visual task and that target detection accu-
racy can be enhanced when object cues are not conspicuous.
In another experiment proposed in (Rusch et al., 2013), the
authors showed that such AR cues did not interfere with the
perception of non-target objects or with driver performance.
They also confirmed that highlighting cue alerts helped to



2 VINCENT FRÉMONT, MINH-TIEN PHAN AND INDIRA THOUVENIN

direct driver attention to potential hazards. In scenarios with
pedestrians, if the driver notices the pedestrian, carefully an-
alyzes the situation, and chooses correctly to stop or pass
by the pedestrian safely, they are considered to be aware of
the pedestrian (Cases 1 and 2 in Fig 1b). If not, they are
considered to be unaware of the pedestrian (Case 3 in Fig.
1b). Cases of unawareness can include a lack of perception
of the pedestrian or perception that occurs too late for reac-
tion. Most of the time, however, unawareness occurs when
the driver underestimates the risk of the given situation (see
Fig. 1a).

(a) Underestimation of the danger

(b) Cases 1 and 2: The driver should be aware of the pedestrian. If
not (case 3), a warning is activated
Figure 1. Use cases with a pedestrian

In this paper, a visual assistance system that uses AR
cues to enhance driver vigilance is proposed. This work fo-
cuses on situations in which driver attention is directed to
pedestrians by analyzing and guiding driver behavior in spe-
cific situations. Using the driving signals such as the vehi-
cle speed, the acceleration pedal position, the braking force,
the steering wheel angle and the Time-To-Collision, a su-
pervised learning approach is proposed to determine if the
driver is probably aware or unaware of a pedestrian. Then,
based on this driver state estimation an AR metaphor con-
taining a bounding box and a warning panel is displayed to
enhance the driver’s awareness of the pedestrian in a virtual
environment. An experiment involving 23 participants using
the driving simulator was carried out to analyze the benefits

of the proposed adaptive visual aid system in a virtual envi-
ronment.

The main contributions of the paper are as follows.

• We explore the global scope of learning-based gener-
ative models for driver awareness of pedestrian using
only driving signals and multivariate Hidden Markov
models;

• Based on this original driver’s awareness of the pedes-
trian estimation, we propose a new HMI design
through virtual and augmented reality cues, evaluated
with 25 participants;

• We conducted an extensive review of the relevant state-
of-the-art approaches in the field of driver awareness
and HMI design through virtual and augmented real-
ity;

• To better analyze the benefits of adaptive visual aids,
we propose and implement an intelligent AR configu-
ration, called iAR, where both the DAP/DUP classifi-
cation and the critical situations are taken into account
for metaphors display. In that way, the visual aids are
displayed only when the driver is determined to be un-
aware of a pedestrian.

The paper is organized in five sections. The first section
is used to present the model of driver behavior in situations
with pedestrians. In the second section, the proposed visual
aids for uses in augmented reality are described. In the third
section, the experiments, driving simulator, simulated HUD,
experimental protocol, and data collection methodology are
described. The fourth section presents statistical results sup-
porting the proposed approach. A discussion and conclusion
are then given in final section.

2 Driver’s behaviors modeling in situations with a
pedestrian

In this paper, the main contribution is the design of a su-
pervised learning approach that estimates the driver aware-
ness of a situation using only the driving signals such as the
vehicle speed, the acceleration pedal position, the braking
force, the steering wheel angle and the Time-To-Collision.
Here, we do not consider eye-off-road issues using for exam-
ple, gaze tracking information in our model.

2.1 Related Works

In the driver’s inattention research field, potential direct
measures such as physiological signals sensors (Akin et al.,
2008; Wesley et al., 2010) and visual behaviors observation
(Bergasa et al., 2008; Doshi and Trivedi, 2012; Lin et al.,
2012) can be used to detect the degree of driver attention or
distraction. In (Imamura et al., 2008) and (Ueno et al., 1994),
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driver drowsiness was indirectly detected through vehicle
speed, steering wheel motion, lateral position, and acceler-
ation pedal states. In 2004, the projects conducted by Hu-
man Machine and the Safety of Traffic in Europe (HASTE)
(Ostlund et al., 2004) demonstrated that changes from base-
line in steering position measurements are significantly af-
fected by the visual task. In (Jensen et al., 2011), the authors
also proposed a combination of three analysis methods to
evaluate the driver’s performance: data threshold violations,
phase plane analysis with limits and a recurrence plot with
outlier limits. The advantages of such measurements are that
they are unobtrusive, easy to obtain, and quite precise.

2.2 Conceptual model

To the best of our knowledge, there are no studies that
are directly related to the estimation of the driver unaware-
ness of pedestrian or other traffic events. The most closely
related works are those of (Fukagawa and Yamada, 2013)
who proposed a hypothesis that is likely linked to our work.
Their study was based on the driver’s operational data such
as pressure on the accelerator pedal, pressure on the brake
pedal (called acceleration reaction), steering angle and ve-
hicle behavior data such as vehicle speed to estimate the
driver’s awareness of pedestrian. In our driving simulator,
we chose to use the following 4 driving signals, since due to
technical limitations, the head/gaze tracking signals were not
available.

Therefore, in this paper, the considered signals for driver
awareness of pedestrian estimation (see Fig. 2), are the fol-
lowing:

• The vehicle speed, denoted as v in km h−1;

• The acceleration pedal position, denoted as a, which
is normalized to values in the range [0; 1], where val-
ues of 0 and 1 correspond, respectively, to the driver
completely releasing and completely pressing the ac-
celerator pedal;

• The braking force, denoted as b, with values ranging
from [0; 400] (Newton Unit - N);

• The steering wheel angle, denoted as s with values
ranging from [−π, π] radian rad.

• The TTC in seconds, representing the relationship be-
tween the distance to a pedestrian and the speed of
the vehicle, is also considered. TTC is the most well-
known time-based safety indicator. The TTC is calcu-
lated as TTC = d

|v−vp |
. Where v and vp are the vehicle

current speed and the pedestrian speed respectively, d
is the distance between the vehicle and the pedestrian.

Figure 2. Proposed conceptual model for estimating driver
awareness of a pedestrian.

2.3 Learning the Driver’s Behavior from Driving Sig-
nals

To formalize the problem into a classification approach,
the driving signals are first collected into a vector at each
instant j, as follows:

O j = [a j, b j, s j, v j,TTC j]T (1)

A temporal data sequence of several vectors O( j) is then used
as a learning model input, making the total input:

Vi = [Oi,Oi+1, ...,Oi+h.Tw]T (2)

where Tw is the sequence time window and h.Tw is the se-
quence size in terms of data points for which h is the sensor
frequency calculated in (1/Hz). As proposed and detailed
in (Phan et al., 2015, 2014), driver behavior in situations in-
volving a pedestrian can be considered as a Hidden Markov
process with N distinct states S = {S 1, S 2, ..., S N}. At each
time step j for a state S i, we can observe a 5-dimensional
vector O j composed of the driving signals presented in the
previous section. The main originality of the proposed ap-
proach is to use a discrete HMM to classify the DUP and the
DAP. As proposed in (Phan et al., 2015), and using the driv-
ing actions, two Gaussian-Mixture-HMMs, one for the DAP
and the other for the DUP, are used to classify the driver’s
behavior. The problem of DAP or DUP detection can then
be formulated as a classification problem (see Fig. 3).

Figure 3. Decision process architecture based on two hid-
den Markov models representing the DUP and the DAP, re-
spectively. The likelihood ratio is used to classify each new
observation.

The behavior classification is working as follows. Two
HMM models, λDAP and λDUP, that represent the DAP and
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DUP models, are learned from two observation sequences
(driving signals) VDAP and VDUP, Using the expectation-
maximization (EM) algorithm (Bilmes et al., 1998). Next,
given a new sequence of driving signals, V, the forward al-
gorithm (Rabiner, 1989) is applied to λDAP and λDUP to cal-
culate the posterior probabilities P(V|λDAP) and P(V|λDUP),
respectively. Finally, the likelihood ratio for this classifier,
P(V,λDUP)
P(V,λDAP) , is calculated to determine whether the driver is
likely to be aware or unaware of a pedestrian. A threshold
eτth is appropriately selected to adjust the performance of the
DAP/DUP classification. As shown in Fig. 3, if the likeli-
hood ratio is greater than eτth , the considered driving signals
sequence V is classified as DUP; if not, it is classified as
DAP.

2.4 Model training

2.4.1 Data collection. A driving simulator was used
to obtain training data (see Fig. 4). The user interface of
the driving simulator contains a driver seat, a steering wheel,
three real pedals, and a clutch kit. 3D images, sound, and
interactions between the driver and the simulator interface
are piloted using SCANeR Studio software(Oktal, 2015). 10
active drivers (7 men and 3 women) were invited to partici-
pate to the study over 10 days. They were asked to drive the
simulator as they would drive a real car through predefined
scenarios. The driving tests were administered at randomly
selected times during the day. The average age of the partic-
ipants was 24 years (ranging from 20 to 28).

The main idea here, is to characterize for each driver state
DAP and DUP, representative driving data for learning the
HMM model. For that purpose, two driving scenarios were
designed to represent both DAP and DUP states. For the
DAP one, pedestrians appeared in various sections of the
driving simulation environment. Before each driving session,
the drivers are encouraged to avoid collisions with pedestri-
ans, and a message giving the distance to the next pedes-
trian is displayed in the bottom-center of the simulator screen
throughout the driving time. Furthermore, the driver is asked
to press a button on the right-hand side of the steering wheel
to indicate that they noticed a pedestrian. If the driver did
not collide with a pedestrian during their session, he is con-
sidered to be DAP. For the DUP data collection scenario, the
same scenarios as in the DAP simulation with neither mes-
sages nor button-pressing tasks, were proposed. However,
since it is very complicated to provoke unawareness of the
driver, artificial collisions were done by masking the pedes-
trian (making it invisible for the driver) in the simulation en-
vironment. In this way, the driver cannot see any pedestrian,
and is then artificially unaware of them. So, if the simulator
detected any collisions with the "invisible" pedestrians, the
driver was considered to be DUP. Since we conducted exper-
iments using a simulator, the DUP considers the unawareness
as coming from the environment and not from the driver. In

this case, we could talk about ?Artificial Unawareness? that
is to say that the driver is prevented from seeing the pedes-
trian, this is not unawareness but a non-event. As we use
a simulator, we can only do "Reduced Virtuality", since in
that case we can hide elements from the driver and measure
its state. To simplify our reporting here, we refer to the two
scenarios as DAP and DUP, respectively.

Figure 4. Driving simulator used for manipulating driver
awareness of pedestrians.

During the driving assessments, driving data were auto-
matically and synchronously logged at 20Hz onto a hard-
disk without filtering or smoothing processing. In each DAP
driving scenario, the driving data was recorded starting at
the time at which the driver pressed the button to the time
that the vehicle passed by or stopped in front of the pedes-
trian. The same time periods were used to extract data in
the DUP driving scenarios, although in these scenarios only
driving sessions in which collisions with invisible pedestri-
ans occurred were recorded. In this manner, we were able
to extract and annotate DAP and DUP behavior, and we ul-
timately obtained 2,500 DAP sequences and 1,500 DUP se-
quences, which were used in the k − f old cross-validation
with k = 4 in the algorithm learning step.

There were some differences between the DAP and the
DUP behavior that were readily apparent. Some driver reac-
tions, such as decelerating then braking in front of a pedes-
trian or turning the steering wheel, appeared to occur when
avoiding and then passing the pedestrian. For example, in
Fig. 5a, the driver releases the accelerator pedal at 5s of TTC
and at 2s of TTC and begins to break. On the other hand,
in the DUP manipulations none of these reactions occurred
during the same time periods (see Fig. 5b).

We then applied overlapping-sliding-windows of size Tw
to segment the data into sequences. The Tw parameter had
to be carefully chosen to capture the characteristics of the
respective behaviors; setting Tw too long could result in too
much noise and can lead to over-fitting, while setting Tw
too short can lose vital relevant features from the observa-
tions. A grid search technique associated with 4− f old cross-
validation (Bergstra and Bengio, 2012) and receiver opera-
tion characteristic curves (Metz, 1978) was used to deter-
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(a) Awareness Data Sample.

(b) Unawareness Data Sample.
Figure 5. DAP and DUP data samples.

mine the optimal parameters of the models. A False Posi-
tive Rate (FPR) of 5% was chosen to be in accordance with
automotive industry standards as the minimum requirement
of the security application value. All combinations of the
HMM model parameters were tested to determine the best
model parameters for optimizing performance. The decision
threshold τh was defined by maximizing the True Positive
Rate (TPR) for a given FPR. Thus, the final chosen param-
eters were: N = 10, M=2, Tw = 1.5s, and τth= 214. This
combination gives the best classification performance with a
TPR of 84.2%.

2.5 Visual aids display decisions

Based on the driver’s unawareness estimation proposed
above, another contribution of this paper is to create and to
evaluate AR aids to warn the driver in critical situations. Two
visual aids are chosen: a bounding box around the pedestrian
and a warning panel (see Fig. 6). The display decision com-
prises a definition of the rules for executing these visual aids.

The warning panel is displayed only when a detected sit-
uation is considered dangerous or prior to a critical moment.
In the first stage, we consider using the time-to-collision
(TTC) to determine how dangerous a situation is. Thus, we
define the critical TTC (TTCcritical) to represent the amount
of time the driver is given to react after being warned that
he is in a potential collision with a pedestrian, and we fur-

Figure 6. The proposed visual cues .

ther define the critical distance (dcritical) as a safety net. In
most cases, the TTCcritical is given first but, for some cases in
which the vehicle approaches a pedestrian with a low speed,
the TTCcritical is met when the vehicle is too close to the
pedestrian. To address this gap, the dcritical is calculated as
follows:

dcritical = vveh ∗ TTCcritical (3)

For example, when the vehicle speed (vveh) is about
30km h−1 ( 8.3m s−1) and the TTCcritical is found at 2s, the
distance is equal to 16.6m, which is already too close to the
pedestrian; in this case, dcritical should be taken into account
first. The critical moment (CM) is then defined as a func-
tion of the critical distance (dcritical) to the pedestrian and
the TTCcritical between the vehicle and the pedestrian. As
in (Aoude et al., 2012) and (McLaughlin et al., 2008), the
choice of TTCcritical is based on a cumulative human re-
sponse time distribution. This distribution answers the fol-
lowing question: Given a specific driver response time, what
percentage of the population will be able to react to a poten-
tial collision?

Generally, for a larger response time a higher percentage
of the population will be able to react in time to a warning;
paradoxically, however, higher response times are expected
to lead to worse performance under warnings because they
can become annoying to a driver. Tab. 1 gives the distribu-
tion of the cumulative human response distribution at 1.0s,
1.6s, and 2.0s, corresponding to 45%, 80%, and 90% of the
population, respectively.

Table 1
Response time population distribution.

TTCcritical(s) dcritical(m) Population percentage
1.0 8.3 45%
1.6 13.3 80%
2.0 16.6 90%
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2.6 Visual aids configurations

To better analyze and highlight the benefits of adaptive
visual aids in terms of distraction and cognitive overload, we
tested two different configurations. The first one is a basic
configuration (named Augmented Reality or AR) in which,
the visual cues are displayed whenever the pedestrian is de-
tected, the second one is an intelligent configuration (named
intelligent Augmented Reality or iAR), in which, the visual
cues are displayed in function of the critical moments (see
Tab. 2). In the AR configuration, the bounding box is dis-
played whenever a pedestrian is detected in front of the ve-
hicle and the warning panel is displayed when a critical mo-
ment is detected (i.e., 2s of TTC). In the iAR configuration,
the rules are the same as in the AR configuration, except that
both the DAP/DUP classification and the critical moments
are taken into account. The aids are displayed only when the
driver is determined to be unaware of a pedestrian (see Fig.
7).

Figure 7. System architecture for Intelligent Augmented Re-
ality (iAR) configuration.

Table 2
Three configurations of the proposed visual aids system.

Configuration
Bounding Box

Activation
Bounding Box
Deactivation

noAR No No
AR Pedestrian Detected No Pedestrian
iAR DUP detected DAP detected

Panel Activation Panel Deactivation
noAR No No

AR Critical Moment (CM)
No CM or

no Pedestrian

iAR DUP Detected at CM
DAP detected or

no CM

It is crucial to note that, the reliability plays an impor-
tant role in the automation systems. Trust of in-vehicle tech-
nology is linked to warning system reliability and sensitiv-
ity settings. High False Alarm (FA) rates associated with
high sensitivity, can reduce driver trust in the alerting sys-
tem and annoy the driver. It can lead to failure of benefit
from the warnings and overall increase in driver errors. In

our proposed system, the AR configuration will display the
cues with 100% of reliability because of the perfection of the
pedestrian detection in the virtual environment. Whereas,
in the iAR configuration, the reliability of the display de-
cision is strongly related to the reliability of the DAP/DUP
classification. Indeed, The DAP/DUP classification has been
validated in Section 2.4 and has proven to be at a level of
84.2% of reliability. However, in our case, this result has not
been validated on a large number of participants and scenar-
ios. Therefore, it is difficult to predict the real benefits of the
iAR configuration through a proper statistical analysis. Both
configurations have been implemented on a driving simula-
tor and an experiment has been set up in order to evaluate the
effect of these configurations both in terms of objective and
subjective results.

3 Experiments

3.1 Outcome Measures

In this paper, we hypothesized that the systems with AR
and iAR configurations would enhance the driver’s vigilance
relative to the noAR configuration. Moreover, we expected
that the driver’s awareness model is accurate enough (as
shown in Section 2.4) and that the iAR could more success-
fully warn drivers at the right moment to ensure better perfor-
mance during the driving task than in the AR configuration.

In the proposed experiments, independent variable in-
cludes the assistance configuration, pedestrian situations, the
head vehicle’s behaviors and the participants. The following
outcome measures are dependent variables and they are as-
sociated with driver awareness of pedestrians and with driver
performance.

The outcome measures associated with driver awareness
of pedestrians:

• The Visual Reaction Time (VRT) is the moment (cal-
culated as a TTC) at which the driver notices the
pedestrian and presses the button. This outcome repre-
sents the visual attention of the driver and it should be
as larger as possible meaning that the driver noticed the
pedestrian sooner. We expected that the AR and iAR
configurations would enhance pedestrian visibility, al-
lowing the driver to notice pedestrians sooner with AR
aids.

• The Accelerator Pedal Position (APP) was analyzed.
We expected that the driver would be more vigilant
when using the visual aids, resulting in smaller APP
values in the AR and iAR configurations than in the
noAR configuration.

• We also calculated the number of times the driver
braked urgently, (Urgent Braking - UB). We hypothe-
sized that the driver would perform more urgent brak-
ing under the noAR configuration than under the AR
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configurations. We expected that the use of visual aids
(AR and iAR configurations)would improve driver an-
ticipation of pedestrians suddenly crossing the road.

The outcome measures associated with driver perfor-
mance.

• The Head Vehicle Distance (HVD) was analyzed. We
expected that the driver would be more efficient with
iAR and would maintain shorter distances to the head
vehicle than under the AR configuration.

Subjective measurement. In addition to the above ob-
jective outcomes, we also wrote a questionnaire containing
10 main questions and asking the participants their personal
opinions on the benefits of the AR cues and on the system
in general during their driving task. The questionnaires were
filled out at the end of the test.

3.2 Proposed experimental protocol

To evaluate the three configurations (noAR, AR, iAR),
the drivers are first cognitively engaged in a specific driv-
ing task, the head vehicle-following. Then critical situations
with pedestrians are randomly generated and the outcome
measures presented above are evaluated.

3.2.1 Driving task principle . During the driving test,
a head vehicle-following task was assigned to each driver
as a primary task as proposed in (Rusch et al., 2013). The
participants had to maintain a constant distance from a head
vehicle. At certain road points, pedestrians appears with the
intention of crossing the road in front of the vehicle. This
head vehicle-following task made the experience more rep-
resentative of typical driving situations and engaged drivers
so that the perception of pedestrians would be more difficult
or easier to dismiss by the driver.

In the experiment, the head vehicle accelerated when it
entered into pedestrian situations and passed the pedestrians
before the participant’s vehicle did. It was presumed that
the participants would also accelerate at this point to catch
up with the head vehicle. Furthermore, the pedestrians on
the side walk were capable to randomly cross the road at any
moment. The participants therefore had to make correct deci-
sions between maintaining their separation distance from the
head vehicle and lifting up off the accelerator at the pedes-
trian crossing (see Fig. 8). The drivers performance in the
head vehicle following tasks and their reactions in avoiding
accidents with the pedestrians were then measured to evalu-
ate the performance of the visual aids.

3.2.2 Designed scenarios. For all configuration
(noAR, AR, iAR), 23 pedestrians were placed at the same
position on the circuit to create 23 critical situations. So to
limit the learning effect between the driving sequences, the
pedestrian appearance and behaviors are randomly varying.
So for each critical situation, the pedestrian has the same

Figure 8. The head vehicle-following task and situations
with a pedestrian. .

position but it can be a man or a woman, an adult or a
child, with diversified clothes colors and it can perform
different activities (walking, running, or standing on the
sidewalk) randomly generated. The critical situation begins
at a distance of 140m from the pedestrian and finishes when
both vehicles passed by the pedestrian (see Fig. 9a). When
the test vehicle enters the critical situation, the head vehicle
increases its speed by 4, 6, 8, or 10 km h−1 and quickly
passes by the pedestrian (see Fig. 9b). The acceleration
value is chosen randomly to limit the repetition effect. If
the distance between the test vehicle and the pedestrian
reaches 40m, the pedestrian turns and indicates that they
intend to cross the road and, in some cases, actually crosses
(see Fig. 9c). Fig. 9d shows a scene from the driver’s
point of view at this moment. When both vehicles have
passed the pedestrian, the head vehicle decelerates until
the distance between the two vehicle reaches 50m prior to
initiating a new situation with the next pedestrian. Prior to
the driving test, the participant is warned that the pedestrians
are vulnerable and can cross the road at any moment even if
there is no crossing mark.

3.2.3 Apparatus and participants. To evaluate the
proposed system under different display decisions, an ex-
periment has been carried out using the driving simulator
introduced in the previous section. The experimental trial
involved 23 subjects. All of the participants had at least 3
years of licensed driving and were familiar with the simula-
tor. Moreover, none of the participants had any eye problems
or other physical diminutions. They ranged in age from 21 to
35 years old; 19 subjects were male and 4 were female. Be-
cause the subjects were not paid for participating, the sample
primarily included only university students, that is obviously
a limitation for the evaluation.

3.2.4 Procedure. The experimental procedure com-
prises a platform familiarization phase and a testing phase.

Before starting the experiment, each participant receives
an explanation of the purpose of the study and provides con-
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(a) 3D View of Scenario (phase 1): when both vehicles are in
the critical situation (From about 140m from the pedestrian),
the head vehicle begins to accelerate.

(b) 3D view of scenario (phase 2): The head vehicle (top)
accelerates and passes by the pedestrian.

(c) 3D view of scenario (phase 3): When the distance be-
tween the test vehicle and the pedestrian is 40m,the pedes-
trian shows intention to cross the road.

(d) Phase 3 from the driver’s viewpoint. At 30m from the
pedestrian, the pedestrian suddenly crosses the road.

Figure 9. The proposed scenario with the lead vehicle-following task and a pedestrian crossing the road.

sent. Prior to the drive, the participant is allowed to adjust the
seat, steering wheel, and mirrors for comfort. They are then
instructed on how to control the simulator. To simplify ma-
neuvering by the participant, the vehicle is simulated with an
automatic gearbox. We indicate which buttons start and stop
the platform, the vehicle pedals and the button they should
press whenever they notice a pedestrian.

The participant then engages in two practice sessions. In
the first, the participant drives freely to become familiar with
the platform. In this driving sequence, they are instructed to
adjust the speed to accelerate to 100 km h−1 or to stop in front
of a crossing mark. The participant is also asked to estimate
the vehicle speed. The session ends when the participant pro-
vides an accurate answer regarding the actual speed without
looking at the dashboard, which is displayed at the upper left
corner of the screen. In the second practice session, the par-
ticipant is trained to perform the task of following the head
vehicle. During this session, the instructor trains the driver
to maintain a distance of about 50 m from the head vehicle.
There are no pedestrians in the practice sessions, the goal

of which is to train participants in the driving task without
using the dashboard, which can influence the effect of the
visual cues. When the participants feel that they are familiar
with the task, the formal testing begins.

The testing phase comprises 3 driving sequences. Each
sequence takes between 15 and 20 minutes, and all three se-
quences occur on the same circuit, but traffic elements of in-
terest such as the head vehicle’s behavior, the pedestrians’
appearance and their activity (crossing by walking, crossing
by running, or standing on the sidewalk) randomly change
between tests to eliminate the learning effects. However, due
to simulator limitations, the pedestrian geographic positions
on the circuit, remain the same.

Moreover, for each driving sequence, the HUD configura-
tion is randomly chosen by the instructor using a counterbal-
anced design: one driving with no visual assistance (noAR
configuration), one with AR aids and one with iAR ones. By
changing the order of the configuration between participants,
we were able to counterbalance the learning and repetition
effects in the overall data set collected from the participants.
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4 Results

In the validation step, we considered the mean of each out-
come over the sets of participants and pedestrian situations.
The differences between the three configurations (noAR, AR,
and iAR) were exposed using one-way ANalysis Of VAri-
ance (ANOVA) tools. Following up using Tukey’s Hon-
est Significant Difference (Tukey’s HSD) test allowed us to
specify the configuration with the most varied outcomes. The
ANOVA testing enabled us to see how effective the differ-
ences between driving with and without visual aids was in
term of the driver awareness of pedestrians.

4.1 Objective results

4.1.1 The outcomes associated with the driver aware-
ness of pedestrians:

AR followed by iAR configurations increase significantly
the Visual Reaction Times. As mentioned previously, this
outcome is measured by calculating the TTC at the moment
when the driver presses the button to indicate that he has no-
ticed a pedestrian in front of the vehicle. For all the exper-
iments (driving sequences and aids configurations), only 14
participants followed this specific instruction: “to press the
button when seeing a pedestrian”. Therefore we decided to
remove the 9 bad answers linked to the VRT and for that
point only, the statistics have been done for 14 participants.
The VRT corresponds to the perception level of the DAP.
Fig 10a shows the VRT results for each of the 23 pedes-
trian situations and for the 14 participants that followed cor-
rectly the instruction. Fig. 10b shows the mean values of
VRT over the three configurations for all pedestrian scenar-
ios. The ANOVA results confirmed a statistically significant
difference between the noAR, AR, and iAR configurations
(F(2, 963) = 18.74, p < 0.05), and Tukey’s HSD test re-
vealed that, in the noAR configuration, the drivers noticed
pedestrians significantly later when the vehicle was at around
3s of TTC to the pedestrian. Moreover, there was no sig-
nificant difference between the AR and iAR configurations,
since the drivers noticed the pedestrians at 4.5 and 4.2s of
TTC respectively.

Fig. 10a shows that the VRT values for the different
pedestrian situations. This is certainly a result of the dif-
ferences between road situations, pedestrian behaviors, or
latency when pressing the button. However, in each situa-
tion the drivers noticed the pedestrian soonest under the AR
configuration, followed by iAR and then noAR.

The iAR configuration reduces aggressive accelerations.
In each pedestrian situation, the drivers were found to accel-
erate more aggressively when there was no visual assistance
(the noAR configuration) (see Fig. 11a). The ANOVA results
confirmed the difference of APP among the three configura-
tions (F(2, 1722) = 9.11, p < 0.05). The Tukey’s HSD test
results revealed that the drivers pressed the accelerator pedal

(a) Mean of VRT in each pedestrian situation. The result shows that
the driver noticed the pedestrians earliest under the AR configura-
tion (in green).

(b) Mean of VRT in all pedestrian situations and over all partici-
pants. The drivers noticed the pedestrians soonest under the AR
configuration, which is indicated by the TTC being the highest un-
der the AR configuration. However, the variance of TTC in each
configuration is important because of the variances between partic-
ipants or pedestrian situations.
Figure 10. Visual Reaction Times.

most deeply under noAR (mean equal to 0.46), see Fig. 11b.
Moreover, there was also a small difference of APP between
the AR and iAR configurations.

The AR configuration reduces urgent braking. Brak-
ing is considered to be urgent whenever the measured force
applied to the pedal is greater than 200N at a TTC smaller
than 2s.

Across all of the driving tests, 72, 11, and 26 urgent brak-
ing were detected under the noAR, AR, and iAR configura-
tions, respectively. This result suggests that the AR configu-
ration had the most influence on the drivers’ anticipation in
situations with pedestrians. Under the iAR configuration, the
bounding box was displayed and removed as a function of the
DAP/DUP detection in a manner that was rather quiet. Thus,
the missed detection of a DUP could lead to the non-display
of cues and could consequently lead to urgent braking when
the driver was unaware of a pedestrian. Moreover, whenever
cues were removed when a DAP was detected, the drivers
tended to think that the danger had disappeared and became
less aware of the pedestrian. As a consequence, when the
pedestrians crossed the road the drivers had to brake urgently
to avoid accidents.
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(a) Mean of accelerator pedal position for the three aids configu-
rations for each pedestrian situation. Without the AR (noAR con-
figuration - blue column), the driver pressed the accelerator pedal
most deeply. The AR aid had an effect on the drivers’ acceleration
behavior, with the cues provided inducing the drivers to slow down.

(b) Mean of accelerator pedal position for the three aid configura-
tions.The drivers pressed the accelerator pedal most deeply under
noAR configuration.
Figure 11. Accelerator Pedal Position.

4.1.2 Outcome associated with driving perfor-
mances:

The noAR configuration gives best performance for
head vehicle distance (shortest). Graphically, the head
vehicle-following task was performed best with no AR, in
which case it was observed that the drivers maintained the
shortest distances to the head vehicle because they were
concentrating more closely on the task when there were no
aids (see Fig. 12a). The ANOVA results revealed signif-
icant differences in HVD among the three configurations
(F(2, 1722) = 4.87, p < 0.05). The Tukey’s HSD test results
confirmed that, under the AR configuration, the drivers were
less concerned with maintaining their distance from the head
vehicle (118m), See Fig. 12b. The test also revealed that the
drivers performed similarly under the iAR and noAR cases.

4.2 Subjective results

Tab. 3 provides the subjective questions asked after each
driving test under the iAR configuration with adaptive visual
aids. The subjective feedbacks confirm the objective results
presented in Tab. 4 and highlight the overall user experience
during the experiments. The results primarily confirmed the
advantage of the iAR configuration over classical AR cues.

(a) Head vehicle distances for 23 pedestrian situations. In all pedes-
trian situations, the distance between the two vehicles was highest
under the AR configuration (green column). The drivers appeared
to pay less attention to the head vehicle when the aids were alerting
to the presence of a pedestrian. The AR aids were able to direct
driver attention from the head vehicle to the pedestrian.

(b) Mean of head vehicle distance (HVD). The results confirm that,
under the AR configuration, the drivers were more vigilant to the
presence of pedestrians and lost distance from the head vehicle.
Figure 12. Head Vehicle Distance.

In particular, the adaptive behavior of the iAR configuration
is positively appreciated by the participants (82%) especially
during a specific driving task requiring concentration. The
bounding box was found useful for directing driver atten-
tion to pedestrians (74%) that corresponds to better visual
reaction time while reducing aggressive accelerations (ques-
tion Q02 - 72%). Moreover, the adaptive nature of the iAR
does not degrade the head vehicle distance and gives similar
awareness to pedestrian than the full AR cue (question Q07).
All of the participants agreed that they had driven in a manner
similar to real life (emphquestion Q04). This demonstrated
that the drivers felt comfortable with the simulator and the
adaptive nature of iAR was not disturbing and distressing.
Concerning the focusing task, the head vehicle-following
mission was considered to be quite difficult (question Q05),
with 87% of the participants answering «difficult», and they
commented that the difficulty arose when the head vehicle
reacted too spontaneously. This last point is due to the sim-
ulator limitation in controlling the head vehicle. However,
83% of drivers answered that they had tried to catch the head
vehicle (question Q03) and 82% had been aware of pedes-
trians (answered as «normal» or «completely») showing that
both the driving task and the adaptive AR were efficient and
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without stress (100%). For questions concerning the iAR
configuration, all participants answered that they would like
to use a HUD in their own cars and most of them (82%)
highlighting the efficiency of the iAR configuration (question
Q10) in terms of distraction and cognitive overload. On the
other hand, 74% of the participants preferred the bounding
box cue to the pedestrian panel one (question Q09). They
argued that the bounding box helped them to identify where
the pedestrian was, while the pedestrian panel forces them to
break (73%) and they were not sure if it was an appropriate
response (question Q09).

5 Discussion and Conclusion

5.1 Augmented Reality aids have benefits in driver as-
sistance systems

This study investigated the potential benefits of using
Augmented Reality in driving conditions to enhance drivers
attention in situations involving pedestrians. The use of AR
aids is expected to enhance driver situational awareness to
road users and especially to pedestrians. In this paper, we
focused on the adaptive feature of the AR cues. In this con-
text, the bounding box was found useful for directing driver
attention to pedestrians. This is consistent with the work
of (Schall Jr et al., 2013) and (Rusch et al., 2013), who
found that bounding boxes can direct driver attention into
hazardous events such as pedestrians or road signs. More-
over, our accelerator pedal position analysis showed that the
presence of a bounding box forced the drivers to slow down
and be more vigilant to pedestrians. On the other hand, the
manner in which the panel warned the drivers to brake if
the situation became critical inducing more urgent braking
in front of pedestrians.

Because driving is a visual and motor control process, it
is possible that the visual search associated with information
retrieval from the aid display degraded driving task perfor-
mance. In (Dzindolet et al., 2002), the author highlighted
that automation of human aids can cause comparable lev-
els of distraction in driver navigation. However, it is also
important to remark on the differences between conformal
and non-conformal aids: non-conformal aids distract more
than conformal aids. Non-conformal aids such as warning
panels employ enclosed, non-changing, and opaque rhom-
bus shapes, making it difficult for the driver to discriminate
between information on targets (pedestrians) on which the
aids are highlighted. After our experiments, the participants
also commented on this problem. By contrast, the partici-
pants commented that the conformal aids (such as the bound-
ing box around the pedestrians) did not produce any negative
masking effects.

5.2 Taking driver awareness into account is crucial

As a supplement to the related work of (Arun et al., 2012),
we discuss here an additional important aspect in the design
of a new ADAS: The analysis of driver situational awareness
while using the system. Essentially, previous works subjec-
tively considered driver inattentive states such as sleepiness,
drowsiness, or distraction. Such states are helpful but not
sufficient in the case of an ADAS for pedestrian safety, as a
driver could be in a normal state but, if he underestimates the
danger level of the situation, an accident could still occur.
Thus, our study was dedicated to a deep analysis of driver
interaction with a particular situation involving a pedestrian.
Other critical situations have also been considered, includ-
ing prior to entering an intersection or more complex danger
scenarios ((Aoude et al., 2012; Plavšić et al., 2010)).

In this paper, through the experiments, the participants
were found to be more efficient under the iAR configuration
than under the AR configuration. Most participants com-
mented that, under the latter configuration, the warning panel
displayed at the appropriate moment, allowing the driver to
maintain a sufficient distance from the leading vehicle while
reacting effectively to the pedestrian; indeed, the results did
not show a significant difference between the iAR and the
no AR configurations in terms of maintaining distance from
the leading vehicle. Moreover, the iAR performed almost as
well as the AR configuration in terms of enhancing pedes-
trian visibility and the driver’s awareness of the pedestrian
(see Tab.4). Thus, the iAR is a compromise solution that
helps to enhance driver awareness with good vehicle follow-
ing task performances.

5.3 Limitations

During the experiments, we noticed that the drivers’ reac-
tions varied significantly among situations. In the results pre-
sented above, the variances of the outcomes are quite impor-
tant. Indeed, the drivers’ reactions changed for each pedes-
trian situation and during the course of the experiments. The
drivers tended to display less caution and vigilance when see-
ing the first few pedestrians along the road; after two or three
pedestrian crossings, they became more attentive and care-
ful. This behavior arose from the fact the drivers did not
really consider the simulator to be a real driving situation.
This suggests that, in testing with simulators, it is necessary
to train the participants and encourage them to engage in the
environment to eliminate unrealistic effects. This point has
been also highlighted in (Ahmadi and Machiani, 2019).

Since we only focus on driver awareness of pedestrian,
the low complexities of the scenarios used could create diffi-
culties in interpreting the results in the iAR configuration.
In this case, the pedestrians were easily perceived, so the
visibility enhancing effect was superfluous for some drivers
and some pedestrian situations. In a previous study of driver
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Table 3
Some significant questions asked in the questionnaire

Questions Result
Q01 Do you think you have braked unnecessarily? (never-sometimes-several times) 27%-52%-21%
Q02 Did you accelerate at maximum? (never-sometimes-always) 1%-72%-17%
Q03 Are you trying to catch the head vehicle? (yes-no) 83%-17%
Q04 Do you perform the driving like in real conditions? (yes-no) 100%-0%
Q05 How is the driving task? (easy-normal-difficult) 3%-10%-87%
Q06 Were you under stress? (not at all-normal-very) 48%-52%-0%
Q07 Are you aware of the pedestrians? (completely-normal-not at all) 30%-52%-18%
Q08 Would you like to use this combiner HUD? (yes-no) 100%-0%
Q09 Which cue do you prefer? (bounding box-warning panel) 74%-26%
Q10 Is the iAR efficient? (efficient-average-distracting). 82%-18%-0%

Table 4
Summary of experimental results and comments on iAR configuration

noAR AR iAR Results on
iAR configuration

Awareness of Pedestrians

Visual Reaction Time (VRT) 3s 4.5s 4.2s As good as with AR
and better than noAR

Acceleration Pedal Reaction (level) 47% 24% 35% Better than noAR
but worse than AR

Urgent Braking (count) 72 11 26 Slightly worse than AR
and better than noAR

Following tasks performances

Head Vehicle Distance (m) 82 118 90 Better than AR
slightly worse than noAR

distraction ((Kass et al., 2007)), it was found that impair-
ment (increased VRT) depends on scene complexity. Also,
consistent with the work in (Yeh and Wickens, 2001), aids
saliency played a central role in the ability of the participants
to detect targets in this work. The aids helped to ensure that
the drivers perceived targets; however, target visibility also
played a role in the ability of participants to perceive targets.
Some pedestrians were visible before the aid appeared, and
therefore in some cases participants responded even before
the aid appeared.

Activation and deactivation of aids can be considered to
be a driver-vehicle-pedestrian interaction model. In this deci-
sion framework, we can take into account the driver’s aware-
ness of a pedestrian and the TTC; however, the decision-
making module did not take into account pedestrian behav-
ior, which may be crucial for this purpose. It is not necessary
to display aid cues in cases in which a pedestrian has no in-
tention to cross the road. Thus, the system should take into
account pedestrian behaviors to provide better aid.

5.4 Conclusion

In this paper, an advanced driving assistance system us-
ing visual aids, called AR and iAR, were proposed in the

Figure 13. AR cue on real vehicle equipped with a wind-
shield HUD (https://pole-moveo.org/projets/sera/).

context of pedestrian safety. We designed systems that high-
light pedestrian presence using a conformal bounding box
and warns the driver of a potential collision using a non-
conformal warning panel. The study highlighted the impor-
tance of taking into account the driver awareness in decision-
making. Thus, a model of driver awareness of pedestrians
to estimate if a driver is aware or unaware of the presence
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of a pedestrian was proposed, with decisions on whether to
display visual cues taken based on this awareness model and
on TTC information. The results revealed that a system that
takes the driver’s behavior into account will maintain the per-
formances in the driving task. Moreover, such cues can help
the driver to identify pedestrians sooner and to be more vigi-
lant of them.

Our findings suggest that adaptive visual aids are promis-
ing (iAR) and merit further investigations to highlight their
potential as a trade-off between full AR and no AR cues for
both driver awareness and efficient driving performances. A
more advanced model might also take into account driver
visual reactions, and the use of an eye/gaze tracker will be
explored in further experiments as proposed in (Martin and
Trivedi, 2017). The correlation between the direction of
driver gaze to pedestrians and driver reactions will be ana-
lyzed to improve the performance of our system.

At this stage, further experiments are planned with the
simulator used in this study. However, the protocol should
be improved to allow us to measure, both subjectively and
objectively, driver awareness of pedestrians. For example,
after each passing of a pedestrian, the driving test might emit
a buzz and the driver could answer questions concerning the
passing conditions (regarding, for instance, the pedestrian’s
appearance) to evaluate their situational awareness.

As shown in Fig. 13, a real vehicle with an windshield
HUD has been developed and tested with our model to val-
idate the proposed ideas in real driving conditions. In this
platform, cameras are used for obstacle detection and driver
monitoring. Vehicle data from the CAN bus are synchro-
nized with this information. We envision multiple future di-
rections for the use of this platform. In driver behavior mod-
eling, the correlation between driver eye fixation or dynamics
and obstacle position will be assessed to enable prediction of
driver behavior prior to entering critical situations such as
roundabouts or pedestrian crossings. Following a different
track, various algorithms including HMM or Deep Neural
Networks will be explored using real driving data. Further-
more, driver awareness of critical situations will be studied
to evaluate driver distraction while using visual aid systems
with the real vehicle and its windshield HUD.
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