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Using asynchronous simulation approach for interactive
simulation

Mengchen Wang ∗† Nicolas Férey† Patrick Bourdot† Frédéric Magoulès∗

Abstract. This paper discusses about the advantage of using asynchronous simulation in
the case of interactive simulation in which user can steer and control parameters during
a simulation in progress. Asynchronous models allow to compute each iteration faster to
address the issues of performance needed in an highly interactive context, and our hypothesis
is that get partial results faster is better than getting synchronized and final results to take
a decision, in a interactive simulation context.

Keywords. Asynchronous simulation approach; interactive simulation; Distributed com-
puting

1 Introduction
With the development of parallel computers, specific algorithms are designed and used to
optimize the use of numerous processors at the same time and drastically increase simulation
performance. In the design of these algorithms, the load balancing is very important. Load
balancing means that the work must be equally distributed for all processors. When it comes
to the synchronous iterations, if some processors finish the calculation faster than others,
these processors must wait all other processors to finish their task. This will have much
influence on the performance.

The asynchronous iterations can avoid the waiting time. The faster processors do not
wait other processors and can continue the calculation at any time. There is no need to
distribute equal works for every processor. In case of a physical problem, we do not need to
divide the geometric domain in same sizes. This makes it much easier to make sub-domains
or for unstructured meshes or distribute different types of tasks.

Interactive simulation is an approach that allows a user to see and steer a simulation in
progress, using advanced interaction and rendering tools connected to a server computing
the simulation. In the case of interactive simulation architecture, one computer usually
performs the simulation computation and another one gets simulation results to render it
using visualization tools.

We propose in this work to study if it possible to take advantage of asynchronous sim-
ulation models to address the computational bottleneck usually on the simulation side in
interactive simulation context.
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2 Asynchronous simulation approach

2.1 Asynchronous interactions
Parallel computing is an part of computer science. It is one of the high performance so-
lutions. Many models have been proposed for parallel computation[9][20]. Leighton and
F. Thomsonhas[14] have introduced the network and structures in parallel algorithms and
they proposed some efficient models. The first paper of asynchronous iterations was pub-
lished in 1969 Chazan and Miranker[10] to solve linear equations. It is a full overlapping
of communication and computation phases during parallel iterations. This type of iteration
does not require processors to wait to receive all data from other processors. In this way
the processors can keep the iteration at its own pace with all the data that it has received.
Asynchronous iterations are not as popular as synchronous ones as one reason maybe that
people always keep in mind the load balancing. There are more and more researches on
asynchronous iterations and this method is increasingly used. This numerical method fea-
ture two main interests for high performance computing (HPC). First, the standard upper
bound on the expectable acceleration factor[1] does not apply. Second, low sensitivity to
unbalanced workload and temporary resource failures. So, asynchronous iterations are thus
gaining much attention nowadays. Some experiments reported that asynchronous parallel
times are much less then the synchronous parallel times. Fig.1 and Fig.2 shows the how
asynchronous iterations can reduce communication delays to the calculation. Bahi et al.
[3] wrote a survey for asynchronous iterations with algorithms for solving both linear and
nonlinear equations.

Recent developments have extended asynchronous iterations to parallel in time domain
decomposition[18][19]to parallel in space domain decomposition method like sub-structuring
method[22]or like optimized Schwarz method[21]In order to monitor asynchronous itera-
tions, stopping criteria is a real bottleneck. One example shows how we realize the domain
decomposition in methods applied to European option pricing [26] and for a time-dependent
case [25].

Development in this field leads to[4][12] and more recently an original approach[17]allows
to compute a residual error under asynchronous iterations with only one reduction operation.
In order to perform asynchronous simulation, a special framework should be developed
like[16][15] which allows easy implementation of any asynchronous iterative algorithm

The performance has been tested with asynchronous jacobi [8] and shows that in some
cases it requires fewer iterations with asynchronous iterations. In these cases, the possible
explanation is less oscillation compared with synchronous approach. Asynchronous iteration
also allows to create the progressive load balancing[24] to reduce load imbalance without
reducing stability or convergence rate.

In iHadoop[13], which is a modified MapReduce model with asynchronous iterations. It
is a large scale data-intensive processing framework which can schedules iterations asyn-
chronously, without wasting bandwidth, I/O, and CPU cycles. The use of asynchronous
iterations can reduce up to 81% when compared to synchronous method. ARock[23] is a
coordinate update framework using asynchronous iterations. This framework can update
the shared coordinates between multiple agents(machines or processors) in a asynchronous
way. In this research the ARock is compared to a sync-parallel scale. In their case, even the
number of features is equally distributed to every core, the calculations are suffered from
imbalanced load. The 32 cores calculation have very little speedup compared to the single
core calculation, while ARock has still 75-80% of efficiency. In the future asynchronous iter-
ation methods maybe the methods to obtain the expected potential for the machines with
thousands of processors in the future.

Implementation of asynchronous iterations requires much more than a straightforward
update of classical iterations loops, depending however on the communication middleware
under use. Bertsekas and Tsitsiklis[7] have raised an issue of the accurate evaluation of
a residual based stopping criterion. JACE[2] is a multi-threaded library aiming at the
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Figure 1: Synchronous iterations

Figure 2: Asynchronous iterations

execution of asynchronous iterative algorithms based on Java Remote Method Invocation
(RMI) middleware. It has been improved with a centralized volatility tolerant extension
named JaceV [6]. They have also used Peer-to-Peer (P2P) networks to solve large scale
scientific problems [5]. Additionally, CRAC [11] is another library designed to build the
asynchronous applications for a grid architecture. Jack is the first successful approach of
a communication library based on MPI for synchronous and asynchronous iterations. It
provides an application programming interface (API) similar to MPI routines. The difference
is that the received data are saved in the reception buffer only when it is requested to be
done.

Most of libraries handle the asynchronous convergence detection issue through various
heuristics based on local convergence of each process, therefore they do not guarantee effec-
tive convergence state after termination. We use Jack2 to achieve asynchronous iterations.
It provides a completely encapsulating API, and calculates actual global residual to realize
exact convergence testing.

2.2 Interactive simulation
Interactive simulation as an approach in which user can steer and control parameters during
a simulation in progress. There are several advantages of using the asynchronous iteration
for interactive simulation. We recall that the purpose is to get a result as fast as possible,
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especially for scenarios with interactive user steering.
In the case of fluid that may take a long time, people usually wait for the result of the

simulation and then analyze the result. Thus, the work has been divided to two parts. In
this way, the scene cannot be interactive at all, as interactive scene requires fast calculation.
The visualization in real time let us see a temporal result immediately, even though the
result is not the final result, we will see the evolution of the fluid field, once we see some
interesting details, we can interact with the scene, change the parameters and restart the
simulation.

If we try to visualize the evolution of the calculation in synchronous iteration, this
procedure will slow down the calculation because all cores must wait for the communication
procedure finish to continue the calculation. That means when one core is communicating
with other machines, the other CPU cores must wait until the communication ends and
no calculation can be done in all cores. If the calculation has a massive size of data, the
communication between machines can be very long and the calculation will be much slower.
If we use this technique in the asynchronous iteration, other cores do not need to wait for
the core who does the communication. The calculation can continue when the machine is
transmitting data.

3 Taking advantage of asynchronous iteration for inter-
active simulation : a proof of concept

3.1 Coupling asynchronous simulation to visualization tools
The whole system is composed by two machines, one machine runs Unity for visualization
and an other machine runs the simulation. The simulation case is a 2D heat transfer. It
contains 200×200 cells. We tried several different tests to see what we can benefit from
the asynchronous iterations. In this test we will see that the paralyzed calculation has a
bad efficiency because we exchange all data between processors. Compared with the simple
calculation, the communication between processors takes much time. To achieve real-time
visualization, we will always need to exchange all the data. And the communication between
machines will take much longer, as explained in the next section.

3.2 Experiments and results
We tried two different tests. The first test is to see when we have a perfect balanced
calculation, which means the amount of calculation on each processor are nearly the same.
The figure shows the time it takes for all the calculation to be done. We can see that even if
the works are well distributed, the asynchronous iterations can improve the performance as
shown in the Fig.4. We will see the parallel efficiency is very low because we run a simulation
which has a simple calculation while the data amount is heavy in order to observe clearly the
difference between synchronous and asynchronous iterations. The communication between
processors slows down the simulation. In the case of real-time visualization, all data must be
synchronized, which makes the communication between processors slower. The asynchronous
iterations can reduce the impact of communication time. Also, even we well distributed the
task, there will be some differences between processors.

The second test we simulated the case that the processor No 1 will deal with the commu-
nication with the machine for visualization. This test is based on a heat transfer simulation
and visualization in Unity. Fig.3 shows the visualization of the heat transfer when the sim-
ulation is in progress. In this case one processors will communicate with the machine which
runs Unity while other processors only runs the simulation iterations.

The long-distance visualization always takes time. Here we have the communication
time for 12ms for each iteration. With 10k iterations, the processor 1 takes much longer
than other processors. The result of the calculation time for each processor is shown in
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Figure 3: Heat transfer visualized in Unity

the Fig.5 With synchronous iterations, all other processors will wait the processor 1 and
thus all processors took more than 120 seconds to finish their calculation. While if we use
the asynchronous iterations. The processors 2-7 don’t wait the processor 1. So, they all
finished the calculation in around 15 seconds. This result shows us that using asynchronous
iterations can avoid the impact from the communication between machines. Even if the
connection between machines are unstable or slow, the calculation is always efficient. While
synchronous approach will make other processors on idle and reduce the performance.

Figure 4: Calculation time for a well distributed simulation

In fact, we tried a real 3D case to transfer a mesh with around 200k doubles. We use
a local network with 100Mbps speed, and the time response is 1ms. It took around 100ms
for data transmitting. Which means, for only 10k iterations, it will take around 15 minutes
to finish, with the calculation who takes only around 1 minute. The processors will work
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Figure 5: Calculation time for each processor with one processor for communication

as in the Fig.6, except the processor for the communication, other processors spend very
little time on calculation and waste time on waiting. If we use a server in distance, it may
take much longer for data transfer. As one processor is always transmitting data, other
processors are always waiting.

Other conditions like that we have a complicated geometry, it is difficult to balance the
load on every processor. For example, we have a refined area for one processor, it may be
much slower compared with other processors.

Figure 6: Synchronous iterations with one processor for communication

4 Conclusion
In this paper, we described preliminary works about coupling asynchronous model to inter-
active simulation. In our preliminary study we show that it could be an advantage to use
asynchronous models in the context of interactive simulation . Indeed, the communication
between machines is usually much slower than the calculation iterations, especially for trans-
mitting a large amount of data in distance. With synchronous iterations, other processors
will wait for the communication between two machines to complete. This feature makes the
task very badly distributed between processors.In our tests we can see that even with local
network, the synchronous iterations are much slowed down by the processor for communi-
cation. If we use synchronous iterations, processors for calculation will carry on their work
while the processor for communication is sending or receiving data. So, the asynchronous
iterations are much faster than the synchronous iterations in this condition. In the future,
we will use this technique to make a serious game with interactive fluid simulation.
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