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Optimizing Make-To-Stock policies through a robust
lot-sizing model

Abstract

In this paper we consider a practical lot-sizing problem faced by an industrial

company. The company plans the production for a set of products following

a Make-To-Order policy. When the productive capacity is not fully used, the

remaining capacity is devoted to the production of those products whose orders

are typically quite below the established minimum production level. For these

products the company follows a Make-To-Stock (MTS) policy since part of the

production is to fulfill future estimated orders. This yields a particular lot-

sizing problem aiming to decide which products should be produced and the

corresponding batch sizes. These lot-sizing problems typically face uncertain

demands, which we address here through the lens of robust optimization.

First we provide a mixed integer formulation assuming the future demands

are deterministic and we tighten the model with valid inequalities. Then, in

order to account for uncertainty of the demands, we propose a robust approach

where demands are assumed to belong to given intervals and the number of

deviations to the nominal estimated value is limited. As the number of products

can be large and some instances may not be solved to optimality, we propose two

heuristics. Computational tests are conducted on a set of instances generated

from real data provided by our industrial partner. The heuristics proposed are

fast and provide good quality solutions for the tested instances. Moreover, since

they are based on the mathematical model and use simple strategies to reduce

the instances size, these heuristics could be extended to solve other multi-item
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lot-sizing problems where demands are uncertain.

Keywords: Lot-sizing, Make-To-Stock, Robust optimization, Mixed-integer

linear programming

1. Introduction

In this paper we consider a practical problem occurring in an aluminium

extrusion industrial company. The company produces two main families of

products: a family of products representing the main production activity of

the company where a Make-To-Order (MTO) policy is followed (MTO family),

and a family of products whose orders are typically quite below the established

minimum production level. For this family, the company follows a Make-To-

Stock (MTS) policy (MTS family). The production planning procedure for the

MTO family is well established. However for the MTS family, as the orders

are below the minimum production level, the company must find a solution

between the two extreme cases: wait for new orders of the same product until

the minimum production level is attained, or produce at least at the minimum

production level of that item to satisfy the pending orders and store the leftovers

in inventory. Both alternatives have their pros and cons. The first alternative

has the advantage of avoiding stocks. On the other hand, the backlogging of

demand orders may lead to intangible losses. Conversely, the second alternative

has the advantage of a ready satisfaction of customer needs but generates high

holding costs.

Currently, the company gives priority to the MTO family by planing its

production first, and when extra production capacity is available, then it solves

a lot-sizing problem to decide which products from the MTS family should be

produced and defining the corresponding lot-sizes. This particular lot-sizing

problem takes into account not only the pending orders of each product but

also future ones, as the excess quantity produced will remain in stock until new
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orders are received. Therefore, it is necessary to estimate those future client

orders. The uncertainty related to forecasting such future demands represents

a risk for the planners since the inventory costs will depend greatly on such

unknown demands. For industries where holding costs are high (as in the case

of our industrial partner) it is desirable to derive robust solutions that take into

account possible future deviations from the estimated demand values.

Here we address this lot-sizing problem defined for the MTS family of prod-

ucts, using the available production capacity. We consider both the determinis-

tic and the robust cases where demands are assumed to belong to an uncertainty

set and we look for the production plan that optimizes the worst-case scenario.

For the production of the MTS family, we produce at most one batch of each

product, hence, we allow at most one set-up. Therefore this particular lot-sizing

problem is denoted by LS1S (Lot-Sizing with 1 Set-up). The robust problem is

denoted by RLS1S.

Multi-product lot-sizing problems have been receiving a great attention, for

recent publications, see e.g. (Cunha et al., 2017; Macedo et al., 2016; Sifaleras

and Konstantaras, 2017). Frequently, due to the variety of products and their

demand patterns, the companies follow different production polices for the dif-

ferent products. In some cases, different policies can even be considered for the

same product (see (Zhang et al., 2013)) in order to satisfy the different demand

streams. The decision between the MTO and the MTS policies was investigated

by Zaerpour et al. (2008) and Altendorfer and Minner (2014). For an overview

on comparison of such approaches see (Olhager and Prajogo, 2012). However,

both MTO and MTS producing processes may share common resources forcing

the production planners to coordinate the MTO and MTS policies (Rafiei and

Rabbani, 2012). Examples of problems combining MTO–MTS policies can be

found in different industries, such as food production systems (Soman et al.,
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2004) and steel plants (Zhang et al., 2015).

Several approaches have been proposed, mostly from last decade, regarding

the integration of MTS and MTO policies. Beemsterboer et al. (2016) study

the benefits of not prioritizing policies within a hybrid planning MTO–MTS

approach. In (Beemsterboer et al., 2017a), the authors analyse the benefits

of considering flexible lot sizing policies in a hybrid MTO–MTS approach for

a two-product system. In (Beemsterboer et al., 2017b), the authors propose

four methods of integrating make-to-stock items in the control of a job shop,

which they evaluate using discrete event simulation. Kaminsky and Kaya (2009)

propose heuristics for a multi-item problem where the manufacturer and the

supplier have to decide which items to produce to stock and which to produce

to order. Kalantari et al. (2011) present a decision support system for order

acceptance/rejection in a hybrid MTO–MTS production environment. Perona

et al. (2009) develop a decision-making approach to support inventory man-

agement decisions in a MTO–MTS environment for small and medium sized

enterprises. Renna (2016) considers a multistage manufacturing serial system,

where a production control strategy is performed to release MTO and MTS

orders. Rafiei et al. (2013) propose a hierarchical production planning approach

for a hybrid MTO–MTS system that includes both mid-term and short-term

production planning levels. Rafiei et al. (2014) propose a genetic algorithm for

a multi-site production planning of a hybrid MTO–MTS manufacturing system.

The MTS planning carries the risk that the forecasted orders may not mate-

rialize. Such risk has been identified before, see (Tang and Musa, 2011). When

it is possible, delaying product differentiation can be an interesting intermediate

solution (Gupta and Benjaafar, 2004), but that is not possible in most practi-

cal cases as the one faced by our industrial partner. For those cases, handling

with uncertainty is of main relevance on MTS environments. To the best of
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our knowledge only Khakdaman et al. (2015) applied a robust multi-objective

approach based on a set of scenarios to a hybrid MTO–MTS problem where

uncertainty is considered in suppliers, processes and customers.

The problem considered in this paper occurs as a subproblem of a hybrid

MTO–MTS manufacture system where a hierarchic approach is followed and

priority is given to MTO. The problem focuses on solving the MTS planning

considering the remaining manufacturing capacity. From its nature, the MTS

subproblem considers medium/long-term horizons where demand uncertainty

plays a crucial role when defining lot-sizings.

A large number of publications has been devoted to the study of robust

lot-sizing problems with demand uncertainty. One of the first papers on the

topic is (Bertsimas and Thiele, 2006), which proposes a simple conservative

approximation of the robust constraints and studies the structure of the optimal

policies. In parallel to that work, another paper introduced affine decision rules

(Ben-Tal et al., 2004), having the advantage of better approximating the robust

constraints. The theoretical strength of affine decision rules has been studied in

subsequent papers, among which (Iancu et al., 2013). More recent works have

sought to solve the robust problem exactly, by using decomposition algorithms

and dynamically adding constraints to the problem, see (Agra et al., 2016;

Bienstock and Özbay, 2008; Gorissen and den Hertog, 2013). Robust lot-sizing

problems and their variants are also addressed in more general papers dealing

with multi-stage robust optimization, see (Delage and Iancu, 2015) for a survey

on these problems. More generally, we refer to (Peidro et al., 2009) for a survey

on papers dealing with uncertainty on supply chains.

Although motivated by a practical problem, we aim to incorporate the recent

robust optimization techniques into this particular lot-sizing problem in order to

close the gap between the robust techniques for classical lot-sizing problems and
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the robust techniques for MTS problems within hybrid MTO–MTS manufacture

systems.

The contributions of this paper are more specifically detailed below. We

introduce a mathematical model for the deterministic case where future demands

are assumed to be known. Our model is different from the the classical ones

(see for instance (Pochet and Wolsey, 2006)) mainly because we suppose that

each product has at most one set-up. A proof that this particular problem is

NP-hard is given. The model is tightened with valid inequalities.

We develop a robust mixed integer model where demands are considered

uncertain and belong to intervals. The uncertainty set is further constrained

by budget constraints that limit the number of possible periods where a de-

mand can deviate from its nominal value preventing the solutions to be too

conservative, obtaining the well-known budgeted uncertainty set introduced in

(Bertsimas and Sim, 2004). We approximate the resulting robust constraints

using the conservative approach of (Bertsimas and Thiele, 2006), rather than

the computationally demanding affine decision rules from (Ben-Tal et al., 2004)

or exact approaches used in (Agra et al., 2016; Bienstock and Özbay, 2008).

Since the problem is NP-hard, and we aim to develop approaches that can

be used both with commercial and non-commercial (slower but free) solvers,

we propose two heuristics. The first heuristic, called Elite Heuristic, is based

on a pre-selection of a set of candidate products. The problem is solved for

that restricted set of products using a mixed integer linear programming solver

based on the strengthened formulation. The heuristic incorporates the practical

rules used by the company to choose the products to produce. The second

heuristic, denoted as the Tournament Heuristic, runs in several iterations. At

each iteration, the set of candidate products is partitioned into smaller subsets

and the problem is solved optimally for each subset. Only the selected products
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of each subset are considered in the next iteration. The process is repeated until

a final subset of products is solved or a number of iterations is attained.

To test the deterministic and robust formulations and the matheuristics we

use the non-commercial solver Cbc from Coin-OR (2016), which is referred to as

one of the fastest solvers among the non-commercial ones (Meindl and Templ,

2012). The test set was built from the real data provided by our industrial

partner.

As the proposed heuristics use simple strategies to reduce the number of

items and, consequently, the size of the instances, such heuristics can be eas-

ily adapted to other multi-item lot-sizing problems. It suffices to adapt the

mathematical model to the particularities of the other problems. We also show,

that in order to derive solutions that take into account future demands varia-

tions, robust strategies could be embedded into the mathematical model, and

therefore into the heuristics, but of course such strategies would need further

computational testing in other cases and contexts.

The outline of the paper is as follows. In Section 2 we introduce a mixed-

integer formulation to model the practical LS1S problem assuming the demands

are deterministic. The formulation is enhanced and a proof of NP-hardness

is given. Then, in Section 3, we derive the robust model for the case where

demands belong to an uncertainty set. In Section 4 we present the two heuristics.

Computational experiments are reported in Section 5. Final conclusions are

given in Section 6.

2. Formulation

In this section we introduce a mixed integer formulation for the LS1S prob-

lem. The formulation is presented in a generic format in order to establish

connections to related models and existent literature. Let m denote the number
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of items considered and n denote the number of time periods of the planning

horizon, and define the sets M = {1, . . . ,m} and N = {1, . . . , n}. We split the

time horizon into two sub horizons N1 = {1, . . . , n1} and N2 = {n1 + 1, . . . , n}.

The first horizon is for production planning (where the extra production capacity

is available) while the second horizon is considered for the inventory manage-

ment aspects. The demand of item i ∈ M, in time period t ∈ N1, denoted by

deit, is assumed to be known and, in our case, corresponds to pending orders.

The demand for item i ∈ M in time period t ∈ N2 is denoted by dpit and is

forecasted. If item i is produced, then the amount produced must be comprised

between Q
i
and Qi. For each item i, parameters pi and qi represent the unit

production cost and the fixed production cost, respectively. Such parameters

may be negative if we allow them to incorporate, for instance, the selling price.

For each product i ∈M , and for each time period t ∈ N , parameters hit and git

are assumed to be nonnegative and model the unit inventory cost and the unit

backlogging cost, respectively. Finally, S is the maximum inventory capacity.

To formulate the problem, we define the following decision variables: xit is

the production of item i in period t; zit indicates whether there is production of

item i in period t; yi is the set-up variable which is 1 if xit > 0 for some t ∈ N1,

and 0 otherwise; sit is the inventory of item i at the end of time period t, and

rit is the backlogged demand of item i at the end of period t. The mixed integer

programming formulation for LS1S is described below.

min
∑
i∈M

∑
t∈N1

pixit +
∑
i∈M

∑
t∈N

hitsit +
∑
i∈M

∑
t∈N

gitrit +
∑
i∈M

qiyi (1)
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s.t. xit + si,t−1 + rit = deit + sit + ri,t−1,∀i ∈M, t ∈ N1, (2)

si,t−1 + rit = dpit + sit + ri,t−1, ∀i ∈M, t ∈ N2, (3)∑
i∈M

sit ≤ S, ∀t ∈ N, (4)

Q
i
zit ≤ xit ≤ Qizit, ∀i ∈M, t ∈ N1, (5)

yi =
∑
t∈N1

zit, ∀i ∈M, (6)

zit ∈ {0, 1}, ∀i ∈M, t ∈ N1, (7)

yi ∈ {0, 1}, ∀i ∈M, (8)

sit, rit ≥ 0, ∀i ∈M, t ∈ N, (9)

ri0 = si0 = 0, ∀i ∈M, (10)∑
i∈M

xit = Vt, ∀t ∈ N1. (11)

The objective function (1) aims to minimize the sum of the production costs

(
∑

i∈M
∑

t∈N1
pixit), the inventory cost (

∑
i∈M

∑
t∈N hitsit), the backlogging

cost (
∑

i∈M
∑

t∈N gitrit), and the fixed production cost (
∑

i∈M qiyi) over the

planning horizon.

Constraints (2) are the inventory balanced constraints written for each item

and each production period t ∈ N1, while constraints (3) are the inventory

balanced constraints for time periods t ∈ N2. Constraints (4) impose an upper

bound on the stock level. Constraints (5) are the variable lower and upper

bound constraints. They impose a lower and an upper bound on the quantity

produced of each product at each period and link the corresponding continuous

variables to the set-up variables. Equations (6) establish the number of set-

ups for each product. Together with (8) they ensure that at most one set-

up can occur. Constraints (7) and (8) define the set-up variables as binary.

Constraints (9) ensure non-negativity of the inventory and backlog variables.
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Constraint (11) represents the additional constraints related to the available

production capacity.

Summing up the equations (2) from 1 to n1, one obtains

∑
t∈N1

xit + si0 − ri0 =
∑
t∈N1

deit + sin1
− rin1

, ∀i ∈M (12)

Denoting
∑

t∈N1
deit by De

i and using si0 = ri0 = 0, then (12) can be written as

∑
t∈N1

xit = De
i + sin1

− rin1
, ∀i ∈M. (13)

Similarly, summing up equations (3) from n1 + 1 to ` ∈ {n1 + 1, . . . , n}, we

obtain

sin1
− rin1

=
∑̀

t=n1+1

dpit + si` − ri`, ∀i ∈M, ` ∈ {n1 + 1, . . . , n}, (14)

Using (13) to eliminate sin1 and rin1 , then

si` − ri` =
∑
t∈N1

xit −De
i −

∑̀
t=n1+1

dpit, ∀i ∈M, ` ∈ {n1 + 1, . . . , n}. (15)

Since si` and ri` are nonnegative, we obtain

sit ≥
∑
t∈N1

xit −De
i −

t∑
`=n1+1

dpi`, ∀i ∈M, t ∈ N2, (16)

rit ≥ −
∑
t∈N1

xit +De
i +

t∑
`=n1+1

dpi`, ∀i ∈M, t ∈ N2. (17)

As the holding and backlogging costs are assumed nonnegative, we may replace

constraints (3) by (16) and (17). The resulting deterministic model for LS1S,

defined by (1), (2), (4) – (11), (16), (17), will be denoted by DLS1S.

When N2 = ∅, we obtain a classical lotsizing model with the additional con-
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straint that at most one setup is allowed for each item. In a MTS environment

the stocks may last for a longer time horizon than the planning one. Under

deterministic assumptions the second time horizon can be easily dropped since

the holding cost in the last time period can be easily computed. However, in a

robust setting it is desirable to consider the second time horizon explicitly since

it allows to incorporate different seasonal behaviours of demand and allow to

account for different magnitudes of deviation to the estimated demands.

2.1. Strengthening the formulation

It is well known that the inclusion of valid inequalities can improve the model

significantly, see (Pochet and Wolsey, 2006) for details. Constraints (16) can be

strengthened as follows.

sit ≥
∑
t∈N1

xit −De
i yi −

t∑
`=n1+1

dpi`yi, ∀i ∈M, t ∈ N2, (18)

When yi = 1 inequality (18) coincides with (16) and when yi = 0 the right-hand

side of (18) becomes negative. Thus (16) is valid for the set of feasible solutions.

Moreover,

De
i yi +

t∑
`=n1+1

dpi`yi ≤ d
e
i +

t∑
`=1

dpi`

⇔
∑
t∈N1

xit −De
i yi −

t∑
`=n1+1

dpi`yi ≥
∑
t∈N1

xit −De
i −

t∑
`=1

dpi`

which implies that (18) is stronger than (16). In fact we can replace (16) by

(18) in the formulation for LS1S.

A family of valid inequalities for the value of backlog variables follows.

rit ≥ De
i (1− yi) +

t∑
`=n1+1

dpi`(1− yi), ∀i ∈M, t ∈ N2. (19)

If there is no setup for period i, i.e. yi = 0, inequality (19) forces the demand
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De
i +

∑t
`=1 d

p
i` to be backlogged. Otherwise, if yi = 1, inequality (19) simply

imposes nonnegativity on the backlog variables. Contrary to the previous case,

(19) cannot replace inequalities (17).

The strengthened deterministic model for LS1S, denoted by SDLS1S is given

by (1), (2), (4) – (11), (17), (18), (19).

In the practical case provided to us by our industrial partner we have the fol-

lowing assumptions: (i) only one production period is considered (n1 = 1); (ii)

only the backlog of the effective demand is penalized (git = 0, t ∈ N2); and (iii)

the minimum production quantity is at least the effective demand (Q
i
≥ dei ).

The three assumptions imply that constraints (17) can be eliminated. For com-

pleteness we give below the resulting strengthened model, after simplification,

for the practical case.

min
∑
i∈M

∑
t∈N1

pixit +
∑
i∈M

∑
t∈N

hitsit +
∑
i∈M

gi1ri1 +
∑
i∈M

qiyi (20)

s.t. sit ≥
∑
t∈N1

xit −De
i yi −

t∑
`=1

dpi`yi, ∀i ∈M, t ∈ N, (21)

ri1 ≥ De
i (1− yi), ∀i ∈M, (22)

si1 ≤ S, (23)

Q
i
yi ≤

∑
t∈N1

xit ≤ Qiyi, ∀i ∈M, (24)

∑
i∈M

∑
t∈N1

xit = V1, ∀t ∈ N, (25)

sit, rit ≥ 0, ∀i ∈M, (26)

yi ∈ {0, 1}, ∀i ∈M. (27)

Notice that constraints (23) are given just for t = 1 since the stock level will
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decrease in subsequent periods. We denote model (20)-(27) by PLS1S.

2.2. Complexity analysis

The original problem LS1S is NP-hard as it generalizes the classical lot-sizing

problem with varying capacities (Pochet and Wolsey, 2006). Here we focus on

the particular case of the practical problem PLS1S. We show it is NP-hard for

the simplified version with two time periods (implying it is NP-hard for the

general case). The proof is done by reducing the partition problem to PLS1S.

Proposition 2.1. The problem defined by PLS1S is NP-hard for the particular
case n1 = 1, n = 2.

Proof: The decision problem, denoted by D-PLS1S, associated with the opti-

mization problem asks whether there is a solution to (21)-(27) whose objective

function value given by (20) is greater than L.

Next we reduce the partition problem to D-PLS1S. Recall that in the par-

tition problem we are given k positive integers ai, i ∈ K = {1, . . . , k} and

wish to determine whether there exists a partition (S,K \ S) of K such that∑
i∈S

ai =
∑

i∈K\S
ai =

∑
i∈K

ai/2.

For the reduction consider k = m, Q
i

= Qi = ai and V1 =
∑
i∈K

ai/2. Further,

for each i ∈ M , we set De
i = min

j∈K
aj , d

p
i1 = ai − De

i , pi = qi = gi1 = 0,

hit = 0, t ∈ N, L = 0.

As
∑

t∈N1
xit = aiyi, any feasible solution to D-PLS1S must satisfy

∑
i∈M aiyi

=
∑
i∈K

ai/2. Hence, there is a one to one correspondence between a feasible solu-

tion (x∗, y∗) of D-PLS1S, with the specified parameters, and a feasible solution

of the partition problem, where S = {j ∈ K|y∗j = 1}. �
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3. Robust model for the demand uncertainty case

Clearly, it is not possible to know precisely the value of dpit for all i and t

since these orders have not been made yet. At best, we can rely on historical

data to draw a set of plausible values for these demands. A popular approach

(see (Bertsimas and Sim, 2003, 2004; Bertsimas and Thiele, 2006)) considers

the nominal value d
p

it and the deviation d̂pit for each i and t which could, for

instance, be the mean value and the variance of the available historical data.

The approach then supposes that the unknown parameter dpit can take any

value in the interval [d
p

it − d̂
p
it, d

p

it + d̂pit] and that, for each item i and each time

period t, the number of demands taking an extreme value is bounded by a given

parameter Γt > 0: ∑
`∈Nt

|dpi` − d
p

i`|
d̂pi`

≤ Γt. (28)

where N t = {n1 + 1, . . . , t}. Formally, the uncertainty sets obtained with this

approach can be written as

Dit =
{
dpi` : dpi` = d

p

i` + δ+
i` d̂

p
i` − δ

−
i` d̂

p
i`, ` ∈ N

t, δ+
i` , δ

−
i` ∈ [0, 1] , ` ∈ N t,∑

`∈Nt

(δ+
i` + δ−i`) ≤ Γt

}
,

for each i ∈ M and t ∈ N , where δ+ and δ− are auxiliary vectors that ease

the linearization of constraint (28). Parameter Γt is often denoted as the budget

of uncertainty. Taking a small value of Γt yields a small uncertainty set, while

increasing Γt yields larger and larger uncertainty sets. The two extremes are

Γt = 0 for which Dit is reduced to the singleton {dpi } and Γt = t for which Dit

is equal to the box ∏
`∈Nt

[d
p

i` − d̂
p
i`, d

p

i` + d̂pi`].
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In general, for each t, Γt is comprised between 0 and t, and Γt ≤ Γt+1. For

simplicity we assume Γt is integer for each t, but all the results derived in this

section could be extended to the case where parameters Γt are fractional.

Next we present a robust model for RLS1S. The model is based on the

deterministic formulation DLS1S where constraints (16) are replaced by (18).

For the remaining models discussed in the previous section (models D-LS1S,

SDLS1S and PLS1S) the robust model can be derived in a similar way.

min
∑
i∈M

∑
t∈N1

pixit +
∑
i∈M

∑
t∈N

hitsit +
∑
i∈M

∑
t∈N

gitrit +
∑
i∈M

qiyi (29)

s.t. sit ≥
∑
t∈N1

xit −De
i yi −

∑
`∈Nt

dpi`yi,∀i ∈M, t ∈ N2, d
p
i` ∈ Dit (30)

rit ≥ −
∑
t∈N1

xit +De
i +

∑
`∈Nt

dpi`,∀i ∈M, t ∈ N2, d
p
i` ∈ Dit (31)

(2), (4)− (11), (17).

Constraints (30) and (31) are inspired by the approach used in (Bertsimas

and Thiele, 2006). Their main advantage is to lead to a fairly simple robust

counterpart. Namely, we show in the rest of the section that problem (2), (4) –

(11), (29) – (31), can be reformulated as a compact MILP that is essentially of

the same order of difficulty as the deterministic version LS1S. In contrast, the

more advanced methods used in (Agra et al., 2016; Ben-Tal et al., 2004) provide

more accurate solutions however at a high computational cost.

Formulation RLS1S contains an infinite number of constraints, yielding a

semi-infinite MILP. We show next how to reformulate the problem as a compact

MILP by using a well-known technique from robust optimization (e.g. (Ben-Tal

and Nemirovski, 1998; Bertsimas and Sim, 2004; Bertsimas and Thiele, 2006)).
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First, we realize that for (30), positive deviations of dpi` are not increasing the

cost of the solution since they would only decrease the stock more rapidly;

hence, positive deviations can be neglected in (30). Similarly, we can restrict

ourselves to negative deviations of dpi` in (31) since the positive deviations will

never increase the amount of unmet demands. Formally, we can introduce the

smaller uncertainty sets

D+
it =

{
dpi` : dpi` = d

p

i` + δi`d̂
p
i`, ` ∈ N

t, δi` ∈ [0, 1] , ` ∈ N t,
∑
`∈Nt

δi` ≤ Γt

}
,

D−it =

{
dpi` : dpi` = d

p

i` − δi`d̂
p
i`, ` ∈ N

t, δi` ∈ [0, 1] , ` ∈ N t,
∑
`∈Nt

δi` ≤ Γt

}
,

and we replace constraints (30) and (31) with the equivalent constraints

sit ≥
∑
t∈N1

xit −De
i yi −

∑
`∈Nt

dpi`yi, ∀i ∈M, t ∈ N2, d
p
i` ∈ D

−
it , (32)

rit ≥ −
∑
t∈N1

xit +De
i +

∑
`∈Nt

dpi`, ∀i ∈M, t ∈ N2, d
p
i` ∈ D

+
it . (33)

Next we see that the infinite numbers of constraints (32) and (33) can be sub-

stituted by the following non-linear constraints

sit ≥
∑
t∈N1

xit −De
i yi − min

dp
i`∈D

−
it

(∑
`∈Nt

dpi`yi

)
, ∀i ∈M, t ∈ N2, (34)

rit ≥ −
∑
t∈N1

xit +De
i + max

dp
i`∈D

+
it

(∑
`∈Nt

dpi`

)
, ∀i ∈M, t ∈ N2. (35)

Next we follow the classical dualization approach introduced in (Ben-Tal and

Nemirovski, 1998) and used to lot-sizing problems in (Bertsimas and Thiele,

2006). Let i ∈ M and t ∈ N be fixed and let us focus on constraint (34).

The inner minimization problem over variables dpi` in (34) can be replaced by a

minimization problem over variables δi`. Moving the term yi
∑

`∈Nt d
p

i` outside
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of the minimization because it does not involve the variable δi`, and changing

the minimization problem by a maximization problem, we obtain

yi
∑
`∈Nt

d
p

i` − max
∑
`∈Nt

δi`d̂
p
i`yi

s.t.
∑
`∈Nt

δi` ≤ Γt, (36)

0 ≤ δi` ≤ 1, ∀` ∈ N t. (37)

Let us denote the dual variables of constraints (36) and (37) as z−it and u`−it ,

respectively. Since constraints (36) and (37) define a bounded and non-empty

polytope, we can apply strong linear programming duality to replace the maxi-

mization problem by its dual:

yi
∑
`∈Nt

d
p

i` − min Γtz
−
it +

∑
`∈Nt

ut−i`

s.t. z−it + ut−i` ≥ d̂
p
i`yi, ∀` ∈ N t, (38)

z−it , u
t−
i` ≥ 0 ∀` ∈ N t. (39)

Plugging the above minimization problem into the original constraint (34) for

the fixed i and t, we obtain

sit ≥
∑
t∈N1

xit−De
i yi−yi

∑
`∈Nt

d
p

i`+


min Γtz

−
it +

∑
`∈Nt u

t−
i`

s.t. z−it + ut−i` ≥ d̂
p
i`yi, ∀` ∈ N t

z−it , u
t−
i` ≥ 0 ∀` ∈ N t

 .

(40)

Finally, notice that (40) is feasible if and only if there exist vectors z−it ≥ 0 and

ut−i` ≥ 0 that satisfy the dual constraints (38) and such that

sit ≥
∑
t∈N1

xit −De
i yi − yi

∑
`∈Nt

d
p

i` + Γtz
−
it +

∑
`∈Nt

ut−i` . (41)
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Therefore, the robust constraint (34) is equivalent to the constraints (38), (39),

and (41).

Introducing dual variables z+
it and u`+it to handle with constraints (35), we

can reformulate RLS1S as the following compact MILP, denoted by RLS1S.

min
∑
i∈M

∑
t∈N1

pixit +
∑
i∈M

∑
t∈N

hitsit +
∑
i∈M

∑
t∈N

gitrit +
∑
i∈M

qiyi

s.t. sit ≥
∑
t∈N1

xit −De
i yi − yi

∑
`∈Nt

d
p

i` + Γtz
−
it +

∑
`∈Nt

ut−i` ,∀i ∈M, t ∈ N2

z−it + ut−i` ≥ d̂
p
i`yi, ∀i ∈M, t ∈ N2, ` ∈ N t

rit ≥ −
∑
t∈N1

xit +De
i +

∑
`∈Nt

d
p

i` + Γtz
+
it +

∑
`∈Nt

ut+i` , ∀i ∈M, t ∈ N2

z+
it + ut+i` ≥ d̂

p
i`, ∀i ∈M, t ∈ N2, ` ∈ N t

(2), (4)− (11), (17),

z−it , u
t−
i` , z

+
it , u

t+
i` ≥ 0, ∀i ∈M, t ∈ N2, ` ∈ N t.

The above approach is easy to apply because it amounts to solve a unique

problem. Yet, the dimension of the new MILP is larger than the dimension of

the original problem.

An alternative approach to the dualization is to compute a priori the min-

imum and maximum occurring in the right-hand side of inequalities (34) and

(35), respectively. As explained above, these optimization problems can be con-

verted into a maximization problem where the feasible set is defined by (36)

-(37). We can observe that the extreme solutions of this set satisfy δi` ∈ {0, 1}.

Thus, the sets of extreme feasible solutions correspond to uniform matroids.

Consequently, these maximization problems can be solved by a greedy algo-
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rithm that chooses the highest deviations. Hence, the following equalities hold.

min
dp
i`∈D

−
it

(∑
`∈Nt

dpi`yi

)
=

(∑
`∈Nt

d
p

i` −
Γt∑
r=1

d̂pi`tr

)
yi

max
dp
i`∈D

−
it

(∑
`∈Nt

dpi`

)
=
∑
`∈Nt

d
p

i` +

Γt∑
r=1

d̂pi`tr

where d̂pi`tr is the rth largest deviation among the first t deviations d̂pi1, . . . , d̂
p
it.

Hence, (34) and (35) are replaced by

sit ≥
∑
t∈N1

xit −De
i yi −

(∑
`∈Nt

d
p

i` −
Γt∑
r=1

d̂pi`tr

)
yi, ∀i ∈M, t ∈ N2, (42)

rit ≥ −
∑
t∈N1

xit +De
i +

∑
`∈Nt

d
p

i` +

Γt∑
r=1

d̂pi`tr
, ∀i ∈M, t ∈ N2. (43)

For the computational results we use this second approach since it is more

efficient computationally.

4. Heuristics

Companies seek for quick approaches to find good solutions to their prob-

lems. While compact, formulations SDLS1S and RLS1S can take too much

time to be solved to optimality using exact algorithms such as the Branch and

Cut implemented in both commercial and open-source optimization software.

The running time is even more relevant in our case since the number of items

considered can be quite large, up to few hundreds. Hence, for a practical use,

we present two heuristics to solve problems LS1S and RLS1S approximately.

A first one, called Elite Heuristic extends the current practice of the company

which is based on the selection of items accordingly to some criteria. Here we

select a larger number of items accordingly to the same criteria and solve the
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models restricted to the selected items. The second heuristic, called Tourna-

ment Heuristic, selects iteratively small subsets of items until it reaches a final

and small subset.

4.1. Elite Heuristic

The first heuristic is to select a specific subset of items and solve the proposed

formulation considering this subset of items.

The choice of the subset is as follows. Choose

• m1 items with the highest known demand values, De
i ;

• m2 items with the highest values of the known demand plus the forecasted

demand for the first time period,
(
De

i + dpi,n1+1

)
;

• m3 items with the highest values of the known demand plus the forecasted

demand for the first two time periods,
(
De

i +
∑n1+2

t=n1+1 d
p
it

)
;

• m4 items with the highest values of the known demand plus the forecasted

demand for the first three time periods,
(
De

i +
∑n1+3

t=n1+1 d
p
it

)
;

Here we consider m1 = m2 = m3 = m4.

After selecting and joining these four list of items, the restricted model (the

deterministic SDLS1S or the robust RLS1S) is solved. As the number of elite

items is small the resulting model can be solved to optimality easily. As example,

if we are given a set with 200 items and take m1 = m2 = m3 = m4 = 5, then

five items will be selected from the initial set of 200 items using each one of the

four criteria given above. The resulting restricted model with the selected items

is solved using a solver.

Notice that the selection criteria do not take into account the costs. If the

costs vary from product to product significantly, which is not the case of the

instances we consider, then other criteria taking into account the cost structure
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(production costs, inventory costs, backlogging costs, fixed production cost)

should be used. For instance, if the backlogging costs vary significantly, a fifth

criteria should be considered which consists in selecting the m5 items with the

highest backlogging cost. Similarly, to the remaining cost components.

4.2. Tournament Heuristic

The second heuristic is to decompose the original problem into smaller and

easier subproblems which can be solved quickly. The items selected from these

subproblems are the input to the subproblems of the next step. The process is

repeated until a final and smaller subset of items is obtained. Next we detail

this heuristic.

The first step is to divide the set of m items into r1 subsets with cardinalities

m11,m12, . . . ,m1r1 , respectively, where m11 +m12 + . . .+m1r1 = m. Then solve

the restricted problem for each one of the subsets. As the resulting subproblems

are simpler they are solved to optimality. The items that are produced in the

optimal solution of each one of the subproblems are selected to the next iteration.

Let m1 denote the number of items selected in the first step. Then split this

set into r2 subsets with cardinalities m21,m22, . . . ,m2r2 , respectively, where

m21+m22+. . .+m2r2 = m1. Each one of the subproblems is solved to optimality

again in order to identify the new selected (produced) items. The process is

repeated until a final subset with cardinality less or equal to a threshold is

obtained or a maximum number of iterations is attained. The final solution is

the optimal solution to the problem restricted to the final set of items. Table 1

outlines Heuristic 2.

In order to exemplify the decomposition process, assume we are given a

set with 200 items and consider r1 = 6. Thus, the set of items is split into

six subsets as follows: four subsets with 33 elements (m11 = m12 = m13 =

m14 = 33) and two subsets with 34 elements (m15 = m16 = 34). Then, each
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Table 1: Scheme of the Tournemant Heuristic.
1st Step 2nd Step 3rd Step · · · nth Step

m

m11

m12

m1

m21

...

m22

m2

m31

...

m32

... · · · mn−1 mn1

m3r3

m2r2

m1r1

problem corresponding to a different subset is solved to optimality and the items

produced in each one of the six problems are selected to the next round.

Notice that the solution to each subproblem is feasible to the original prob-

lem. Hence, it is expected that the quality of the solutions obtained will improve

in each iteration, culminating in the solution of the final iteration.

The quality of the final solution may depend on the successive partitions of

the set of items. The selection of items for each subset can be done randomly

and the process can be repeated several times. Here we will not explore such

possible improvement.

5. Numerical experiments

In this section we report the computational tests. The objectives of these

numerical experiments are three-fold. First, we assess the difficulty of the de-

terministic and robust instances, reporting also the gains obtained by using the

strengthened models proposed in Section 2.1. Second, we evaluate the objective

function values for the robust and deterministic models to test the importance

of using robust approaches. Last, we test the efficiency of the two proposed

heuristics.

All tests were conducted on a computer Intel(R) Core(TM) i3-3250 CPU,
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3.50GHz with 4 cores, using the open-source solver Cbc 2.9 (Coin-or branch and

cut) from Coin-OR (2016). The heuristics were implemented in Julia, using the

package JuMP (Lubin and Dunning, 2015).

Instances were generated using data provided by our industrial partner for

the MTS family of products. Since the number of items considered depends

on the pending order quantities (as items with few orders are not considered),

the number of items varies weekly and can go up to a few hundred products

(the complete MTS family). Also, the production capacity, V1, varies weekly as

it represents the residual capacity after the production of MTO products have

been considered. Based on the information provided by our partner, suggesting

to pick-up 80 items and to use a residual capacity around 2000, we generate fif-

teen instances for the deterministic problem by varying the number of items and

the residual capacity. In relation to these two parameters (number of products

and capacities), the fifteen instances aim to simulate realistic instances faced by

the company currently and in the future. For the number of items we consider

five possible values 80, 100, 150, 200, 300. Notice that for testing purposes it is

not interesting to consider small size and, therefore, easy instances. For the pro-

duction capacities, V1, three values are considered: 1000, 2000, 3000 (since both

sides with higher and lower capacities are relevant). The remaining data is taken

as follows. The known demands De
i are given by real data and the forecasted

demands dpit are obtained from the historical average demand of each item. The

following additional parameters are considered (established by our industrial

partner, see (Santos, 2015) for details): T is set to 24, Q
i

= max{250, De
i },

hit = H ∗ (1 + J)t, where H = 3.52, J = 0.001651, pi = 0.991003, qi = 669.11.

A unit penalty cost of 1 is assumed for each item (gi1 = 1). For the robust

settings, d
p

i` is set to the deterministic value dpit. For d̂
p
i`, two possible values are

considered d̂pi` = 0.2d
p

i` and d̂
p
i` = 0.4d

p

i`. Γ varies in {0, 1, 2, 3}. This gives a total
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of 120 instances for the robust problem. Notice that the deterministic instances

(Γ = 0) are considered for both levels of deviations d̂pi` as the assessment of the

price of robustness is different for both levels.

5.1. Testing formulations and accessing instances difficulty

In the first experiments the instances are solved with a time limit of 1800

seconds. Table 2 gives the number of instances that were not solved within

the given time limit using the model PLS1S with the improvements discussed in

Section 2.1. Column capacity gives the production capacity divided by 1000, the

second column with Γ = 0 is for the deterministic case, columns 3-8 consider the

robust case where Γt = min{t,Γ}. The first three columns assume a maximum

deviation of 20% from the nominal value and the next three columns assume

a maximum deviation of 40% of that value. The last column gives the total

number of instances that were not solved to optimality. Table 3 provides similar

information however for the model PLS1S without the improvements (weak

model).

Table 2: Number of unsolved instances using the strong formulation.

capacity Deviation=0.2 Deviation=0.4 Sum
Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 1 Γ = 2 Γ = 3

1 0 0 0 0 0 0 0 0
2 0 2 2 2 2 2 2 12
3 2 1 1 1 0 0 0 5

Sum 2 3 3 3 2 2 2 17

Table 3: Number of unsolved instances using the weak formulation.

capacity Deviation=0.2 Deviation=0.4 Sum
Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 1 Γ = 2 Γ = 3

1 0 0 0 0 1 1 1 3
2 1 3 3 3 2 2 2 16
3 3 2 2 2 2 2 2 15

Sum 4 5 5 5 5 5 5 34

We can see that the number of unsolved instances drops from 34 to 17 by
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using the strengthened formulation instead of the weak one. There is no clear

correlation between the difficulty of the instances and the value of Γ parameter.

In relation to the production capacity, we can observe that the medium capacity

instances seem to be a bit harder than the other ones.

Although not reported in the tables, the average of root gap is 60% for the

weak formulation and 5% for the strong formulation. Nevertheless, all unsolved

instances have a final integrality gap less than or equal to 3%. For the strong

formulation the lower bound for the geometric average running time of the solved

instances is 2.94 (it is a lower bound because instances faster than 1 second are

set to 1 second).

We also solved these instances using CPLEX 12.7 rather than Cbc 2.9, keep-

ing the time limit of 1800 seconds. Unsurprisingly, the former is much faster

than the latter, the weak formulation solving already all but 11 instances (vs

34 for Cbc) while the strong formulation leaves only 3 instances unsolved (vs

17 for Cbc). Fortunately, we will show below that our heuristics, based on Cbc

perform very well on our instances, solving nearly all of them to optimality.

5.2. Determining the price of robustness

Here we discuss the price for considering robust solutions. As explained in

the introduction, estimating the future demands by the historic average values

doesn’t immunize the solution for possible deviations in the demand values

that can lead to higher costs than the estimated ones. For the practical case

considered here, the costs that may be underestimated are the inventory costs

which are based on the estimated future demands, since for the backlogged

demand only the pendent orders are penalized.

In order to report the computational results we define C(i,j) as the cost of

the solution obtained for Γ = i assessed when Γ = j. For instance, C(0,2) is the

cost obtained for the optimal deterministic solution (obtained for Γ = 0) when
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facing an uncertainty level of Γ = 2, that is, when we allow the demand values

for two time periods to suffer a maximum deviation, either of 20% or 40%, from

the estimated nominal values.

In tables 4 and 5 we report for the two deviation levels the value C(i,j),

which is the average of the percentage gaps between the parameters C(i,j) and

C(i,i), defined formally by

C(i,j) =
C(i,j) − C(i,i)

C(i,i)
.

For example, C(0,2) = 1.76 means that the deterministic optimal solutions are,

on average, 1.76% more expensive than the optimal solutions obtained for the

robust model with Γ = 2 when facing an uncertainty level of Γ = 2.

Table 4: Costs C(i,j) (expressed in %) considering a deviation 0.2.

0 1 2 3
0 0 1.19 1.76 0
1 1.49 0 0.81 0
2 1.20 0 0 0
3 1.19 0 0 0

Table 5: Costs C(i,j) (expressed in %) considering a deviation 0.4.

0 1 2 3
0 0 2.64 3.67 0
1 2.96 0 0.88 0
2 2.99 0.33 0 0
3 2.99 0.33 0 0

We see from these tables the robust solutions are more expensive, on average,

than the deterministic solutions in the deterministic context. For the case where

the deviation is allowed to be 40% we can see that protecting a solution for Γ = 3

deviation periods will increase the cost by 3% in relation to the deterministic

solution. The deterministic solution is more expensive when Γ ∈ {1, 2} but not

when Γ = 3. In the worst case (two deviations), not protecting the deterministic
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solution will imply an increase of the cost of 3.67%.

We can also observe that robust solutions with Γ = 3 are not interesting.

This justifies why we have not included results for larger values of Γ. Of course,

the final choice of which model to use (which value for Γ) depends on the risk-

averseness of the decision maker.

5.3. Heuristic performances

Finally we test the two proposed heuristics. As discussed above, running

a MILP solver for a given time limit acts as a heuristic for those instances

that were not solved to optimality. However, from a practical viewpoint, it is

more appealing to have a tool which enables the decision maker to derive good

solutions very quickly in order to allow him/her to test different parameters

before taking a decision.

Table 6 summarizes the results obtained with the Elite heuristic. For each

test we consider m1 = m2 = m3 = m4 = m̂. The first line gives the value of

m̂, the second line gives the average of the optimality gaps. The optimality gap

is defined as 100 ∗ ((ZH − Z∗)/Z∗), where Z∗ is the optimum value and ZH

is the solution cost returned by the heuristic. The third line gives the average

number of items selected when combining the four lists, and the last line gives

the average running times in seconds.

Table 6: Average statistics for the Elite heuristic.
Value of m̂ 5 6 7 8 9 10
Optimality gap 5.6 0.2 0.04 0 0 0
Number of items selected 8.6 11 12 13.4 15.4 17
Running time 0.04 0.07 0.09 0.11 0.12 0.13

We can observe that when m̂ increases the optimality gap decreases as ex-

pected, being zero for m̂ greater or equal to 8. The running times are very

small indicating that this heuristic performs very well for such values of m̂. This
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means that selecting at least 32 items and solving the restricted model is fast

and gives good quality solutions.

Table 7 reports the results obtained with the Tournament heuristic. This

heuristic is run until a final set of m ≤ 50 items is obtained or until a maximum

of 6 iterations is attained. In each iteration the original set of items is split into

r subsets. The first line gives the value of r. The second line gives the average

number of iterations. The third line gives the average optimality gap and the

last line gives the average running time in seconds.

Table 7: Average statistics for the Tournament heuristic.
Value of r 6 5 4
Number of iterations 2 2.62 3.33
Optimality gap 0.35 0.49 0.12
Running time 0.12 1.81 0.14

Although the heuristic is fast and gives solutions that in average have very

small optimality gaps, we could not find parameters that lead to optimality in

all the tested cases. Overall, the Tournament heuristic was better than the Elite

heuristic only for the case where the number of elite elements selected was small

(m̂ = 5), otherwise the Elite heuristic outperformed the Tournament heuristic.

6. Conclusions

We consider a practical problem faced by a company that plans the pro-

duction for a set of products following a Make-To-Order policy and uses the

remaining production capacity to produce items for which the quantities or-

dered are small. The problem is concerned with the use of this extra production

capacity in a given time period. Namely, deciding which items to produce and

the corresponding production level. A penalty is associated with the backlogged

demands of the items that are not produced. For the produced items, as the
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amount produced is in general greater than the pending orders, a holding cost

is incurred.

We present a general model and establish the relation between this model

and the classical lot-sizing models. We propose several enhancements for the

formulations. As the holding costs depend on the value of the estimated future

demands, we derive a robust model from the enhanced model where the future

demands are considered uncertain and can vary in a given interval centered

in the historical average values. The uncertainty set is the classical budget

polytope introduced by Bertsimas and Sim (2004).

For practical purposes we propose two heuristic schemes that are based on

the enhanced models (deterministic and robust). The models and the heuristics

are tested using a set of instances generated from real data provided by our

industrial partner. The computational experiments show that most instances

cannot be solved to optimality within reasonable running time limit. In partic-

ular, they show that the Elite heuristic, which selects a small subset of items

(elite items), following the company criteria, is quite fast and in general obtains

the optimal solution.

It is well-known that robust optimization approaches can generate too con-

servative solutions. That is, solutions that are good when the worst case scenario

occurs, in our case when the orders for future demands are lower than expected,

but their quality may not be so good when other demand scenarios are observed.

While this falls beyond the scope of the current work, it could be interesting

to compare our robust approach with the optimal solutions of stochastic pro-

gramming approaches where one also takes the probabilities of the scenarios

into account. Similarly, it would be interesting to test the effect of our model

and the quality of the heuristics with different cost structures and/or on more

complex problems where the set of feasible production plans is restricted by
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additional constraints (e.g. storage capacity, inclusion of set-up times). In par-

ticular, the heuristics would need to be adapted to these other contexts and

further computational testing would be required.
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