N

N

Interactive 3D Fluid Simulation: Steering the
Simulation in Progress Using Lattice Boltzmann Method
Mengchen Wang, Nicolas Ferey, Patrick Bourdot, Frédéric Magoules

» To cite this version:

Mengchen Wang, Nicolas Ferey, Patrick Bourdot, Frédéric Magoules. Interactive 3D Fluid Simulation:
Steering the Simulation in Progress Using Lattice Boltzmann Method. 2019 18th International Sym-
posium on Distributed Computing and Applications for Business Engineering and Science (DCABES),
Nov 2019, Wuhan, China. pp.72-75, 10.1109/DCABES48411.2019.00025 . hal-02399846

HAL Id: hal-02399846
https://hal.science/hal-02399846
Submitted on 9 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02399846
https://hal.archives-ouvertes.fr

Interactive 3D fluid simulation: steering the simulation
in progress using Lattice Boltzmann Method

Mengchen Wang *' Nicolas Férey' Patrick Bourdot® Frédéric Magoulés*

Abstract. This paper describes a work in progress about software and hardware archi-
tecture to steer and control an ongoing fluid simulation in a context of a serious game
application. We propose to use the Lattice Boltzmann Method as the simulation approach
considering that it can provide fully parallel algorithms to reach interactive time and because
it’s easier to change parameters while the simulation is in progress remaining physically rel-
evant than more classical simulation approaches. We describe which parameters we can
modify and how we solve technical issues of interactive steering and we finally show an
application of our interactive fluid simulation approach of water dam phenomena.

Keywords. Lattice Boltzmann Methods; Interactive Fluid Simulation; Serious Game

1 Introduction

Steering a fluid simulation in progress requires to combine simulation, interaction and visu-
alization tools. Usually these tools are sequentially used analysing simulation results at the
end of computation using visualization tools without interaction features, except navigation
around the fluid or only changing rendering properties or visualization modalities. In this
paper we will discuss how we can interact and steer the fluid simulation in progress based
on Lattice Boltzmann Method.

2 INTERACTIVE FLUID SIMULATION WITH LBM

In the last two decades, the Lattice Boltzmann Method has become very popular[14] because
it can provide fully parallel algorithms especially those adapted to many cores architecture
such as GPU.

We choose the Lattice Boltzmann Method (LBM) for the simulation part of our system
for the following reasons. On the one hand we need a high performance computation method
to reach interactive time, i.e. providing several timestep per second to see the impact on
interaction of user during a simulation in progress. On the other hand, the final goal of our
research is to develop a serious game targeting multi-phase fluid simulations and LBM is
especially adapted in this context. Morover LBM are also less sensitive to parameters change
during simulation allowing to steer the simulation during computation, as it is explained
below.

The model of LBM used is the Bhatnagar—Gross—Krook collision model (BGK) [4] with

single-relaxation-time:

filz + At t+ At) — fi(z,t) = %(f,;(x, t) — £ O, 1)) (1)

*CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91190 Gif-sur-Yvette, France (fred-
eric.magoules@hotmail.com)

fVENISE Team, LIMSI-CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France (first-
name.lastname@limsi.fr)

Preprint September 17, 2019

mailto:frederic.magoules@hotmail.com
mailto:frederic.magoules@hotmail.com
mailto:firstname.lastname@limsi.fr
mailto:firstname.lastname@limsi.fr

In this equation fi(o) is the equilibrium distribution function at x,t and 7 is the time relax-
ation parameter|[10].

2.1 Boundary conditions

Boundary conditions and initial conditions are crucial in CFD simulations. To implement
boundary conditions in LBM, we need to translate given information from macroscopic vari-
ables to particle distribution function[8]. Since all the data are saved in particle distribution
function, we can change boundary conditions at any time of the simulation. Technically,
we can change all the boundary conditions by changing particle distribution function. For
example, we can change the wall and modify the fluid in contact with the wall. We can also
give a velocity of the wall and make the fluid in contact has the same velocity with the wall.
This kind of solid objects are treated with stick boundary conditions, with the bounce-back
on the links (BBL) [6].

2.2 Communication protocol

Simulations and visualization/interaction are usually used separately. Both the simulation
and interaction are time-consuming jobs for computers, reducing performance on both sides.
This may cause latency that have to be avoid for qualitative interactive environment, and
because latency causes cybersickness in the case of immersive context of serious game. [9].

To get a better performance, we chose to design a network API to implement a distributed
architecture approach. One machine runs the simulation, and another machine runs the
visualization and interaction. Since we have two machines and we want them to work
interactively, we need them to efficiently communicate and exchange huge data with low
latency. The simulation should be able to receive command from users at any time.

This API is based on TCP protocol, and coded in C++. To make this API cross-
platform, basic functions such as connection/send have been coded both for Windows and
Linux as the TCP protocol has some differences in different platforms. These functions
are completely coded in a encapsulating way. Then we design the API functions, there are
no difference between platforms. We can compile this API to dynamic link library(DLL)
for other languages like C#. In this way connect two machines on different platforms and
different languages. In our case, the simulation is coded in C++ under Linux, the interaction
is realized with Unity under Windows. This API can also be used to connect other simulation
libraries like OpenFOAM with other game engines. Fig.1 shows an example of using this
API to transmit the simulation geometry, launch the simulation, and transmit the volume
fraction data. The commands should be defined in the simulation and interaction software.
For sending data, data are sent in binary code. In this way we can send any type of data
with passing the variable and the length of the data to the APIL.

Before every iteration or several iterations, simulation will check the received command.
If the received command is empty, which means no command has been sent, the simulation
goes on. If the simulation receives some command, it will treat the command, for example
move a wall, changing only the cells concerned by the command and and keeping previous
simulation step data for the others ones.

2.3 Change boundary conditions during the simulation

With LBM, it is possible to change the parameters as we need during the simulation. We
can change the walls by simply setting the corresponding cells as fluid or wall. Then we only
need to reinitialize the cells in contact with the new wall. To modify the inlet or outlet, we
can simply change the parameters on the cells at the place of inlet/outlet. This makes it
possible to only transfer very little data between two machines. Only modified cells data in
the 3D scene will be sent to the simulation, and user have a visual feedback of the edited
boundary conditions or cells content inside the 3D environment.

Simulation Interaction

SendGeometry(coordinates)

o

SendCommand(start)

F 3

SendCommand(get_vof)

F 3

SendData(vof)

=
-

Figure 1: Example of using communication API to launch a simulation and transmit volume
of fraction(VOF)

Send flag array to Palabos o .
Generate flag array Generate water interface Initialize simulation

| > > —>

0 0 0 0 m=0 m=0
0 0 1 1 m=05 | m=05
2 2 2 2 m=1 m=1
5555555555
e w=o | m=0
i sesseass e, 3 3 3 3 Bounce | Bounce
¢ Back Back
J (J
Palabos

Figure 2: Process of setting initial conditions

Fig.2 shows a proposition of how to deal with the initial condition. In Unity, the property
of each cell is showed to the user with colors or textures. These data can be saved in an
array flags which stands for wall, water, etc. Then the array will be sent to the simulation
and initialize the initial conditions with the array of flags.

3 3D ENVIRONMENT VISUALIZATION

In case of 3D fluid data, there are a large number of different techniques for flow visualization.
The choice depends on the circumstance: the purpose of the visualization, the result of the
simulations or experiments and the objectives of the analysis.

Flow visualization is a subfield of scientific visualization especially dedicated to render
flow. It has a wide application, like weather forecast, aerodynamics, airplay design, etc.
This means it is widely used in different aspects. So, the users may have different purpose
and there are many flow visualization resolutions.

Flow data is normally a set of positions, velocity vector, pression... There is a lot
of flow visualization techniques aiming to present the whole flow data or partially in a
comprehensible way, described for example in the classification of Post, Frits H., et al. [11].

3.1 Direct flow visualization (Direct FlowVis)

One chosen approach is direct flow visualization. This technique aims to present the data in
an explicit way as the data are. There are also many kinds of Direct FlowVis, such as Direct
FlowVis 2D or 3D including Color coding, Arrow plots and Hybrid direct FlowVis. Direct
FlowVis on slices or boundaries including Color coding and Arrow plots. An example of
Direct flow visualization is using this technique to visualize the particles of micro fluid[12].
We used these techniques to visualize pressure, velocity and interface like water surface.
This category maybe the most important in our case as it shows to users in a direct way
how the fluid evolve.

3.2 Geometric Flow Visualization

Geometric Flow Visualization is also an approach of flow visualization. This technique uses
some geometric objects to present the potential information in the data. The shape of
the objects is related to the information. Geometric Flow includes Contouring, Isosurfaces,
Streamlets, Streamlines, Streaklines, timelines, and pathlines. We can use for example
streamlines to trace the fluid movement. These techniques offer more information than
direct flow visualization techniques.

3.3 Texture-based visualization

Texture-based visualization is another approach of the flow visualization. This technique
provides dense spatial resolution images to the users. This technique presents the data to
the users by rendering the data with some texture. Texture-based FlowVis including Spot
noise, Line integral convolution, Oriented Line Integral Convolution. Cross advection and
error diffusion [1] are two examples of texture-based techniques to visualize uncertainty in
time-dependent flow.

3.4 Feature extraction

Apart these standard flow visualization techniques, a very specific flow rendering. For exam-
ple, when it concerns the vortex structures of a flow, such structure is not directly accessible
in the result of a CFD simulation, while vortex has a great importance for both theoretical
and practical research. [5] proposed a simple and efficient vortex core region detection algo-
rithm based on ideas derived from combinatorial topology. We can for example extract the
centers of vortex in the fluid, or other specific features that the user needs.

Amount all these visualization techniques, we must choose some more accessible tech-
niques. In a interactive scenario, users do not have much time to analyze data, so the showed
results must be very easy to understand.

4 INTERACTION IN 3D ENVIRONMENT

In this section I will focus on how to interact with objects in 3D scene. The most common
tasks are object selection and manipulation. The simplest way to select an object in a 3D
environment using 3D mouse input is to use ray casting technique. This technique casts a
ray perpendicular to the pixel on the screen and compute the intersection between this ray
and the nearest object considered as the selected 3D object.

In fluid simulations, except selecting the solid object in the environment, fluid is the 3D
field discretely stored on cells or points grid. If we want to choose a part of fluid in a 3D

Figure 3: Comparison between direct(up) and geometric(down) flow visualization

environment, we have to use efficient picking paradigm to select cells or points that have to
be edited.

Manipulating objects is another task we can perform in a 3D scene, for example moving
a whole wall in the CFD simulation instead of set it cell by cell. One way to achieve this
is to use manipulators[13] to move the whole along x, y, z axis. Manipulators are defined
as visible graphic representations displayed on the objects such as arrows, to allow user to
choose the direction of move of a wall object composed of several cells or point.

Pointing and picking can also be improved by advanced 3D pointing techniques. Elmqvist
and Fekete[3] developed an adaptation called semantic 3D pointing. This adaptation makes
pointing more accurate by shrinking empty space and expanding target sizes in motor space.
This technique may be very useful for our case, as the fluid field mesh is very fine. If we
want to select a certain part of the simulation field, this technique increase the precision.

5 AN APPROACH FOR INTERACTIVE FLUID SIM-
ULATION

5.1 Hardware and software architecture

For our interactive fluid simulation approach, we designed and implement a distributed
hardware and software architecture. One machine is dedicated to simulation, and the other
one runs a 3d scene including rendering and interaction features based on Unity 3D. On the
contrary to work of Florian De Vuyst et al. [2] in which simulation and rendering process
was done on the same GPU, we choose to design a generic network API to enable data
exchange between simulation and rendering software component, in order to easily extends
any existing simulation and visualisation tools with interactive simulation features.

Figure 4: Design of the dam during the simulation in progress

Using this approach, users can interact with a simulation in progress in interactive time,
modify the simulation conditions and parameters without stopping the simulation, or restart
the simulation from the beginning with new parameters or boundary condition.

We choose Palabos (http://www.palabos.org/) as simulation library, which is a free, open
source software based on LBM. For the visualization and interaction, we choose to use Unity
3D. Unlike other tools as Paraview, Unity makes user to quickly and easily develop custom
rendering and interaction techniques needed to steer a simulation in progress.

5.2 Proof of concept with a water dam

We made a benchmark to test the performance with the simulation of a 3D water dam. We
only render and interact with a 2D cutting plane of 3D simulation inside Unity 3D, and user
can set and move the shape of the 3D dam as shown in the Fig.4.

This simulation of the water goes cross the dam includes 206080 cells, and for every
second a simple laptop can run around 20 iterations.

Reaching interactive time performance inside Unity 3D is important to avoid cybersick-
ness [7], and the mean refresh rate obtained with direct flow rendering of the 70K triangles
mesh is about 60Hz, using a thread especially dedicated to network communication features.

Table 1: Simulation with Palabos

Simulation field 96 x 30 x 30 (86400) cells
CPU for simulation i5-4200M 3.1GHz
Calculation speed 10 iterations per second

Result data type | Double(water interface mesh)
Result output rate 1Hz

Data transmitted ~200K doubles (800KB)

Table 2: 3D scene in Unity

CPU for interaction [7-8750u 4 cores 4.8GHz
GPU for interaction GTX1050 max-Q
Unity scene refresh rate 60Hz

6 Conclusion

We designed a system which allows users to interact with a fluid simulation in progress
targeting an application of serious game for pedagogical purposes. Our approach allows
user to observe results of the simulation in progress in interactive time, and to directly
observe the impact of modifying boundary condition or fluid parameters without restart the
simulation. We designed an API for the network communication between the simulation
and the interaction, allowing to be suitable to any simulation or visualisation tools.

We discussed about visualization and interaction techniques to manipulate and edit ob-
jects in the 3D scene. The next step for us is to design and implement scenario in the context
of serious game, addressing more complex phenomena with the goal to optimize some global
parameters of the fluid, or to reach an given objective to the player, by modifying in inter-
active time the parameter and conditions of the simulations.

References

[1] R. P. Botchen, D. Weiskopf, and T. Ertl. Texture-based visualization of uncertainty in
flow fields. In Visualization, 2005. VIS 05. IEEE, pages 647-654. IEEE, 2005.

[2] F. De Vuyst, C. Labourdette, and C. Rey. Gpu-accelerated real-time visualization and
interaction for coupled fluid dynamics. Proceedings CFM 20183, 2013.

[3] N. Elmqvist and J.-D. Fekete. Semantic pointing for object picking in complex 3d
environments. In Proceedings of graphics interface 2008, pages 243-250. Canadian
Information Processing Society, 2008.

[4] X. He and L.-S. Luo. Theory of the lattice boltzmann method: From the boltzmann
equation to the lattice boltzmann equation. Physical Review E, 56(6):6811, 1997.

[5] M. Jiang, R. Machiraju, and D. S. Thompson. A novel approach to vortex core region
detection. In VisSym, pages 217-225, 2002.

[6] A. J. Ladd. Numerical simulations of particulate suspensions via a discretized boltz-
mann equation. part 1. theoretical foundation. Journal of fluid mechanics, 271:285-309,
1994.

[7] J. J. LaViola Jr. A discussion of cybersickness in virtual environments. ACM Sigchi
Bulletin, 32(1):47-56, 2000.

[8] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius. A consistent hydrodynamic
boundary condition for the lattice boltzmann method. Physics of Fluids, 7(1):203-209,
1995.

[9] R. Pausch, T. Crea, and M. Conway. A literature survey for virtual environments:
Military flight simulator visual systems and simulator sickness. Presence: Teleoperators
& Virtual Environments, 1(3):344-363, 1992.

[10] D. A. Perumal and A. Dass. Simulation of flow in two-sided lid-driven square cavities
by the lattice boltzmann method. Advances in fluid mechanics VII, 45:54, 2008.

[11] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. Feature extraction
and visualization of flow fields. Furographics 2002 State-of-the-Art Reports, 1:69-100,
2002.

[12] M. T. Roberts, A. Mohraz, K. T. Christensen, and J. A. Lewis. Direct flow visualization
of colloidal gels in microfluidic channels. Langmuir, 23(17):8726-8731, 2007.

[13] P. S. Strauss, P. Issacs, and J. Shrag. The design and implementation of direct manip-
ulation in 3d. SIGGRAPH Course Notes, 12(2), 2002.

[14] J. Yeomans. Mesoscale simulations: Lattice boltzmann and particle algorithms. Physica
A: Statistical Mechanics and its Applications, 369(1):159-184, 2006.

	Introduction
	INTERACTIVE FLUID SIMULATION WITH LBM
	Boundary conditions
	Communication protocol
	Change boundary conditions during the simulation

	3D ENVIRONMENT VISUALIZATION
	Direct flow visualization (Direct FlowVis)
	Geometric Flow Visualization
	Texture-based visualization
	Feature extraction

	INTERACTION IN 3D ENVIRONMENT
	AN APPROACH FOR INTERACTIVE FLUID SIMULATION
	Hardware and software architecture
	Proof of concept with a water dam

	Conclusion

