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On modern parallel architectures, the cost of synchronization among processors can often dominate the cost of floating-point computation. Several modifications of the existing methods have been proposed in order to keep the communication cost as low as possible. This paper aims at providing a brief overview of recent advances in parallel iterative methods for solving large-scale problems. We refer the reader to the related references for more details on the derivation, implementation, performance, and analysis of these techniques.

Introduction

The performance of iterative methods depends on the amount of arithmetic operations and the amount of data movements. The latter depends further on the latency cost and the bandwidth cost. Early researches mainly focused on the arithmetic operations in both the sequential and parallel cases. On modern computer architectures, latency cost is much more significant than bandwidth cost, and bandwidth cost is much more significant than computation cost. The gaps are expected to increase in the future.

Parallelization of iterative methods for solving large-scale problems is constrained by synchronization which leads to processor idle time. These methods consist of the following three basic operations: sparse matrix-vector multiplication (SpMV), dot products, and AXPY (α times x plus y) operations y ← αx + y.

AXPY requires only local operations and thus does not affect parallel efficiency. SpMV often requires communication among neighbors, which depends on the distribution of nonzero values. Dot products require global synchronization before and after a computation. The bottleneck that comes from these operations can be partially overcome by using recent techniques. Roughly speaking, the communication in dot products can be reduced by simultaneously constructing multiple direction vectors or being overlapped with other operations; if there is no dot product operation, then the synchronization in SpMV can be eliminated by only using existing data for the next computation instead of waiting for a complete data transmission.

We show in this paper how synchronization points could be reduced and highlight some recent advances on promising techniques. Section 2 presents the s-step iterative methods. Section 3 presents the pipelined Krylov subspace methods. Section 4 summarizes recent developments in asynchronous iterations. Section 5 provides a brief overview of other popular methods. Finally, we draw a conclusion in Section 6.

s-Step Iterative Methods

An early paper describing the idea of s-step iterations can be traced to 1950, as quoted in [START_REF] Forsythe | On the asymptotic directions of the s-dimensional optimum gradient method[END_REF], when Birman [START_REF] Birman | Some estimates for the method of steepest descent[END_REF] presented an s-gradient method in a Russian paper. A later paper [START_REF] Chronopoulos | s-step iterative methods for symmetric linear systems[END_REF] was published on the method that aims at reducing the number of synchronization operations for the conjugate gradient (CG) method [START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF], often called Chronopoulos-Gear CG. The thesis written by Hoemmen [START_REF] Hoemmen | Communication-Avoiding Krylov Subspace Methods[END_REF] gives an excellent historical perspective on this topic. We refer the reader to [START_REF] Hoemmen | Communication-Avoiding Krylov Subspace Methods[END_REF] and the references therein for the developments before 2010.

The key feature in s-step iterative methods is to perform O(s) computation steps of the classical algorithms for each communication step, thus allowing to reduce the number of synchronization points by a factor of s. Krylov subspace methods (KSMs) are often the methods of choice for solving eigenvalue and linear system problems (see, e.g, [START_REF] Golub | Matrix Computations[END_REF]), which can be viewed as projection techniques. Given two subspace K m and L m where

K m (A, v) = span v, Av, . . . , A m-1 v ,
KSMs search solution vectors in K m such that residuals are orthogonal to L m . The latent bottleneck of successive matrix-vector multiplications in KSMs can be relieved by the "matrix powers kernel" as described in [START_REF] Demmel | Avoiding communication in sparse matrix computations[END_REF]. The global synchronization of dot products in Lanczosbased methods can be reduced by using a Gram matrix [START_REF] Carson | Avoiding communication in nonsymmetric Lanczos-based Krylov subspace methods[END_REF]. In addition, the GMRES method [START_REF] Saad | GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF] was improved in [START_REF] Hoemmen | Communication-Avoiding Krylov Subspace Methods[END_REF] by using the tall and skinny QR factorization [START_REF] Demmel | Communication-optimal parallel and sequential QR and LU factorizations[END_REF].

Hoemmen [START_REF] Hoemmen | Communication-Avoiding Krylov Subspace Methods[END_REF] discussed the s-step GMRES (see also [START_REF] Mohiyuddin | Minimizing communication in sparse matrix solvers[END_REF]) and s-step CG. Carson et al. [START_REF] Carson | Avoiding communication in nonsymmetric Lanczos-based Krylov subspace methods[END_REF] discussed the s-step BICG [START_REF] Fletcher | Conjugate gradient methods for indefinite systems[END_REF] and s-step BICGSTAB [START_REF] Van Der | Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[END_REF]. They also addressed the stability issues relating to the basis construction. The term "s-step" can be often replaced by "communication-avoiding (CA)". Although the latter is commonly used in the literature, as mentioned in [START_REF] Cools | Analyzing the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined conjugate gradient method[END_REF], it is slightly dubious since the communication cost is only partially reduced rather than avoided. Ballard et al. [START_REF] Ballard | Communication lower bounds and optimal algorithms for numerical linear algebra[END_REF] summarized theoretical bounds on communication for techniques used in the s-step algorithms.

In finite precision cases, s-step formulation with monomial basis can lead to stability issues, which have been discussed in many references [START_REF] Joubert | Parallelizable restarted iterative methods for nonsymmetric linear systems. Part I: Theory[END_REF][START_REF] Bai | A Newton basis GMRES implementation[END_REF][START_REF] Hoemmen | Communication-Avoiding Krylov Subspace Methods[END_REF][START_REF] Carson | Avoiding communication in nonsymmetric Lanczos-based Krylov subspace methods[END_REF]. The maximum attainable accuracy of s-step KSMs and the residual replacement strategy were discussed in [START_REF] Carson | A residual replacement strategy for improving the maximum attainable accuracy of s-step Krylov subspace methods[END_REF].

More recently, a new variant proposed by Imberti and Erhel [START_REF] Imberti | Varying the s in your s-step GMRES[END_REF] is to use an increasing sequence of block sizes in s-step GMRES instead of a fixed size. On the other hand, block coordinate descent (BCD) methods have been successfully used in machine learning. Devarakonda et al. [START_REF] Devarakonda | Avoiding communication in primal and dual block coordinate descent methods[END_REF] extended the s-step methods to the primal and dual BCD methods for solving regularized least-square problems. The new methods are called CA-BCD and CA-BDCD, respectively, that can, like other s-step iterative methods, reduce the latency cost by a factor of s but increase computation and bandwidth costs.

Pipelined Krylov Subspace Methods

The pipelined iterative methods aim at overlapping expensive communication phases with computations. Some approaches for this purpose applied to CG and GMRES appeared in the mid-1990s, see [START_REF] Demmel | Parallel numerical linear algebra[END_REF][START_REF] De Sturler | Reducing the effect of global communication in GMRES(m) and CG on parallel distributed memory computers[END_REF]. Ghysels et al. [START_REF] Ghysels | Hiding global communication latency in the GMRES algorithm on massively parallel machines[END_REF][START_REF] Ghysels | Hiding global synchronization latency in the preconditioned conjugate gradient algorithm[END_REF] introduced the modern pipelined Krylov subspace methods. It is interesting to note that the term "pipelined" has often been replaced by "communication-hiding" in their camp, just like the alternatives mentioned in the preceding section.

Ghysels et al. [START_REF] Ghysels | Hiding global communication latency in the GMRES algorithm on massively parallel machines[END_REF] proposed the pipelined GMRES method. Ghysels and Vanroose [START_REF] Ghysels | Hiding global synchronization latency in the preconditioned conjugate gradient algorithm[END_REF] proposed the pipelined CG method. Their work has promoted other promising ideas. For example, Sanan et al. [START_REF] Sanan | Pipelined, flexible Krylov subspace methods[END_REF] discussed some pipelined variants of flexible Krylov subspace methods. Cools and Vanroose [START_REF] Cools | The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems[END_REF] presented a general framework for pipelined methods, from which the pipelined BICGSTAB method was successfully derived.

In finite precision arithmetic, Cools et al. [START_REF] Cools | Analyzing the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined conjugate gradient method[END_REF] discussed the the effect of local rounding error propagation on the maximal attainable accuracy of the pipelined CG method and compared it with the classical CG and Chronopoulos-Gear CG [START_REF] Chronopoulos | s-step iterative methods for symmetric linear systems[END_REF]. In a later paper, Cools [START_REF] Cools | Analyzing and improving maximal attainable accuracy in the communication hiding pipelined BiCGStab method[END_REF] gave a similar discussion for the pipelined BICGSTAB method. Carson et al. [START_REF] Carson | The numerical stability analysis of pipelined conjugate gradient methods: Historical context and methodology[END_REF] discussed the stability issues for synchronization-reducing algorithms and presented a methodology for the theoretical analysis of some CG variants.

Asynchronous Iterations

Asynchronous iterations were introduced by Chazan and Miranker [START_REF] Chazan | Chaotic relaxation[END_REF] in 1969, originally called chaotic iterations. The modern mathematical expression was formally introduced in [START_REF] Baudet | Asynchronous iterative methods for multiprocessors[END_REF], which can be summarized as follows:

x (n+1) i = f i x (τi,1,n) 1 , . . . , x (τi,p,n) p , i ∈ P n , x (n) i , i / ∈ P n , where x (n) i
denotes the ith element of the solution vector, τ i,j,n denotes the iteration number with retards for each element j in each processor i, which is smaller than n, and P n ⊂ {1, . . . , p} is a subset of processors. In addition, some multi-stage models and a number of convergence results have been proposed during the past century, we refer the reader to [START_REF] Frommer | On asynchronous iterations[END_REF][START_REF] Bahi | Parallel Iterative Algorithms: From Sequential to Grid Computing[END_REF] for more details. The key feature in asynchronous iterations is to eliminate waiting times in communication at the expense of more iterations.

The main focus of recent research is asynchronous domain decomposition methods. Chau et al. [START_REF] Chau | Asynchronous Schwarz methods applied to constrained mechanical structures in grid environment[END_REF] used the asynchronous Schwarz method for the solution of obstacle problems. Magoulès et al. [START_REF] Magoulès | Asynchronous optimized Schwarz methods with and without overlap[END_REF] investigated the asynchronous optimized Schwarz method and provided some convergence results. Magoulès and Venet [START_REF] Magoulès | Asynchronous iterative sub-structuring methods[END_REF] gave a discussion about the asynchronous substructuring methods. More recently, Yamazaki et al. [START_REF] Yamazaki | Performance of asynchronous optimized Schwarz with one-sided communication[END_REF] gave some numerical experiments for the optimized Schwarz method. Theoretical analysis of this approach for various types of subdomains were considered in [START_REF] Garay | Convergence of asynchronous optimized Schwarz methods in the plane[END_REF][START_REF] Garay | Optimized Schwarz method for Poisson's equation in rectangular domains[END_REF]. On the other hand, asynchronous multisplitting methods were studied in [START_REF] Bahi | Asynchronous multisplitting methods for nonlinear fixed point problems[END_REF], which have been applied to the fluid-structure interaction problem in a recent paper [START_REF] Partimbene | Asynchronous multi-splitting method for linear and pseudo-linear problems[END_REF].

For the time domain decomposition methods, the derivation of asynchronous waveform relaxation can be found in [START_REF] Frommer | On asynchronous iterations[END_REF]. Magoulès et al. [START_REF] Magoulès | Asynchronous iterations of Parareal algorithm for option pricing models[END_REF][START_REF] Magoulès | Asynchronous Parareal time discretization for partial differential equations[END_REF] proposed the asynchronous variant of Parareal algorithm (see also [START_REF] Zou | Asynchronous Parareal algorithm applied to European option pricing[END_REF][START_REF] Zou | Asynchronous communications library for the parallel-in-time solution of Black-Scholes equation[END_REF]). Another asynchronous time-parallel method based on Laplace transform can be found in [START_REF] Magoulès | Asynchronous time-parallel method based on Laplace transform[END_REF].

From a computational point of view, the implementation of asynchronous iterative methods requires more than a straightforward update of synchronous versions. Magoulès and Gbikpi-Benissan [START_REF] Magoulès | JACK: An asynchronous communication kernel library for iterative algorithms[END_REF][START_REF] Magoulès | JACK2: An MPI-based communication library with non-blocking synchronization for asynchronous iterations[END_REF] developed an MPI-based communication library for both synchronous and asynchronous iterative computing. However, the issue of asynchronous convergence detection must be tackled for such kind of libraries. Early work can be found in [START_REF] Savari | Finite termination of asynchronous iterative algorithms[END_REF] based on the snapshot algorithm. Magoulès and Gbikpi-Benissan [START_REF] Magoulès | Distributed convergence detection based on global residual error under asynchronous iterations[END_REF] continued this work and proposed several promising variants. Bahi et al. [START_REF] Bahi | A decentralized convergence detection algorithm for asynchronous parallel iterative algorithms[END_REF] introduced another approach in which the detection process is superimposed onto the asynchronous iterations. Numerical experiments of asynchronous iterative methods for GPU were conducted and described in [START_REF] Anzt | A block-asynchronous relaxation method for graphics processing units[END_REF][START_REF] Chow | Asynchronous iterative algorithm for computing incomplete factorizations on GPUs[END_REF].

Other Popular Methods

It is clear that other techniques exist for reducing synchronization in parallel architectures, which have not been reviewed in the previous sections. For example, cyclic gradient iterative methods (see, e.g., [START_REF] Zou | Reducing the effect of global synchronization in delayed gradient methods for symmetric linear systems[END_REF]) are intrinsically adapted for parallel computing, which can reduce both computation and communication costs. Some techniques (see, e.g. [START_REF] Gu | An improved biconjugate residual algorithm suitable for distributed parallel computing[END_REF]) called improved Krylov methods revolve around the overlap of communication and computation. McInnes et al. [START_REF] Mcinnes | Hierarchical Krylov and nested Krylov methods for extreme-scale computing[END_REF] proposed hierarchical and nested Krylov subspace methods. Grigori et al. [START_REF] Grigori | Enlarged Krylov subspace conjugate gradient methods for reducing communication[END_REF] proposed enlarged Krylov subspace methods which can be viewed as a special case of augmented Krylov subspace methods (see, e.g, [START_REF] Simoncini | Recent computational developments in Krylov subspace methods for linear systems[END_REF]).

Conclusion

There is much still to understand about synchronization-reducing methods. For example, development of efficient preconditioners for parallel algorithms is still an open question [START_REF] Carson | Communication-Avoiding Krylov Subspace Methods in Theory and Practice[END_REF]. Theoretical analysis of basis in s-step algorithms requires more work [START_REF] Hoemmen | Communication-Avoiding Krylov Subspace Methods[END_REF]. The loss of orthogonality in finite precision is also an issue to be tackled [START_REF] Carson | The numerical stability analysis of pipelined conjugate gradient methods: Historical context and methodology[END_REF]. For this reason, we hope that continued contributions could be made on this rapidly growing field in the future.
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