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Email: damien.querlioz@u-psud.fr †CEA, LETI, Grenoble, France.
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Abstract—When performing artificial intelligence, CPUs and
GPUs consume considerably more energy for moving data be-
tween logic and memory units than for doing arithmetic. Brains,
by contrast, achieve superior energy efficiency by fusing logic and
memory entirely. Currently, emerging memory nanodevices give
us an opportunity to reproduce this concept. In this overview
paper, we look at neuroscience inspiration to extract lessons
on the design of memory-centric neuromorphic systems. We
study the reliance of brains on approximate memory strategies,
which can be reproduced for AI. We give the example of a
hardware binarized neural network with resistive memory. Based
on measurements on a hybrid CMOS/resistive memory chip, we
see that such systems can exploit the properties of emerging
memories without error correction, and achieve extremely high
energy efficiency. Second, we see that brains use the physics of
their memory devices in a way much richer than only storage.
This can inspire radical electronic designs, where memory devices
become a core part of computing. We have for example fabricated
neural networks where magnetic memories are used as nonlinear
oscillators to implement neurons, and their electrical couplings
implement synapses. Such designs can harness the rich physics
of nanodevices, without suffering from their drawbacks.

I. INTRODUCTION

Through the developments of deep neural networks, artifi-
cial intelligence has made tremendous progress in recent years.
Unfortunately, AI achievements come with a tremendous cost:
energy consumption [1]. This energy cost limits AI use in
embedded contexts, in many cases forcing them to rely on
the cloud, and raises concerns about the growing power
consumption of data centers. At the same time, the amount
of intelligence than human brains achieve with a mean power
consumption of twenty watts does not cease to amaze. This
suggests the existence of fundamental differences between
brains and computers when it comes to energy efficiency,
and raises the hope that some low-power techniques of brains
might be imitated.

One important difference between brains and computers is
the way that they are dealing with memory. In computers, as
well as graphics cards, computational units and memory are
separated, both physically and conceptually. In recent years,
the energy efficiency of logic has been increased much more
efficiently than the one of memory access. We are now in
a situation where memory access, whether on-chip or off-
chip, use considerably more energy than arithmetic operations

[2]. This situation is unfavorable to computations involving
neural networks, as those rely on relatively simple arithmetic
operations, but considerable amounts of parameters and vari-
ables, and therefore memory access: when computing neural
networks, practically all the energy is consumed for moving
data [3]. This is in sharp contrast with brains, where there is
no memory array for storing parameters and variables such as
synaptic weights and neuron values: all the memory is directly
cointegrated with computation [4], [5], therefore avoiding the
leasing source of energy consumption of computers on neural
networks entirely.

Another strategy used by brains is the reliance on approxi-
mate computations. Neurons computes in an analog fashion
based on nanodevices that are extremely noisy [6]. Com-
puters and graphics cards normally compute using perfectly
deterministic 32 or 64 bits floating-point arithmetics, which is
considerably more precise than neurons, and this precision has
an energy and resource cost. Exploiting the two brain-inspired
ideas of bringing logic and memory closer and relying on
approximate computation has led to a whole range of research
for developing energy efficient AI hardware, in academia as
well as industry. For example, the Tensor Processing Units
developed by Google use on-chip memory in a way optimized
for multiply-and-accumulate operations and rely on eight bits
fixed point arithmetics [7], and can reduce considerably the
energy consumption of neural network inference even on
difficult tasks [8].

Unfortunately, approaches based on CMOS technology
alone have a core limitation when it comes to bringing logic
and memory closer: memory has to be implemented with
static random access memory (SRAM), which is a large-area
circuit and has not scaled efficiently in recent technology
nodes [9]. By contrast, novel memory devices have been
developed in recent years and are emerging as a solution.
These devices, such as resistive oxide-based memory [10] or
memristors [11], phase change memory [12] and spin torque
magnetoresistive memory [13], provide fast, non-volatile and
compact memory cells that can be embedded at the core
of advanced CMOS processes. These technologies therefore
appear ideal to implement brain-inspired AI hardware, and
this topic has been subject to considerable research in recent
years [12], [14], [15], with highly varying hypothesis.



In this overview paper, we present two approaches using
nanodevices for memory-centric brain-inspired artificial intel-
ligence. The first approach – implementing binarized neural
networks with resistive memory (section II) – remains very
true to the principles of digital electronics, but implementing
the two brain-inspired ideas mentioned above. The second
approach – implementing neurons with spin torque memories
(section III) – goes a lot further in terms of bioinspiration and
tries to use nanodevices more in the spirit of how brains are
using them: memory nanodevices and their physics become a
core part of the computation.

II. IMPLEMENTING BINARIZED NEURAL NETWORKS IN
HARDWARE

Fig. 1. (a) Electron microscopy image of a hafnium oxide RRAM cell in the
CMOS backendof line. (b) Photograph and (c) simplified schematic of our test
die. (d) Sense-amplifier (PCSA) circuit incorporating the XNOR operation of
the BNN.

In this first project, we aim at implementing a neural
network in hardware, with computation tightly integrated with

memory, and all memory integrated on-chip. We propose using
resistive memory for implementing synaptic weights, an idea
widely investigated in the literature [4], [11], [12], [15]. How-
ever, a challenge is to be able to accommodate a whole model
on chip. Fortunately, in recent years, considerable research has
shown that at inference time, neural networks can function
with low precision operations, which can considerably reduce
the resource requirements for implementing a hardware neural
network. The most extreme idea is to use Binarized Neural
Networks, where both the synaptic weights and the neuronal
activation values can assume only two values: +1 and −1 [16],
[17]. Such neural networks require only one bit of memory per
synapse and per neuron. Second, the multiplication between
a neuronal value and a synaptic weights, normally the most
expensive arithmetic operation in terms of area and energy
is a reduced to logic operation between two binary values:
an exclusive NOR (XNOR). Nevertheless, Binarized Neural
Networks can achieve state-of-the-art performance on vision
tasks [16]–[18]. For these reasons, these models are extremely
attractive for inference hardware [15], [19]–[21]. It should
be noted that during learning, to reach high accuracy, the
synaptic weights should assume real values [16], [17]. The
Binarized Neural Networks is therefore less attractive for
learning-capable hardware.

Nevertheless, this approach comes with an important chal-
lenge: nanometer-scale memories are prove to device variabil-
ity, which causes bit errors. We developed a specific hardware,
presented in detail in [19], to investigate this issue and how to
deal with it. Fig. 1(a) shows an electronic microscopy image
of a hafnium-oxide based resistive memory device used in our
work, positioned in the back-end-of-line of a 130 nanometer
commercial CMOS process. Fig. 1(b) shows a photograph of
the die with a one kilobit in-memory computing block, and
Fig. 1(c) shows the simplified schematic of this block. In our
design, each memory bit is stored using two memory devices,
programmed in a complementary fashion: the combination of
high and low resistance state means logic state one, and the
inverse combination of low and high resistance means logic
zero. The logic state is therefore obtained by comparing the
resistance state of the two devices, using sense amplifiers
integrated on-chip. This technique is more resilient to errors
than the more traditional approaches where a single device
is used by stored bit, and allows a reduction of the bit error
rate due to device variation. We showed experimentally and
theoretically that the benefits are similar to the use of single
error correcting codes [19]. It should also be remarked, that
binarized neural networks do not require the same determinism
as conventional digital designs. Even if some bit errors remain,
the accuracy of the overall system can be unaffected. For
example, [22] shows that bit error rates as high as 10−3 have
no impact on several vision tasks.

Another advantage of this approach is that it allows im-
plementing ideas of logic-in-memory in a simple fashion.
In Fig. 1(d), the XNOR operation, which implements mul-
tiplication, is directly performed within the sense amplifier,
following an approach initially proposed in [23]. The XNOR



is performed at the same time as the read operation, and
without area and energy overhead. The sum can then be
implemented with low depth digital integer adders [21]. The
resulting systems can lead to important savings in terms of
energy and area with regards to non binarized ones [19], [21].

The fully digital approach of this work contrast with related
works, but working in an analog fashion: resistive memories
are programmed in an analog way, implementing real weights
[11], [12] or binarized fashion [15], [24], and the neuronal
values are calculated using Ohm’s law and Kirchhoff’s current
law. With contrast to this approach, ours requires digital
integer adders, but allows the use of fast and highly energy
efficient sense amplifiers to read the state of the memories,
while avoiding the need of any area and energy hungry analog
circuit such as operational amplifier.

III. COMPUTING WITH PHYSICS: USING SPIN TORQUE
NANO-OSCILLATORS AS ARTIFICIAL NEURONS

Fig. 2. (a) Electron microscopy and schematized visualization of a magnetic
tunnel junction. (b) Schematic of our four-STNOs neural network, and power
spectrum of a sample output of the network. (c) Validation accuracy of neural
networks on a vowel recognition task: our experiment, simulation of our
experiment with idealized STNOs, and standard multilayer perceptron with
tanh activation function and softmax output.

In the brain, memory nanodevices are not used solely to
store information. Synapses do store weights on the long term,
but they also feature rich dynamics on multiple time scales,
which are believed to be harnessed for processing information

and far learning. Ion channels can be considered as memory
elements that only function on millisecond timescales and
are used as controlled current sources. Similarly, nanodevices
envisioned to be used as memory in microelectronics fea-
ture highly complex physics and dynamical properties [14],
[25], [26], and using them exclusively as storage elements
as in the project reported in Sec. II can feel like a waste.
Nevertheless, exploiting their dynamics for computing is an
immense challenge due to the variability and electrical noise
that is inherent in these devices due to their reliance on
atomic-scale effects. As brains are very tolerant to approximate
computing, neuromorphic computing seems the ideal venue for
testing computing schemes that use the dynamical physics of
nanodevices.

Here, we present a work where to choose to exacerbate the
dynamical effects present in a memory device. We use spin
torque nano-oscillators (STNOs, Fig. 2(a)). These devices use
a magnetic tunnel junction, the same basic cell as spin-torque
magnetoresistive memory (ST-MRAM), a vertical structures
made of magnetic and non-magnetic layers, implementing two
nanomagnets separated by a tunnel oxide. In a magnetic tunnel
junction used for ST-MRAM, electrical currents can be used
to switch the magnetization of one of the two nanomagnets
between two stable states, the two memory states of the de-
vices. Here, we use devices sized such as electrical currents do
not switch this magnetization, but instead cause it to precess,
giving rise to an oscillation of the electrical resistance of the
device, and the generation of an alternating voltage (Fig. 2(a)).
Such devices, which turn DC signals to AC, therefore behave
as auto-oscillators, with a highly non-linear character, and a
physics that is rich and very well understood. They can be
tuned by varying electrical current and magnetic field, and
several oscillators can also synchronize to each others as well
as to external alternating signals (currents or magnetic fields)
[27].

In neuroscience, neural networks have frequently been mod-
eled as coupled non-linear auto-oscillators [28], and the com-
putational power of such structures is recognized. Therefore,
it is natural idea to try to use STNOs as artificial neurons in
neuroscience-inspired neural networks. Our first work used a
single STNO to implement a whole neural network [29]. The
system used time-multiplexing, meaning that the STNO would
emulate the neurons of the network sequentially in time. In
this situation, synaptic coupling between the neurons emerges
naturally from the sort term memory of the STNO. Such a
neural network, implementing a concept inspired by reservoir
computing, was able to recognize spoken digits at state-of-the-
art performance, showing that the dynamics of nanodevices
can be exploited despite device imperfections such as electrical
noise [29].

This approach is however limited in the size and complexity
of the neural network that can be implemented. Here, we
focus on a more advanced work, first introduced in [30],
where we use a network of electrically coupled STNOs, each
implementing a neuron of a neural network (Fig. 2(b)). The
electrical connection between the STNOs emulates synapses



connecting them. A strip line positioned on top of the STNOs
allows to present the inputs as an alternating magnetic fields.

This simple system can emulate a full layer of a neural
network, and in [30] was trained on a task of spoken vowel
recognition. Fig. 2(c) reports the experimental recognition
rate, compared with a simulation of the experiment where
the STNOs are modeled as perfect oscillators, and standard
software neural network employing tanh activation function
and softmax outputs. We see that at equivalent number of
parameters, the STNO neural network outperforms the tra-
ditional one. This is not surprising for the simulation that
assumes perfect STNOs, as our neural network has more
topological complexity and inherent neuronal non-linearity as
the traditional one. What is interesting is that this benefit is not
lost when we use real devices, which feature a high level of
variability and phase noise. This highlights that the approach
of benefiting from the dynamical physics of nanodevices, as
in the brain, is feasible.

IV. CONCLUSION

This article summarizes two projects, where, inspired by the
architecture of the brain, memory nanodevices have been put at
the core of a computation scheme with the vision of achieving
compact and energy efficient artificial intelligence. The first
project – implementing binarized neural network with RRAM
– remains true to the principles of digital VLSI, while incorpo-
rating the bioinspired ideas of logic and memory integration,
low precision computation and intrinsic error tolerance. The
second project – using spin oscillators as artifical neurons
– goes a lot further by truly using memory devices as core
computing elements, exploiting analog basic computation and
the different physics of spin-electronic devices. It shows that it
is possible to benefit of the complexity of nanodevice physics,
without suffering from their drawbacks.

Future works should focus on scaling the approach to more
application-ready levels. The first approach is of course closer
to applications, as it benefits naturally from the achievements
of VLSI, and it employs a form of neural networks that is also
close to mainstream AI. Scaling the second approach comes
with considerable more challenges, as both the technology and
the associated neural network concepts are immature. It how-
ever allows dreaming about achieving brain-level integration
and energy efficiency.

ACKNOWLEDGMENT

This work was supported by the European Research Council
Grants NANOINFER (715872) and bioSPINspired (682955),
and ANR grant NEURONIC (ANR-18-CE24-0009).

REFERENCES

[1] Editorial, “Big data needs a hardware revolution,” Nature, vol. 554, no.
7691, p. 145, Feb. 2018.

[2] A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky,
“Dark memory and accelerator-rich system optimization in the dark
silicon era,” IEEE Design & Test, vol. 34, no. 2, pp. 39–50, 2017.

[3] Y.-H. Chen, J. Emer, and V. Sze, “Using dataflow to optimize energy
efficiency of deep neural network accelerators,” IEEE Micro, vol. 37,
no. 3, pp. 12–21, 2017.

[4] D. Querlioz et al., “Bioinspired Programming of Memory Devices for
Implementing an Inference Engine,” Proc. IEEE, vol. 103, no. 8, pp.
1398–1416, 2015.

[5] G. Indiveri and S.-C. Liu, “Memory and information processing in
neuromorphic systems,” Proc. IEEE, vol. 103, no. 8, p. 1379, 2015.

[6] A. A. Faisal, L. P. Selen, and D. M. Wolpert, “Noise in the nervous
system,” Nature reviews neuroscience, vol. 9, no. 4, p. 292, 2008.

[7] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ISCA. IEEE, 2017, pp. 1–12.

[8] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

[9] T. Song et al., “A 10 nm finfet 128 mb sram with assist adjustment
system for power, performance, and area optimization,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 240–249, 2016.

[10] D. R. B. Ly et al., “Role of synaptic variability in resistive memory-
based spiking neural networks with unsupervised learning,” J. Phys. D:
Applied Physics, 2018.

[11] M. Prezioso et al., “Training and operation of an integrated neuromor-
phic network based on metal-oxide memristors,” Nature, vol. 521, no.
7550, p. 61, 2015.

[12] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network
training using analogue memory,” Nature, vol. 558, p. 60, 2018.

[13] O. Golonzka et al., “Mram as embedded non-volatile memory solution
for 22ffl finfet technology,” in IEDM Tech. Dig., 2018, pp. 18–1.

[14] J. Grollier et al., “Spintronic nanodevices for bioinspired computing,”
Proc. IEEE, vol. 104, no. 10, p. 2024, 2016.

[15] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,”
Proc. IEEE, vol. 106, no. 2, pp. 260–285, 2018.

[16] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[17] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
Proc. ECCV. Springer, 2016, pp. 525–542.

[18] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional
neural network,” in Advances in Neural Information Processing Systems,
2017, pp. 345–353.

[19] M. Bocquet, T. Hirztlin, J.-O. Klein, E. Nowak, E. Vianello, J.-M.
Portal, and D. Querlioz, “In-memory and error-immune differential rram
implementation of binarized deep neural networks,” in IEDM Tech. Dig.
IEEE, 2018, p. 20.6.1.

[20] E. Giacomin, T. Greenberg-Toledo, S. Kvatinsky, and P.-E. Gaillardon,
“A robust digital rram-based convolutional block for low-power image
processing and learning applications,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 66, no. 2, pp. 643–654, 2019.

[21] T. Hirtzlin, B. Penkovsky, M. Bocquet, J.-O. Klein, J.-M. Portal, and
D. Querlioz, “Stochastic computing for hardware implementation of
binarized neural networks,” arXiv preprint arXiv:1906.00915, 2019.

[22] T. Hirtzlin, M. Bocquet, J.-O. Klein, E. Nowak, E. Vianello, J.-M. Portal,
and D. Querlioz, “Outstanding bit error tolerance of resistive ram-based
binarized neural networks,” arXiv preprint arXiv:1904.03652, 2019.

[23] W. Zhao et al., “Synchronous non-volatile logic gate design based
on resistive switching memories,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 61, no. 2, pp. 443–454, 2014.

[24] S. Yu, Z. Li, P.-Y. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and H. Qian,
“Binary neural network with 16 mb rram macro chip for classification
and online training,” in IEDM Tech. Dig. IEEE, 2016, pp. 16–2.

[25] S. La Barbera et al., “Interplay of multiple synaptic plasticity features in
filamentary memristive devices for neuromorphic computing,” Scientific
reports, vol. 6, p. 39216, 2016.

[26] S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, and W. D. Lu, “Ex-
perimental demonstration of a second-order memristor and its ability
to biorealistically implement synaptic plasticity,” Nano letters, vol. 15,
no. 3, pp. 2203–2211, 2015.

[27] N. Locatelli, V. Cros, and J. Grollier, “Spin-torque building blocks,”
Nature materials, vol. 13, no. 1, p. 11, 2014.

[28] A. Pikovsky, M. Rosenblum, J. Kurths, and J. Kurths, Synchronization:
a universal concept in nonlinear sciences. Cambridge university press,
2003, vol. 12.

[29] J. Torrejon et al., “Neuromorphic computing with nanoscale spintronic
oscillators,” Nature, vol. 547, no. 7664, p. 428, 2017.

[30] M. Romera et al., “Vowel recognition with four coupled spin-torque
nano-oscillators,” Nature, vol. 563, no. 7730, p. 230, 2018.


