
HAL Id: hal-02399725
https://hal.science/hal-02399725

Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A constrained marginal zero-inflated binomial regression
model

Essoham Ali, Aliou Diop, Jean-François Dupuy

To cite this version:
Essoham Ali, Aliou Diop, Jean-François Dupuy. A constrained marginal zero-inflated binomial re-
gression model. Communications in Statistics - Theory and Methods, 2022, 51 (18), pp.6396-6422.
�10.1080/03610926.2020.1861296�. �hal-02399725�

https://hal.science/hal-02399725
https://hal.archives-ouvertes.fr


A constrained marginal zero-inflated binomial regression model

Essoham ALIa, Aliou DIOPa, Jean-François DUPUYb

aUniversity Gaston Berger, LERSTAD, Saint-Louis, Senegal
bUniv Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Abstract

Zero-inflated models have become a popular tool for assessing the relationships between
explanatory variables and a zero-inflated count outcome. In these models, regression coeffi-
cients have latent class interpretations, where the latent classes correspond to a susceptible
subpopulation with observations generated from a count distribution and a non-susceptible
subpopulation that provides only zero counts. However, it is often of interest to evaluate
covariates effects in the overall mixture population, that is, on the marginal mean of the zero-
inflated count response. Marginal zero-inflated models, such as the marginal zero-inflated
Poisson and negative binomial models, have been developed for that purpose. They spec-
ify independent submodels for the susceptibility probability and the marginal mean of the
count response. When the count outcome is bounded, it is tempting to formulate a marginal
zero-inflated binomial model in the same fashion. This, however, is not possible, due to the
inherent constraints that relate, in the zero-inflated binomial model, the susceptibility prob-
ability and the latent and marginal means of the count outcome. In this paper, we propose
a marginal zero-inflated binomial regression model that accommodates these constraints.
We construct maximum likelihood estimates of the regression parameters. Their asymptotic
properties are established and their finite-sample behaviour is examined by simulations. An
application of the proposed model to the analysis of health-care demand is provided for
illustration.
Keywords: Asymptotic properties; Count data; Excess of zeros; Health-care demand;
Simulations

1. Introduction

Zero-inflated models have become a popular tool to analyze count data with excess zeros.
The classical formulation of zero-inflated models assumes that the population under study
is divided into two unobserved latent classes, one corresponding to a susceptible (or at-risk)
subpopulation with observations generated from a non-degenerate count distribution, the
other corresponding to a non-susceptible subpopulation that provides only zero counts. A
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zero-inflated model can thus be viewed as a mixture of a degenerate distribution with point
mass at zero and a non-degenerate count distribution. Covariate effects can be incorporated
in these distributions, which yields zero-inflated regression models. Well-known examples
include the zero-inflated Poisson (ZIP) regression model (Lambert, 1992) and its extensions
(e.g., Lam et al., 2006; He et al., 2010; Feng and Zhu, 2011; Monod, 2014) and the zero-
inflated negative binomial (ZINB) regression model (Ridout et al., 2001; Moghimbeigi et al.,
2008). When counts have an upper bound, ZIP and ZINB models are no longer appropriate
and Hall (2000) introduced the zero-inflated binomial (ZIB) model, see also Diallo et al.
(2019). Diallo et al. (2018) recently proposed a zero-inflated regression model for multinomial
counts with joint zero-inflation, see also Dupuy (2018).

In these models, regression coefficients have latent class interpretations. However, it is
often of interest to evaluate covariate effects directly on the marginal mean of the count
response (that is, on the mean of the overall mixture population) instead of the mean of the
susceptible population. Moreover, Preisser et al. (2012) note that several articles reporting
results of latent class zero-inflated models tend to misinterpret covariate effects on the mean
of the susceptible subpopulation as overall effects. Marginal effects can well be estimated
from latent class zero-inflated models. This, however, necessitates additional calculations
after fitting the model. Moreover, the delta method or bootstrap are needed to obtain
appropriate standard errors (see Albert et al., 2014; Todem et al., 2016). As noted by
Long et al. (2014), the computational tools needed for these calculations are typically not
readily available in standard softwares, making this approach rather cumbersome for applied
analysts. Marginal zero-inflated regression models have thus been proposed to facilitate
marginal inference. These models directly relate covariates to the marginal mean of the
zero-inflated count. Under this formulation, the relationship between the latent mean of
the susceptible subpopulation and the covariates is implied by the assumed models for the
marginal mean and latent class membership. For example, a marginal zero-inflated Poisson
(MZIP) regression model was recently introduced by Long et al. (2014) and extended to
include random effects (Long et al., 2015). Preisser et al. (2016) propose a marginal zero-
inflated negative binomial (MZINB) regression model. Instead of modeling the Poisson and
negative binomial means in the susceptible latent class, these models directly relate the
marginal mean to the covariates (by using a log link). As in the latent class formulation, a
logistic regression model is assumed for the susceptibility (or at-risk) probability.

Estimation and inference in MZIP and MZINB models are essentially based on same
methods as those developed for latent class ZIP and ZINB models. Thus, at first sight, the
extension of latent class zero-inflated models to marginal zero-inflated models may appear
conceptually modest. However, in the case of bounded counts, this extension surprisingly
raises some unexpected difficulties, as we explain now. The zero-inflated binomial (ZIB)
regression model is defined as Z ∼ πδ0 + (1−π)B(m, p), where Z is the observed count, π is
the susceptibility probability, δ0 is the degenerate distribution at 0 and B(m, p) denotes the
binomial distribution with size m and latent success probability p (that is, p is the success
probability for a susceptible subject). The latent class ZIB regression model proposed by
Hall (2000) specifies π and p (using logistic regressions). On the other hand, a marginal ZIB
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regression model will specify π and the marginal success probability q = p(1 − π). In this
case, the model relating p to the covariates is implied by the relation p = q(1− π)−1.

The relation q = p(1− π) imposes the following constraints on the probabilities involved
in a ZIB model (whether it is latent class or marginal) :

q ≤ p and q ≤ 1− π (or equivalently π ≤ 1− q). (1.1)

In the latent class ZIB model, one specifies π and p and obtains q as q = p(1 − π). The
constraints (1.1) are thus automatically satisfied. In contrast, in a marginal ZIB model,
once q has been specified, π has to be chosen such that π ≤ 1− q (then q ≤ p automatically
holds since p = q(1 − π)−1). In this paper, we propose a marginal ZIB regression model
which satisfies the constraints (1.1). A logistic regression model is used for the marginal
success probability q. Then, a constrained regression model is chosen for the susceptibility
probability π. Of course, it is possible to proceed the other way around: one may first model
the at-risk probability and then set a constrained model for the marginal success probability.
Choosing between these two approaches depends on the aim of the analysis. If the objective
is to interpret covariates effects on the marginal probability of success q, one should rather
restrict the at-risk probability π and use, for example, a classical logistic regression for
q, which will enable the analyst to use odds-ratios to interpret covariates effects. If the
objective is to interpret covariates effects on the susceptibility probability, one should rather
use a restricted model for q.

The paper is organized as follows. In Section 2, we briefly review the latent class ZIB
regression model. Then we discuss the constraints that relate latent success, marginal suc-
cess and susceptibility probabilities in a ZIB regression model, and we explain how these
constraints affect the formulation of a marginal ZIB model. A novel constrained marginal
ZIB regression model is finally proposed. In section 3, we investigate model identifiability
and asymptotic properties of maximum likelihood estimates in this model. Section 4 report
the results of a simulation study. An application of the proposed marginal ZIB regression
model to the analysis of health-care demand data is described in Section 5. Some concluding
remarks are given in Section 6. Technical proofs are postponed to an appendix.

2. Zero-inflated binomial regression

2.1. A brief review of the latent class ZIB regression model
Let Zi denote the random count of interest for individual i, i = 1, . . . , n. The ZIB model

is defined as the mixture model

Zi ∼
{

0 with probability πi,
B(mi, pi) with probability 1− πi,

(2.2)

where πi and pi are the susceptibility and event probability respectively. To be more specific,
let Si denote the unobserved latent class indicator, that is, the random variable which is 1
if subject i is susceptible to the event of interest and 0 otherwise. Then pi is the probability
P(Zi = 1|Si = 1).

3



Remark 1. The marginal success probability qi := P(Zi = 1) is equal to :

qi = P(Zi = 1|Si = 0)πi + P(Zi = 1|Si = 1)(1− πi)
= pi(1− πi).

Suppose that covariates are present. The latent class ZIB regression model directly relates
πi and pi to the covariates. Logit link functions are usually assumed (e.g., Hall, 2000; Diallo
et al., 2019) but other links, such as probit and complementary log-log, are also applicable.
Using logit links, the model writes as :

logit(pi) = β>Xi, logit(πi) = γ>Wi, (2.3)

where β and γ are vectors of unknown regression coefficients and Xi = (Xi1, Xi2, . . . , Xip)
>

and Wi = (Wi1,Wi2, . . . ,Wiq)
> are covariates vectors (they may share common components

or be distinct), with Xi1 = Wi1 = 1.

Remark 2. The parameter β describes covariates effects on the mean count response of
susceptible individuals, since E[Zi|Xi, Si = 1] = mipi. Assessing covariates effects on the
marginal mean of Zi requires calculation of E[Zi|Xi,Wi] = mipi(1− πi), which is :

E[Zi|Xi,Wi] =
mi e

β>Xi

(1 + eβ>Xi)(1 + eγ>Wi)
(2.4)

under (2.3). We note that (2.4) involves all covariates and parameters from both submodels
for zero-inflation and count response. Interpreting covariates effects on the marginal mean of
the latent class ZIB regression model is thus not trivial, see Long et al. (2014) for a detailed
discussion of this issue.

Suppose that we observe a sample of n independent copies (Zi,Xi,Wi), i = 1, . . . , n of
(Z,X,W). The log-likelihood of θ = (β>, γ>)> in the latent class ZIB model (2.2)-(2.3) is :

``LCn (θ) =
n∑
i=1

{
Ji log

(
eγ
>Wi + (1 + eβ

>Xi)−mi
)
− log

(
1 + eγ

>Wi

)
+(1− Ji)

[
Ziβ

>Xi −mi log
(

1 + eβ
>Xi

)]}
,

where Ji := 1{Zi=0}. The maximum likelihood estimator (MLE) θ̂n := (β̂>n , γ̂
>
n )> of θ is

obtained by solving the score equation ∂``LCn (θ)/∂θ = 0, which can be achieved with the
EM algorithm (Hall, 2000) or by direct maximization of ``LCn (θ).

2.2. About inherent constraints of ZIB regression
As mentioned above, the interpretation of covariates effects on the marginal mean of a

latent class ZIB model is difficult. Marginal zero-inflated regression models have therefore
been proposed to facilitate marginal inference. Examples of such models include the marginal
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zero-inflated Poisson (MZIP) and marginal zero-inflated negative binomial (MZINB) models.
By mimicking the formulation of MZIP and MZINB models, a marginal ZIB regression model
was also recently proposed (Martin and Hall, 2017). This model directly relates the marginal
success probability qi = pi(1− πi) to the covariates, by assuming:

logit(qi) = β>Xi. (2.5)

As in the latent class ZIB model, a logistic regression

logit(πi) = γ>Wi (2.6)

is assumed for the susceptibility probability. Here, β directly describes covariates effects on
the marginal mean E[Zi|Xi] = miqi. The model relating the latent mean (i.e., the count mean
response for a susceptible subject) to covariates is implied by the relation pi = qi(1− πi)−1
and is used for purpose of likelihood construction, rather than for interpretation. The log-
likelihood of (β, γ) in the marginal ZIB model defined by (2.2), (2.5) and (2.6) is :

n∑
i=1

{
− log

(
1 + eγ

>Wi

)
+ Ji log

[
eγ
>Wi + (1 + eβ

>Xi)−mi(1− eβ>Xi+γ
>Wi)mi

]
+(1− Ji)

[
Ziβ

>Xi −mi log
(

1 + eβ
>Xi

)
+ Zi log

(
1 + eγ

>Wi

)
+(mi − Zi) log

(
1− eβ>Xi+γ

>Wi

)]}
.

Martin and Hall (2017) use a EM algorithm for estimation. Direct maximization of the
log-likelihood is also possible, using one of the various optimisation routines available in
standard softwares (such as optim or maxLik in R, R Core Team, 2018).

The formulation of a marginal ZIB regression model thus seems straightforward. However,
it raises a specific - and somewhat hidden - difficulty, which was not addressed so far. The
relation qi = pi(1 − πi) imposes some constraints on the latent class success probability pi,
marginal success probability qi and susceptibility probability πi. These constraints are :

qi ≤ pi and qi ≤ 1− πi, i = 1, . . . , n, (2.7)

and come from the fact that pi and πi are both less than 1. In the latent class ZIB model,
one assumes models for pi and πi (taking care of 0 ≤ pi, πi ≤ 1) and (2.7) is automatically
satisfied. In the marginal ZIB model, one assumes models for qi and πi. But these quantities
cannot be modeled independently, since pi = qi(1−πi)−1 must be less than 1. More precisely,
once qi has been specified, πi must be chosen such that qi ≤ 1− πi.

Consider the marginal ZIB model defined by (2.2), (2.5) and (2.6). It is not difficult to
see that the condition qi ≤ 1− πi is equivalent to

β>Xi + γ>Wi ≤ 0,

and this should hold for every i = 1, . . . , n, which seems highly implausible in practice.
Simulation results reported in Table 1 of Martin and Hall (2017) are obtained for Xi = Wi =
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(1, Xi2, Xi3)
>, where Xi2 takes its value in {0, 1} and β = (β1, β2, β3)

> and γ = (γ1, γ2, γ3)
>

are chosen such that β3 = −γ3. In this case, the condition β>Xi + γ>Wi ≤ 0 reduces to:

β1 + γ1 ≤ min(0,−(β2 + γ2)), (2.8)

which is satisfied in Martin and Hall (2017) since β = (−.405, .811,−.25)> and γ = (−1.386,
.539, .25)> (let C denote the set of values of (β, γ) such that (2.8) is satisfied). This special
case, however, masks the issue raised by constraints (2.7). For example, consider γ =
(−1.386, .989, .25)> (γ2 above has been changed from .539 to .989, γ1 and γ3 are unchanged).
This value may appear, a priori, as admissible as γ = (−1.386, .539, .25)>. However, the
corresponding marginal ZIB model cannot be defined since under this value, qi > 1− πi for
some i = 1, . . . , n and the corresponding pi are greater than 1.
Moreover, from our experience, optimisation algorithms may fail to converge in model (2.2)-
(2.5)-(2.6) even when β and γ satisfy (2.8) but their values lie close to the boundary of the
admissible set C.

Remark 3. Marginalized ZIP and ZINB models are not affected by the kind of constraint
described above. For example, a ZIP model for Z is defined as Z ∼ πδ0 + (1−π)P(λ), where
P(λ) denotes Poisson distribution with mean λ > 0. A marginal ZIP model specifies the
susceptibility probability π ∈ [0, 1] and the marginal mean ν := λ(1 − π) of Z (see Long et
al., 2014). The latent class mean λ is implied by the relation λ = ν(1 − π)−1. Since λ is
unbounded, no restriction applies on π once ν is specified. Therefore, π and ν can be modeled
independently of one another.

2.3. A constrained marginal ZIB regression model
In this section, we propose a marginal ZIB regression model which accommodates the

constraints described above. First, we formulate the model.

2.3.1. Model formulation and estimation
Consider the ZIB model (2.2), defined as Zi ∼ πiδ0 + (1 − πi)B(mi, pi), i = 1, . . . , n. In

order to construct a marginal ZIB model, we first relate the marginal success probability
qi := P(Zi = 1|Xi) to the covariate Xi using a logit link :

logit(qi) = β>Xi. (2.9)

Then we specify the susceptibility probability πi, which must satisfy πi ≤ 1 − qi = (1 +
eβ
>Xi)−1. Our proposal is to set :

πi =
1

1 + eβ>Xi + eγ>Xi
, (2.10)

where β and γ are p-dimensional unknown vectors of regression coefficients. Note that here,
we do not distinguish between covariates that act on the marginal success probability and
covariates that act on the susceptibility probability. All covariates are included in both
submodels (under the common notation Xi) and Wald tests will be used to identify the ones
which significantly influence each process.
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Remark 4. The intuition behind (2.10) is as follows. We need that πi ≤ 1 − qi = (1 +
eβ
>Xi)−1 or equivalently : 1 + eβ

>Xi ≤ π−1i . If Xi is bounded and we assume that β belongs
to some compact set of Rp, there exists a finite constant M such that 1 + eβ

>Xi ≤ M ,
and πi = M−1 provides a mathematically admissible model for πi. This, however, is not
satisfactory since the susceptibility probability is likely to depend on i, through covariates.
Thus, a genuine upper bound for πi should depend in some way on 1 + eβ

>Xi.
A more refined upper bound for 1 + eβ

>Xi is given by 1 + a · eβ>Xi with a > 1, or equivalently
by 1 + eβ

>Xi(1 + eα), where α is some finite real number (the parameterization 1 + eα is
convenient since it ensures that 1 + eα > 1 for every α). Now,

1 + eβ
>Xi(1 + eα) = 1 + eβ

>Xi + eα+β
>Xi ,

:= 1 + eβ
>Xi + eβ̃

>Xi ,

where β̃ coincides with β = (β1, . . . , βp), except its first component which is given by α+ β1.
We have (1 + eβ

>Xi + eβ̃
>Xi)−1 ≤ 1− qi. Therefore, an alternative and rather general model

for πi, satisfying the constraint πi ≤ 1− qi, is given by πi = (1 + eβ
>Xi + eβ̃

>Xi)−1. Finally,
in order to further increase model flexibility, we set πi = (1 + eβ

>Xi + eγ
>Xi)−1, where γ is

a p-dimensional vector possibly unrelated to β.

The proposed marginal ZIB regression model is thus defined by equations (2.2), (2.9) and
(2.10). The latent class success probability implied by this model is :

pi =
eβ
>Xi(1 + eβ

>Xi + eγ
>Xi)

(1 + eβ>Xi)(eβ>Xi + eγ>Xi)
.

Remark 5. The interpretation of covariates effects on pi is not trivial. However, in a
marginal zero-inflated model, the latent class success probability is of secondary interest since
one is primarily interested in the marginal success probability qi.

Let θ = (β>, γ>)> be the whole 2p-dimensional parameter in the marginal ZIB regression
model (2.2)- (2.9)-(2.10). For i = 1, . . . , n, let Ji = 1{Zi=0} and

fi(θ) = 1 + eβ
>Xi + eγ

>Xi , gi(θ) = eβ
>Xi + eγ

>Xi , hi(θ) =
eγ
>Xi

(1 + eβ>Xi)gi(θ)
.

Then, the log-likelihood of θ, based on n independent observations (Zi,Xi), i = 1, . . . , n, is :

``n(θ) =
n∑
i=1

Ji log(1 + gi(θ)h
mi
i (θ))−

n∑
i=1

log(fi(θ))

+
n∑
i=1

(1− Ji)
[
Zi(β − γ)>Xi + log(gi(θ)) + Zi log(fi(θ)) +mi log(hi(θ))

]
,

=
n∑
i=1

`i(θ).
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The MLE θ̂n = (β̂>n , γ̂
>
n )> of θ is obtained by solving the score equation ˙̀̀

n(θ) = 0, where

˙̀̀
n(θ) =

1√
n

∂``n(θ)

∂θ
=

1√
n

n∑
i=1

∂`i(θ)

∂θ
. (2.11)

In Section 3, we establish consistency and asymptotic normality of θ̂n. Before this, we
introduce some further notations.

2.3.2. Notations
Let

X =


1 · · · 1
X12 · · · Xn2
... . . . ...

X1p · · · Xnp


be the (p× n) design matrix and V be the (2p× 2n) block-matrix defined as :

V =

[
X 0p,n

0p,n X

]
,

where 0p,n denotes the (p × n) matrix whose components are all equal to zero. Let also
S(θ) = (Sj(θ))1≤j≤2n be the 2n-dimensional column vector defined by :

S(θ) = ( ˙̀
β,1(θ), . . . , ˙̀

β,n(θ), ˙̀
γ,1(θ), . . . , ˙̀

γ,n(θ))>,

where for every i = 1, . . . , n,

˙̀
β,i(θ) = −Ji

eβ
>XiQi(θ)

(1 + eβ>Xi)gi(θ)ki(θ)
+ Zi

(
eβ
>Xi

fi(θ)
+ 1

)
− eβ

>Xi

fi(θ)
+

eβ
>XiQi(θ)

(1 + eβ>Xi)gi(θ)
,

and

˙̀
γ,i(θ) = −Ji

mie
β>Xi + eγ

>Xi

gi(θ)ki(θ)
+ Zi

(
eγ
>Xi

fi(θ)
− 1

)
− eγ

>Xi

fi(θ)
+
mie

β>Xi + eγ
>Xi

gi(θ)
,

with ki(θ) = 1 + gi(θ)h
mi
i (θ) and Qi(θ) = 1 + eβ

>Xi − mi(fi(θ) + eβ
>Xi). Finally, if

A = (Aij)1≤i≤a,1≤j≤b is a (a × b) matrix, we let A•j denote its j-th column (j = 1, . . . , b)
that is, A•j = (A1j, . . . , Aaj)

>. Then the score vector ˙̀̀
n(θ) can be written as ˙̀̀

n(θ) =
1√
n

∑2n
j=1V•jSj(θ).
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3. Model identifiability and asymptotic results

We start by giving some regularity conditions that are needed to ensure identifiability of
the proposed model and to establish large-sample properties of the MLE.

1. There exists a finite positive constant c1 such that |Xij| ≤ c1 for every i = 1, 2, . . .
and j = 1, . . . , p. For every i = 1, 2, . . . and j = 2, . . . , p, var[Xij] > 0. For every
i = 1, 2, . . . the Xij (j = 1, . . . , p) are linearly independent.

2. The true parameter values β0 and γ0 belong to the interior of a known compact set C
of Rp.

3. As n → ∞, n−1
∑n

i=1 E
[
∂2`i(θ)
∂θ∂θ>

]
converges to some invertible matrix L(θ) and the

smallest eigenvalue λn of VV> tends to +∞.
4. For every i = 1, . . . , n, we have : mi ∈ {2, . . . ,M} for some finite integer M .

In what follows, all random variables Zi andXi, i = 1, 2, . . . are defined on a same probability
space (Ω,A,P). The space R2p is equipped with the Euclidean norm ‖ · ‖2 and the space of
(2p× 2p) real matrices is equipped with the norm max‖x‖2=1 ‖Ax‖2 (for notations simplicity,
we use ‖ · ‖ for both norms). We are now in position to state our first result:

Theorem 3.1. Assume that conditions 1-4 hold. Then the marginal ZIB regression model
defined by (2.2), (2.9) and (2.10) is identifiable, that is, `i(θ) = `i(θ

∗) almost surely implies
θ = θ∗.

The proof is given in Appendix A.

Asymptotic properties of θ̂n are now presented in the following theorems. Here, we present
a sketch of the proofs ; details are provided in Appendix B.

Theorem 3.2. Assume that conditions 1-4 hold. Then, as n → ∞, θ̂n converges almost
surely to θ0 = (β>0 , γ

>
0 )>.

The proof hinges on the fact that n−1/2 ˙``n(θ) converges to a limit which is null at θ0. Then
we appeal to the inverse function theorem of Foutz (1977).

Theorem 3.3. Assume that conditions 1-4 hold. Then
√
n(θ̂n − θ0) is asymptotically dis-

tributed as a multivariate normal with mean-zero and covariance matrix L(θ0)
−1. A consis-

tent estimator of the asymptotic variance is given by (n−1/2∂ ˙̀̀
n(θ̂n)/∂θ>)−1.

To prove asymptotic normality, we show that
√
n(θ̂n − θ0) is asymptotically equivalent to a

linear combination of random (non identically distributed) vectors and we apply a multivari-
ate central limit theorem for random linear vector forms of Eicker (1966). More precisely, a
Taylor series expansion of ˙̀̀

n(θ̂n) at θ0 yields

√
n(θ̂n − θ0) = −

(
1√
n

∂ ˙̀̀
n(θ0)

∂θ>

)−1
1√
n

2n∑
j=1

V•jSj(θ0) + oP(1).
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By Lemma 6.3 in Appendix B, n−1/2∂ ˙̀̀
n(θ0)/∂θ

> converges to L(θ0), and we show that
1√
n

∑2n
j=1V•jSj(θ0) is asymptotically distributed as a multivariate normal with mean zero

and covariance matrix L(θ0). An application of Slutsky’s theorem concludes the proof. All
details are given in Appendix B, along with expressions of the terms of the matrix of second
derivatives ∂ ˙̀̀

n(θ0)/∂θ
>.

4. A simulation study

In this section, we evaluate the finite-sample performance of the MLE via Monte Carlo
experiments.

4.1. Simulation experiments
The count data Zi are simulated from the marginal ZIB regression model (2.2)-(2.9)-(2.10)

withXi = (Xi1, . . . , Xi8) andXi1 = 1. CovariatesXi2 toXi8 are generated from the standard
normal distribution, uniform distribution on [−2, 2], normal distribution with mean 1 and
standard deviation 1.5, normal distribution with mean -2 and standard deviation 1, Bernoulli
distribution with probability 0.3, uniform distribution on [1, 3] and Bernoulli distribution
with probability 0.8 respectively. Here, we take β0 = (−0.25,−0.9, 0.3,−0.8, 1, 0, 0, 0)>, that
is, Xi6, Xi7 and Xi8 have no influence on the marginal success probability qi.

We consider successively four values for γ, namely : γ = (−0.7, 0,−0.4, 0.6,−0.5, 0.7, 0, 0)>,
γ = (−0.4, 0, 0.8,−0.6,−0.5,−0.7, 0, 0)>, γ = (−0.4, 0, 0.8,−0.6,−0.5,−0.7,−0.7,−0.8) and
γ = (−0.9, 0, 0.8,−0.6, 0.5,−0.7,−0.7,−0.8). With these values, the average proportion c
of zero-inflated data in the simulated data sets is 0.25, 0.50, 0.75 and 0.90 respectively. We
consider the following sample sizes: n = 500, 2000. For each individual i, the binomial size
mi is taken as the maximum between 2 and a random draw from the binomial distribution
B(15, 0.3).

We simulate N = 1000 replications for each combination [sample size × proportion
of zero-inflation] of the design parameters. Simulations are conducted using the statis-
tical software R (R Core Team, 2018). We use the package maxLik (Henningsen and Toomet,
2011) to solve the score equation (2.11) via a Newton-Raphson algorithm.

4.2. Results
For each simulation scenario and each estimator β̂j,n (j = 1, . . . , 8) and γ̂k,n (k = 1, . . . , 8),

we calculate the average bias, standard deviation, average standard error and root mean
square error of the estimate over the N simulated samples. We also obtain the empirical
coverage probability and average length of 95%-level Wald confidence intervals for the βj
and γk. Tables 1 and 2 report results for n = 500 and n = 2000 respectively.

We also assess the normal approximation stated by Theorem 3.3, by plotting estimated
densities obtained from the N normalized estimates (β̂j,n − βj)/standard error(β̂j,n) and
(γ̂k,n − γk)/standard error(γ̂k,n), j, k = 1, . . . , 8, and by comparing with the density of the
standard normal distribution. Standard errors are obtained as the square roots of the di-
agonal elements of the estimated variance matrix (n−1/2∂ ˙̀̀

n(θ̂n)/∂θ>)−1. Figures 1 and 2

10



provide results for n = 500 and 50% of zero-inflation (plots for the other scenarios are similar
and thus are not given).

From these results, it appears, as expected, that the bias, variability and length of confi-
dence intervals of all estimates decrease as the sample size increases. For fixed n, we observe
that : i) performances of the β̂j,ns remain stable when the proportion of zero-inflation varies
from small to moderate values (here, from 0.25 to 0.50) and deteriorate when zero-inflation
achieves higher values, and : ii) performances of the γ̂k,ns improve and then deteriorate as
zero-inflation increases.

These observations illustrate the general fact that accurate estimation in a zero-inflated
regression model requires a balance between susceptible and non-susceptible subpopulations
(that is, a sufficient amount of zero and non-zero observations should be available to accu-
rately estimate the zero-inflation probabilities and count submodel). Also, empirical coverage
probabilities are close to the nominal level, which indicates that the normal approximation
of the distribution of the MLE is appropriate, even when the sample size is moderate. This
is confirmed by Figures 1 and 2.

5. Application

5.1. Data description and modelling
In this section, we describe an application of the marginal ZIB regression model to the

analysis of health-care utilization by elderlies in the United States. We use data from the
National Medical Expenditure Survey (NMES) conducted in 1987-1988 in the United States.
This survey provides a comprehensive picture of how Americans (aged 66 years and over)
use health services. Several measures of health-care utilization were reported in this study,
such as the number of visits to a non-physician health professional in an office setting and
the number of visits to a physician in an office setting. Informations on patients health are
also reported, along with sociodemographic and economic variables. A detailed description
of the data can be found in Deb and Trivedi (1997).

Here, we address the issue of identifying factors that determine patients decision to
consult a non-physician health professional when visiting in an office setting. Let Zi and
mi be respectively the number of non-physician office visits and the total number of office
visits for patient i. Given mi, one may model Zi by a B(mi, πi) distribution (in view of
condition 4, we consider patients with at least two office visits over the study period, that
is, mi ≥ 2). However, the high frequency of zero in the Zis (60.2% among the n = 3391
patients included in our analysis) suggests that the response is zero-inflated and that a
ZIB regression model should be used instead. A latent class ZIB model will only provide
insights into the determinants of patients decision in the unobservable class of at-risk patients
(that is, patients who have not abdicated from consulting non-physicians). More meaningful
interpretations can be obtained at the population level, and for this, we suggest to use a
marginal ZIB regression model.

As mentioned above, available covariates include: i) socio-economic variables: gender
(1 for female, 0 for male), age (in years, divided by 10), marital status, educational level
(number of years of education), income, ii) various measures of health condition: number
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of chronic conditions (cancer, arthritis, gallbladder problems. . . ) and a variable indicating
self-perceived health level (poor, average, excellent) and iii) a binary variable indicating
whether individual is covered by medicaid or not (medicaid is a US health insurance for
individuals with limited income and resources, we code it as 1 if the individual is covered
and 0 otherwise). Self-perceived health is re-coded as two dummy variables denoted by
"health1" (1 if health is perceived as poor, 0 otherwise) and "health2" (1 if health is perceived
as excellent, 0 otherwise).

We fit a marginal ZIB regression model to the data, where the marginal success proba-
bility qi and susceptibility probability πi are given by (2.9) and (2.10) respectively, and Xi

includes all available covariates listed above. We use Wald tests to select significant covari-
ates (the least significant covariate - at the level 5% - is removed and the model is fitted
again, until all remaining covariates are significant ; note that the BIC criterion decreases at
each step of this procedure). Table 3 presents the final marginal ZIB model.

5.2. Results
Most influencing factors of the decision of never resorting to a non-physician are health

condition, age, gender, educational level and medicaid status. The probability of never
resorting increases when health condition degradates. One hypothesis is that patients whose
health declines will tend to favor visits to a physician over visits to a non-physician. The
probability of never resorting to a non-physician decreases when the number of years of
education increases. This is coherent with previous findings in the literature. Given the
insignificance of income, this observation could be due to an income effect signalled through
educational level. An alternative explanation, hypothesized by Deb and Trivedi (1997) is
that education may make individuals more informed consumers of medical care services.
More informed patients may in turn tend to diversify their health-care utilization. Men are
more likely than women to renounce non-physician office visits. Similar observation has been
reported several times in the literature, and may be explained by social codes and stereotype
influence (such as masculinity being associated to resistance to harm). Finally, medicaid
beneficiaries are more likely to renounce non-physician office visits. One explanation is that
medicaid recipients, who have low income, may limit their consultations to those necessary,
that is, to physician visits.

In the latent class ZIB model, covariates effects on the probability of consulting a non-
physician when visiting in an office setting must be interpreted with respect to the susceptible
subpopulation. This subpopulation being unobserved, these effects are difficult to interpret.
On the contrary, the marginal ZIB regression model allows population-wide interpretations.
From Table 3, we observe that in the overall population, significant determinants of the de-
cision to consult a non-physician when visiting in an office setting include health status, age,
gender, educational level and medicaid status. Patients with poor health will favor office
visits to a physician over office visits to a non-physician, which seems a natural observation.
Women and people with higher education have higher probability to consult a non-physician,
while medicaid recipients are more likely to visit physicians than non-physicians. The prob-
ability of visiting a non-physician when consulting in an office setting decreases with age.
This may be due to several factors, such as decreasing mobility associated with ageing (aged
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patients will tend to limit their consultations to those considered as the most necessary, that
is, to physician visits) and worsening of the health condition with ageing (patients whose
health declines are likely to favor visits to a physician).

6. Concluding Remarks

Zero-inflated regression models provide a useful framework for analyzing count data with
excess zeros. Most classical zero-inflated models are based on a latent class formulation. In
this setting, regression parameters in the count submodel must be interpreted with respect
to the class of susceptible individuals, which often yields misleading, or even erroneous,
statements. For example, Preisser et al. (2012) observe that in dental epidemiology, many
researchers misinterpret parameters in zero-inflated Poisson regression models in terms of
overall caries incidence, instead of incidence within the susceptible subpopulation.

Marginal zero-inflated models were recently proposed to allow population-wide inference
from count data with excess zeros. This approach directly models the marginal mean of the
count response, rather than the conditional mean given that the individual is susceptible.
For example, marginal zero-inflated Poisson and negative binomial models were introduced
by Long et al. (2014) and Preisser et al. (2016) respectively. The formulation of these models
is relatively straightforward. On the contrary, formulating a marginal zero-inflated binomial
model requires some care, owing to the inherent constraints which apply, in this case, to
the susceptibility probability and marginal mean of the count response. In this paper, we
propose a formulation that takes these constraints into account. Asymptotic theory and
simulations studies both suggest the appropriateness of maximum likelihood inference in
this new model.

Several issues now deserve attention and the proposed marginal ZIB model should be
extended to accommodate additional data complexity. For example, random effects could
be incorporated to the model, in order to take account of correlation among the individuals.
Non-linear effects may also be introduced in the linear predictors, through unknown functions
of the covariates. These extensions require specific theoretical and numerical developments
that are the topics for our future work.

Appendix A : proof of Theorem 3.1

Assume that `i(θ) = `i(θ
∗) almost surely and note that under θ,

P(Ji = 0|Xi) = 1− P(Zi = 0|Xi)

= 1− (πi + (1− πi)(1− pi)mi)

= 1− 1

fi(θ)
− gi(θ)

fi(θ)

(
eγ
>Xi

(1 + eβ>Xi)gi(θ)

)mi

= 1− ki(θ)

fi(θ)
.
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Under conditions 1 and 2, it is not difficult to see that 0 < P(Ji = 0|Xi) < 1 for every xi
and θ. Thus, there exists a ω ∈ Ω, with ω outside the negligible set where `i(θ) 6= `i(θ

∗),
such that Ji(ω) = 0. For this ω, the equality `i(θ) = `i(θ

∗) reduces to :

zi(β − γ)>xi + log(gi(θ)) + (zi − 1) log(fi(θ)) +mi log(hi(θ))

= zi(β
∗ − γ∗)>xi + log(gi(θ

∗)) + (zi − 1) log(fi(θ
∗)) +mi log(hi(θ

∗)),

or equivalently, to :

zi(β − γ − β∗ + γ∗)>xi + (zi − 1) log
fi(θ)

fi(θ∗)
= log

gi(θ
∗)

gi(θ)
+mi log

hi(θ
∗)

hi(θ)
. (6.12)

The right-hand side of (6.12) does not depend on zi and thus is constant for distinct positive
values of zi. Consider, for example, zi = z and zi = z + 1 (by condition 4, zi can take at
least two distinct positive values). We obtain :

(β − γ − β∗ + γ∗)>xi = − log
fi(θ)

fi(θ∗)
. (6.13)

Assume that log(fi(θ)/fi(θ
∗)) 6= 0 and differentiate (6.13) with respect to β. We obtain

xi(1+eβ
>xi/fi(θ)) = 0. Condition 1 implies that 1+eβ

>xi/fi(θ) = 0, which is a contradiction
since fi(θ) > 0. Thus fi(θ) = fi(θ

∗), which implies that (β − γ − β∗ + γ∗)>xi = 0. Linear
independence of the xi1, . . . , xip (condition 1) implies that β−γ = β∗−γ∗. Now, fi(θ) = fi(θ

∗)

is equivalent to eβ>xi + eγ
>xi = eβ

∗>xi + eγ
∗>xi , which implies :

eγ
>xi
(
e(β−γ)

>xi + 1
)

= eγ
∗>xi

(
e(β
∗−γ∗)>xi + 1

)
,

and finally, (γ − γ∗)>xi = 0. Condition 1 implies that γ = γ∗, which in turn implies that
β = β∗. We have proved that θ = θ∗, which concludes the proof. �

Appendix B : proofs of asymptotic results

Proof of Theorem 3.2. To prove the consistency of θ̂n, we verify the conditions of the
inverse function theorem of Foutz (1977). These conditions are proved in a series of technical
lemmas.

Lemma 6.1. ∂ ˙``n(θ)/∂θ> exists and is continuous in an open neighborhood of θ0.

Proof of Lemma 6.1. The `i(θ), i = 1, . . . , n are twice differentiable with respect to θ.
Continuity of ∂2`i(θ)/∂θ∂θ> is straightforward and is omitted (the expression of ∂2`i(θ)/
∂θ`∂θj is given by (6.18), see below). �

Lemma 6.2. As n→∞, n−1/2 ˙``n(θ0) converges almost surely to 0.
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Proof of Lemma 6.2. To prove this lemma, we verify the conditions of the strong law of
large numbers - SLLN (see Jiang, 2010, Theorem 6.7). First, some simple algebra yields :

n−1/2 ˙``n(θ0) =



1
n

∑n
i=1Xi1

˙̀
β,i(θ0)

...
1
n

∑n
i=1Xip

˙̀
β,i(θ0)

1
n

∑n
i=1Xi1

˙̀
γ,i(θ0)

...
1
n

∑n
i=1Xip

˙̀
γ,i(θ0)


.

We start by proving that E[Xij
˙̀
γ,i(θ0)] = 0 for every = 1, . . . , n and j = 1, . . . , p. To see

this, note that :

E
[
Xij

˙̀
γ,i(θ0)

]
= E

[
XijE

[
˙̀
γ,i(θ0)|Xi

]]
,

and

E
[

˙̀
γ,i(θ0)|Xi

]
= −E [Ji|Xi]

mie
β>0 Xi + eγ

>
0 Xi

gi(θ0)ki(θ0)
+ E [Zi|Xi]

(
eγ
>
0 Xi

fi(θ0)
− 1

)

− e
γ>0 Xi

fi(θ0)
+
mie

β>0 Xi + eγ
>
0 Xi

gi(θ0)
. (6.14)

Now,

E [Ji|Xi] = P(Zi = 0|Xi)

=
ki(θ0)

fi(θ0)
, (6.15)

and

E [Zi|Xi] = mipi(1− πi)

= mi
eβ
>
0 Xi

1 + eβ
>
0 Xi

. (6.16)

We plug (6.15) and (6.16) in (6.14) and we obtain :

E
[

˙̀
γ,i(θ0)|Xi

]
= −mie

β>0 Xi + eγ
>
0 Xi

gi(θ0)ki(θ0)

ki(θ0)

fi(θ0)
+mi

eβ
>
0 Xi

1 + eβ
>
0 Xi

(
eγ
>
0 Xi

fi(θ0)
− 1

)

− e
γ>0 Xi

fi(θ0)
+
mie

β>0 Xi + eγ
>
0 Xi

gi(θ0)

fi(θ0)

fi(θ0)

=
mie

β>0 Xi + eγ
>
0 Xi

gi(θ0)

gi(θ0)

fi(θ0)
−mi

eβ
>
0 Xi

1 + eβ
>
0 Xi

(
1 + eβ

>
0 Xi

fi(θ0)

)
− eγ

>
0 Xi

fi(θ0)

= 0,
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which in turn implies :

E
[
Xij

˙̀
γ,i(θ0)

]
= 0.

Now, for every = 1, . . . , n and j = 1, . . . , p, we have :

var
(
Xij

˙̀
γ,i(θ0)

)
= E

[
var
(
Xij

˙̀
γ,i(θ0)|Xi

)]
+ var

(
E
[
Xij

˙̀
γ,i(θ0)|Xi

])
= E

[
X2
ijvar

(
˙̀
γ,i(θ0)|Xi

)]
≤ c21 E

[
var
(

˙̀
γ,i(θ0)|Xi

)]
(by condition 1).

It is not difficult to check that E[var( ˙̀
γ,i(θ0)|Xi)] is bounded. To see this, note that :

var
(

˙̀
γ,i(θ0)|Xi

)
=

(
mie

β>0 Xi + eγ
>
0 Xi

gi(θ0)ki(θ0)

)2

var (Ji|Xi) +

(
eγ
>
0 Xi

fi(θ0)
− 1

)2

var (Zi|Xi)

+2

(
mie

β>0 Xi + eγ
>
0 Xi

gi(θ0)ki(θ0)

)(
eγ
>
0 Xi

fi(θ0)
− 1

)
E [Ji|Xi]E [Zi|Xi]

≤

(
mie

β>0 Xi + eγ
>
0 Xi

gi(θ0)ki(θ0)

)2

+

(
eγ
>
0 Xi

fi(θ0)
− 1

)2

M2, (6.17)

since var(Ji|Xi) ≤ 1, var(Zi|Xi) ≤ M2 and (eγ
>
0 Xi/fi(θ0) − 1) is negative. Let MX =

maxu∈C,X∈X e
u>X and mX = minu∈C,X∈X e

u>X, where X = [−c1, c1]p. We deduce from (6.17)
that :

var
(

˙̀
γ,i(θ0)|Xi

)
≤ c2 :=

(
(M + 1)MX

mX

)2

+M2 <∞,

and thus,

var
(
Xij

˙̀
γ,i(θ0)

)
≤ c21c2.

It follows that
∞∑
i=1

var(Xij
˙̀
γ,i(θ0))

i2
≤ c21c2

∞∑
i=1

1

i2
<∞.

By the SLLN (Jiang, 2010, Theorem 6.7), we conclude that

1

n

n∑
i=1

{
Xij

˙̀
γ,i(θ0)− E

[
Xij

˙̀
γ,i(θ0)

]}
=

1

n

n∑
i=1

Xij
˙̀
γ,i(θ0), j = 1, . . . , p

converge almost surely to 0 as n → ∞. Using similar arguments, we can prove that
1
n

∑n
i=1Xij

˙̀
β,i(θ0), j = 1, . . . , p converge almost surely to 0. Therefore, n−1/2 ˙``n(θ0) con-

verges almost surely to 0, which concludes the proof. �
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Lemma 6.3. As n → ∞, n−1/2∂ ˙``n(θ)/∂θ> converges almost surely to L(θ), uniformly in
an open neighborhood of θ0. Moreover, L is continuous.

Proof of Lemma 6.3. Let ˜̀̀ n(θ) = n−1/2∂ ˙``n(θ)/∂θ> and Vθ0 be an open neighborhood of
θ0. Let θ ∈ Vθ0 and consider the (`, j)-th element of ˜̀̀ n(θ), namely:( ˜̀̀

n(θ)
)
(`,j)

=
1

n

n∑
i=1

∂2`i(θ)

∂θ`∂θj
.

We have: ( ˜̀̀
n(θ)

)
(`,j)

=
1

n

n∑
i=1

{
∂2`i(θ)

∂θ`∂θj
− E

[
∂2`i(θ)

∂θ`∂θj

]}
+

1

n

n∑
i=1

E
[
∂2`i(θ)

∂θ`∂θj

]
.

Now,

var
(
∂2`i(θ)

∂θ`∂θj

)
≤ E

({
∂2`i(θ)

∂θ`∂θj

}2
)
.

We prove that var(∂2`i(θ)/∂θ`∂θj) is bounded. Some tedious (although uncomplicated) alge-
bra shows that ∂2`i(θ)/∂θ`∂θj is the (`, j)-th element of the (2p× 2p) matrix −ViDi(θ)V

>
i ,

where Vi is the (2p× 2) matrix defined as

Vi =

(
Xi 0p,1
0p,1 Xi

)
and

Di(θ) =

(
D1,i(θ) D3,i(θ)
D3,i(θ) D2,i(θ)

)
is the (2× 2) symmetric matrix defined by

D1,i(θ) = Ji
eβ
>XiUi(θ)[

(1 + eβ>Xi)gi(θ)ki(θ)
]2 + (Zi − 1)

eβ
>Xi(1 + eγ

>Xi)

f 2
i (θ)

+
eβ
>XiVi(θ)[

(1 + eβ>Xi)gi(θ)
]2 ,

D2,i(θ) = Ji
Wi(θ)

[gi(θ)ki(θ)]
2 + (Zi − 1)

eγ
>Xi(1 + eβ

>Xi)

f 2
i (θ)

+
(1−mi)e

(β+γ)>Xi

g2i (θ)
,

D3,i(θ) = −Ji
eβ
>XiYi(θ)

(1 + eβ>Xi) [gi(θ)ki(θ)]
2 + (1− Zi)

e(β+γ)
>Xi

f 2
i (θ)

+
(mi − 1)e(β+γ)

>Xi

g2i (θ)
,
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with

Ui(θ) = eβ
>XiQi(θ)

[
gi(θ)ki(θ) +

(
1 + eβ

>Xi

)
ki(θ) + eβ

>XiQi(θ)gi(θ)h
mi
i (θ)

]
−
(
Qi(θ) + eβ

>Xi (1− 2mi)
)(

1 + eβ
>Xi

)
gi(θ)ki(θ),

Vi(θ) =
[
Qi(θ) + eβ

>Xi (1− 2mi)
] (

1 + eβ
>Xi

)
gi(θ)− eβ

>XiQi(θ)
(
fi(θ) + eβ

>Xi

)
,

Wi(θ) = e(β+γ)
>Xiki(θ)(mi − 1) + gi(θ)h

mi
i (θ)

(
mie

β>Xi + eγ
>Xi

)2
,

Yi(θ) = mie
γ>Xigi(θ)ki(θ) +

[
eγ
>Xiki(θ) + gi(θ)h

mi
i (θ)

(
mie

β>Xi + eγ
>Xi

)]
Qi(θ).

With these notations, it is easy to see that

∂2`i(θ)

∂θ`∂θj
= −

(
Vi,(`,1)D1,i(θ) + Vi,(`,2)D3,i(θ)

)
Vi,(j,1)

−
(
Vi,(`,1)D3,i(θ) + Vi,(`,2)D2,i(θ)

)
Vi,(j,2), (6.18)

where for example, Vi,(`,1) denotes the element on the `-th row and first column of Vi.
For every ` (` = 1, . . . , 2p), at least one of Vi,(`,1) and Vi,(`,2) must be equal to 0 (this
is straightforward from the expression of Vi). Suppose for example that Vi,(`,1) = 0 and
Vi,(j,2) = 0. Then :

∂2`i(θ)

∂θ`∂θj
= −Vi,(`,2)D3,i(θ)Vi,(j,1).

Any other combination of null and non-null values among (Vi,(`,1),Vi,(`,2)) and (Vi,(j,1),Vi,(j,2))
yields a similar expression, of the form −Vi,(`,a)Dc,i(θ)Vi,(j,b), with a, b ∈ {1, 2} and c ∈
{1, 2, 3}. It is not difficult to see that under conditions 1, 2 and 4, the terms Dc,i(θ) are
bounded by some finite constant c3 (proof is omitted), and thus,

var
(
∂2`i(θ)

∂θ`∂θj

)
≤ c41c

2
3.

It follows that

∞∑
i=1

var
(
∂2`i(θ)
∂θ`∂θj

)
i2

≤ c41c
2
3

∞∑
i=1

1

i2
<∞.

Therefore, the SLLN implies that

1

n

n∑
i=1

{
∂2`i(θ)

∂θ`∂θj
− E

[
∂2`i(θ)

∂θ`∂θj

]}
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converges almost surely to 0 as n → ∞ and by condition 3, ( ˜̀̀ n(θ))(`,j) converges almost
surely to the (`, j)-th element of the matrix L(θ). Under conditions 1, 2 and 4, the derivative
of ˜̀̀ n(θ) with respect to θ is bounded, for every n. Therefore, the sequence ( ˜̀̀ n(θ))n is
equicontinuous. It follows that the convergence of ( ˜̀̀ n(θ))n to L(θ) is uniform on Vθ0 , and
that L must be continuous. �

Having verified the conditions of Foutz (1977) inverse function theorem, we conclude that
θ̂n converges almost surely to θ0. �

Proof of Theorem 3.3. A Taylor series expansion of ˙̀̀
n(θ̂n) at θ0 yields :

0 = ˙̀̀
n(θ̂n) = ˙̀̀

n(θ0) +
1√
n

∂ ˙̀̀
n(θ0)

∂θ>
√
n(θ̂n − θ0) + oP(1),

and thus

√
n(θ̂n − θ0) = −

(
1√
n

∂ ˙̀̀
n(θ0)

∂θ>

)−1
˙̀̀
n(θ0) + oP(1)

= −

(
1√
n

∂ ˙̀̀
n(θ0)

∂θ>

)−1 2n∑
j=1

V•jSj,n(θ0) + oP(1),

where Sj,n(θ) = 1√
n
Sj(θ). First, we prove that

∑2n
j=1 V•jSj,n(θ0) is asymptotically normal. To

see this, we apply the multivariate central limit theorem for linear combinations of random
vectors of Eicker (1966).

Consider the random linear combination Tn = S−1n
∑2n

j=1V•jSj,n(θ0), where S2
n = var( ˙̀̀

n(θ0)).
By Eicker (1966), Tn is asymptotically distributed as a multivariate standard normal if the
following conditions hold:

a) max
1≤j≤2n

V>•j(VV>)−1V•j → 0 as n→∞,

b) sup
1≤j≤2n

E[S2
j,n(θ0)1{|Sj,n(θ0)|>c}]→ 0 as c→∞,

c) inf
1≤j≤2n

E[S2
j,n(θ0)] > 0.

Note first that

0 < max
1≤j≤2n

V>•j(VV>)−1V•j ≤ max
1≤j≤2n

‖V•j‖2‖(VV>)−1‖ = max
1≤j≤2n

‖V•j‖2/λn.

Since ‖V•j‖ is bounded, condition 3 implies that a) is satisfied. Condition b) follows by
noting that the Sj,n(θ0), j = 1, . . . , 2n are bounded under conditions 1, 2 and 4. Fi-
nally, under conditions 1, 2 and 4, we have E[S2

j,n(θ0)] > 0 for every j = 1, . . . , 2n. Now,
S2
n = var( ˙̀̀

n(θ0)) = n−1
∑n

i=1 var(∂`i(θ0)/∂θ) = −n−1
∑n

i=1 E
[
∂2`i(θ)/∂θ∂θ

>] converges to
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−L(θ0) by condition 3. It follows that
∑2n

j=1V•jSj,n(θ0) is asymptotically distributed as a
multivariate normal with mean zero and variance L(θ0).

Finally, by Lemma 6.3 and Slutsky’s theorem, we conclude that
√
n(θ̂n − θ0) is asymp-

totically distributed as a multivariate normal with mean zero and variance L(θ0)
−1.

Now, as n→∞, we have :∥∥∥n−1/2∂ ˙̀̀
n(θ̂n)/∂θ> − L(θ0)

∥∥∥ ≤ sup
θ∈Vθ0

∥∥∥ ˜̀̀ n(θ)− L(θ)
∥∥∥+

∥∥∥L(θ̂n)− L(θ0)
∥∥∥ (6.19)

The first term in the right-hand-side of (6.19) converges to 0 by Lemma 6.3. Consistency
of θ̂n and continuity of L imply that the second term also converges to 0. It follows that
n−1/2∂ ˙̀̀

n(θ̂n)/∂θ> converges to L(θ0) and finally, that (n−1/2∂ ˙̀̀
n(θ̂n)/∂θ>)−1 is a consistent

estimate of the asymptotic variance L(θ0)
−1. �
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c β̂n γ̂n
β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n β̂7,n β̂8,n γ̂1,n γ̂2,n γ̂3,n γ̂4,n γ̂5,n γ̂6,n γ̂7,n γ̂8,n

0.25
bias -0.0308 -0.0116 0.0015 -0.0073 0.0117 0.0062 0.0094 0.0052 -0.1443 0.0959 -0.0982 0.2043 -0.2137 0.1716 0.0007 0.0235
SD 0.4602 0.1117 0.0935 0.0843 0.1163 0.2170 0.1774 0.2533 1.3297 0.4019 0.3135 0.4312 0.5275 0.7809 0.5245 0.7620
SE 0.4648 0.1105 0.0883 0.0825 0.1156 0.2131 0.1727 0.2520 1.2953 0.3744 0.2950 0.3885 0.4697 0.7365 0.4851 0.7235
RMSE 0.6546 0.1575 0.1286 0.1182 0.1644 0.3041 0.2477 0.3573 1.8615 0.5574 0.4414 0.6151 0.7378 1.0867 0.7142 1.0507
CP 0.9530 0.9490 0.9450 0.9460 0.9580 0.9450 0.9380 0.9430 0.9610 0.9470 0.9570 0.9530 0.9490 0.9540 0.9450 0.9490
`(CI) 1.8180 0.4321 0.3457 0.3228 0.4522 0.8338 0.6757 0.9837 4.9720 1.4017 1.1135 1.4151 1.7266 2.6520 1.8743 2.7536

0.50
bias -0.0214 -0.0103 0.0048 -0.0081 0.0159 -0.0045 0.0031 0.0232 -0.0787 0.0850 0.0898 -0.0114 -0.1679 -0.0767 0.0023 0.0139
SD 0.4710 0.1156 0.0890 0.0776 0.1171 0.2252 0.1726 0.2539 1.2360 0.3615 0.2649 0.2359 0.4394 0.5723 0.4864 0.7114
SE 0.4610 0.1105 0.0894 0.0772 0.1167 0.2229 0.1714 0.2499 1.1857 0.3334 0.2514 0.2142 0.4125 0.5549 0.4492 0.6714
RMSE 0.6593 0.1602 0.1262 0.1097 0.1661 0.3168 0.2432 0.3569 1.7141 0.4989 0.3759 0.3188 0.6255 0.8006 0.6619 0.9780
CP 0.9510 0.9349 0.9570 0.9520 0.9499 0.9469 0.9469 0.9469 0.9429 0.9550 0.9550 0.9309 0.9499 0.9520 0.9439 0.9489
`(CI) 1.8031 0.4322 0.3498 0.3018 0.4567 0.8715 0.6707 0.9757 4.5859 1.2776 0.9634 0.8272 1.5634 2.1471 1.7401 2.5600

0.75
bias 0.0081 -0.0293 0.0119 -0.0224 0.0189 -0.0080 -0.0109 0.0079 0.0176 0.0163 0.0540 -0.0304 -0.0693 -0.0690 -0.0555 -0.0529
SD 0.5719 0.1434 0.1154 0.1000 0.1456 0.2818 0.2241 0.2986 1.0455 0.2647 0.2177 0.1875 0.3201 0.5067 0.3946 0.5990
SE 0.5646 0.1377 0.1135 0.0977 0.1390 0.2852 0.2184 0.2996 1.0152 0.2685 0.2073 0.1797 0.3126 0.4964 0.3921 0.5616
RMSE 0.8035 0.2009 0.1622 0.1415 0.2022 0.4009 0.3130 0.4229 1.4570 0.3773 0.3054 0.2614 0.4527 0.7125 0.5589 0.8226
CP 0.9500 0.9350 0.9470 0.9410 0.9420 0.9550 0.9480 0.9600 0.9470 0.9610 0.9380 0.9450 0.9460 0.9470 0.9580 0.9360
`(CI) 2.2071 0.5383 0.4439 0.3818 0.5435 1.1146 0.8543 1.1691 3.9598 1.0440 0.8073 0.7007 1.2118 1.9369 1.5307 2.1860

0.90
bias -0.0233 -0.0299 0.0115 -0.0297 0.0338 -0.0078 0.0020 0.0130 -0.1404 0.0133 0.0615 -0.0229 0.0132 -0.1967 -0.0558 0.0226
SD 0.7438 0.1869 0.1462 0.1337 0.1789 0.3626 0.2797 0.4134 1.5928 0.3651 0.3118 0.2656 0.3670 1.1673 0.5991 0.9384
SE 0.7129 0.1742 0.1422 0.1264 0.1802 0.3544 0.2762 0.3921 1.4259 0.3644 0.3053 0.2506 0.3616 0.9626 0.5584 0.7911
RMSE 1.0303 0.2571 0.2042 0.1863 0.2561 0.5070 0.3930 0.5698 2.1419 0.5159 0.4406 0.3658 0.5152 1.5252 0.8207 1.2272
CP 0.9440 0.9390 0.9490 0.9390 0.9500 0.9490 0.9490 0.9380 0.9490 0.9560 0.9530 0.9500 0.9520 0.9620 0.9480 0.9470
`(CI) 2.7847 0.6797 0.5559 0.4932 0.7034 1.3849 1.0799 1.5289 5.4261 1.4063 1.1754 0.9683 1.3958 3.1572 2.1576 2.8570

Table 1: Simulation results for n = 500. c: average proportion of zero-inflation. SD: empirical standard deviation. SE: average standard error.
CP: empirical coverage probability of 95%-level confidence intervals. `(CI): average length of confidence intervals.

23



c β̂n γ̂n
β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n β̂7,n β̂8,n γ̂1,n γ̂2,n γ̂3,n γ̂4,n γ̂5,n γ̂6,n γ̂7,n γ̂8,n

0.25
bias -0.0042 -0.0027 -0.0001 -0.0033 0.0011 -0.0010 -0.0021 0.0052 -0.0034 0.0104 -0.0172 0.0243 -0.0278 0.0260 -0.0057 -0.0039
SD 0.2273 0.0557 0.0411 0.0405 0.0583 0.1058 0.0861 0.1244 0.5636 0.1546 0.1219 0.1451 0.1797 0.2835 0.2190 0.3114
SE 0.2281 0.0542 0.0434 0.0407 0.0567 0.1047 0.0851 0.1230 0.5519 0.1526 0.1211 0.1460 0.1805 0.2844 0.2096 0.3035
RMSE 0.3220 0.0777 0.0598 0.0575 0.0813 0.1488 0.1210 0.1749 0.7886 0.2174 0.1727 0.2072 0.2562 0.4023 0.3031 0.4348
CP 0.9580 0.9380 0.9620 0.9560 0.9390 0.9500 0.9480 0.9500 0.9510 0.9580 0.9590 0.9560 0.9560 0.9520 0.9430 0.9450
`(CI) 0.8937 0.2125 0.1702 0.1594 0.2222 0.4104 0.3334 0.4816 2.1595 0.5968 0.4734 0.5697 0.7050 1.1123 0.8207 1.1873

0.50
bias -0.0039 -0.0008 0.0010 -0.0037 0.0031 0.0024 -0.0022 0.0085 0.0031 0.0189 0.0156 -0.0071 -0.0343 -0.0168 -0.0031 -0.0037
SD 0.2245 0.0551 0.0442 0.0385 0.0587 0.1124 0.0856 0.1246 0.5032 0.1464 0.1122 0.0941 0.1710 0.2488 0.1956 0.3059
SE 0.2251 0.0541 0.0438 0.0377 0.0571 0.1090 0.0839 0.1214 0.5210 0.1434 0.1075 0.0944 0.1704 0.2436 0.1976 0.2864
RMSE 0.3179 0.0772 0.0622 0.0540 0.0819 0.1566 0.1199 0.1741 0.7242 0.2057 0.1561 0.1335 0.2438 0.3485 0.2780 0.4189
CP 0.9510 0.9430 0.9550 0.9510 0.9380 0.9370 0.9400 0.9560 0.9620 0.9470 0.9450 0.9520 0.9600 0.9410 0.9540 0.9320
`(CI) 0.8820 0.2119 0.1716 0.1476 0.2237 0.4271 0.3286 0.4753 2.0388 0.5606 0.4204 0.3694 0.6658 0.9539 0.7737 1.1204

0.75
bias -0.0256 -0.0001 0.0033 -0.0024 0.0014 -0.0005 0.0075 0.0047 -0.0233 0.0074 0.0134 -0.0035 -0.0158 -0.0062 -0.0055 -0.0006
SD 0.2759 0.0652 0.0580 0.0479 0.0662 0.1380 0.1049 0.1508 0.4898 0.1247 0.0953 0.0833 0.1390 0.2241 0.1894 0.2590
SE 0.2745 0.0668 0.0554 0.0473 0.0675 0.1388 0.1063 0.1455 0.4704 0.1233 0.0954 0.0829 0.1418 0.2303 0.1819 0.2575
RMSE 0.3899 0.0933 0.0803 0.0674 0.0945 0.1957 0.1495 0.2095 0.6794 0.1755 0.1355 0.1175 0.1991 0.3213 0.2626 0.3652
CP 0.9460 0.9600 0.9380 0.9560 0.9530 0.9510 0.9530 0.9510 0.9400 0.9430 0.9380 0.9460 0.9540 0.9590 0.9510 0.9510
`(CI) 1.0752 0.2616 0.2170 0.1852 0.2646 0.5437 0.4166 0.5698 1.8425 0.4826 0.3736 0.3245 0.5548 0.9021 0.7127 1.0085

0.90
bias 0.0219 -0.0076 0.0037 -0.0080 0.0118 -0.0007 -0.0088 -0.0028 -0.0007 0.0026 0.0091 -0.0055 0.0130 -0.0291 -0.0186 0.0073
SD 0.3475 0.0835 0.0704 0.0608 0.0888 0.1710 0.1333 0.1923 0.6263 0.1609 0.1355 0.1088 0.1584 0.3300 0.2464 0.3290
SE 0.3438 0.0839 0.0688 0.0608 0.0869 0.1715 0.1340 0.1882 0.6126 0.1583 0.1336 0.1095 0.1572 0.3356 0.2464 0.3173
RMSE 0.4892 0.1186 0.0985 0.0863 0.1247 0.2421 0.1892 0.2690 0.8758 0.2257 0.1904 0.1545 0.2235 0.4715 0.3489 0.4570
CP 0.9520 0.9500 0.9450 0.9510 0.9380 0.9640 0.9530 0.9520 0.9470 0.9530 0.9450 0.9490 0.9470 0.9610 0.9530 0.9420
`(CI) 1.3465 0.3286 0.2695 0.2380 0.3402 0.6719 0.5249 0.7368 2.3972 0.6192 0.5224 0.4284 0.6149 1.3102 0.9645 1.2413

Table 2: Simulation results for n = 2000. c: average proportion of zero-inflation. SD: empirical standard deviation. SE: average standard
error. CP: empirical coverage probability of 95%-level confidence intervals. `(CI): average length of confidence intervals.
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Figure 1: Density estimates of the (β̂j,n − βj)/standard error(β̂j,n), j = 1, . . . , 8 with n = 500 and 50% of
zero-inflation.
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Figure 2: Density estimates of the (γ̂k,n − γk)/standard error(γ̂k,n), k = 1, . . . , 8 with n = 500 and 50% of
zero-inflation.
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Parameter Parameter Standard
estimate error

intercept β1 -0.8181 0.2130
health1 β2 -0.4284 0.0532
health2 β3 0.2547 0.0599
chronic β4 -0.1049 0.0116
age β5 -0.1315 0.0253
gender β6 0.1714 0.0567
education β7 0.0326 0.0076
medicaid β8 -0.2532 0.1215

intercept γ1 -1.4925 0.1480
gender γ2 0.3573 0.0909
education γ3 0.0742 0.0119
medicaid γ4 -0.3991 0.1766

Table 3: Health-care data analysis with the marginal ZIB regression model.
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