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Abstract—One of the most exciting applications of Spin Torque
Magnetoresistive Random Access Memory (ST-MRAM) is the in-
memory implementation of deep neural networks, which could
allow improving the energy efficiency of Artificial Intelligence
by orders of magnitude with regards to its implementation
on computers and graphics cards. In particular, ST-MRAM
could be ideal for implementing Binarized Neural Networks
(BNNs), a type of deep neural networks discovered in 2016,
which can achieve state-of-the-art performance with a highly
reduced memory footprint with regards to conventional artificial
intelligence approaches. The challenge of ST-MRAM, however,
is that it is prone to write errors and usually requires the use
of error correction. In this work, we show that these bit errors
can be tolerated by BNNs to an outstanding level, based on
examples of image recognition tasks (MNIST, CIFAR-10 and
ImageNet): bit error rates of ST-MRAM up to 0.1% have
little impact on recognition accuracy. The requirements for ST-
MRAM are therefore considerably relaxed for BNNs with regards
to traditional applications. By consequence, we show that for
BNNs, ST-MRAMSs can be programmed with weak (low-energy)
programming conditions, without error correcting codes. We
show that this result can allow the use of low energy and low
area ST-MRAM cells, and show that the energy savings at the
system level can reach a factor two.

I. INTRODUCTION

Spin Torque Magnetoresistive Random Access Memory
(ST-MRAM) is currently emerging as a leading technology
for embedded memory in microcontroller units [1]-[3], as well
as for standalone memory [4]. ST-MRAM indeed provides a
compact fast and non volatile memory, which is fully embed-
dable in modern CMOS, and features outstanding endurance.
This unique set of features makes ST-MRAM also adapted
for alternative non von Neumann computing schemes, which
tightly integrate logic and memory [5]. In particular, this
approach can be especially adapted for implementing hardware
deep neural networks. These algorithms have become the
flagship approach of modern artificial intelligence [6], but they
possess a high power consumption, which is mainly caused by
the von Neumann bottleneck [7].

Multiple proposals have been made to implement deep
neural networks with ST-MRAM using concepts of in-memory
or near-memory computing [8]-[12]. Similar ideas have been
proposed for other types of resistive memory [7], [13]-[15].
The benefit of ST-MRAM is its outstanding endurance [1], [2].
However, such proposals come with an important challenge:

ST-MRAMs feature bit errors. Commercial processes typically
target a bit error rate (BER) of 1076 [1], [2]. Such memories
are therefore meant to be used with error correcting codes, as
is the case of other types of resistive memories [13], [16].
Unfortunately, the bit errors in ST-MRAMs are to a large
extent intrinsic, as they can originate in the basic physics of
spin torque-based magnetization switching [17], [18]. They
will thus not disappear, even when the technology progresses.

In this paper, we look at the special case of Binarized
Neural Networks (BNNs) [19], [20]. Theses networks have
been proposed recently as a highly simplified form of deep
neural networks, as both their neurons and synapses assume
binary values during inference. They therefore function with
reduced memory requirements with regards to standard neural
networks, and use extremely simple arithmetic operations (no
multiplication). They can nevertheless approach state-of-the-
art performance on vision tasks on datasets such as CIFAR-10
or ImageNet [19]-[21]. Due to their simplicity and reduced
resource requirements, BNNs are particularly adapted to in-
memory hardware implementation [14], [22]. In this work,
we look at bit error rate impact on BNNs designed with ST-
MRAMs.

This works extends our prior work on the implementation of
BNNs with hafnium oxide-based Resistive RAM [22], [23] to
the case of ST-'MRAMs by taking into account the particular
mechanism of intrinsic BER in these devices. Additionally,
our prior work relied on analysis of relatively simple machine
learning tasks (MNIST and CIFAR-10), here we add the
analysis of a much more realistic task (ImageNet).

The paper makes the following contributions:

e We simulate BNNs incorporating bit errors on the

weights, and show that BERs up to 10~3 can be tolerated.
For the first time, the resilience of BNNSs is demonstrated
on the large scale ImageNet image recognition task. We
deduce that ST-MRAMs can be used directly without
ECC (section II).

o We highlight that due to this extreme tolerance we can
even reduce the programming energy of ST-MRAMs with
regards to conventional applications. Based on a physical
analysis, we show that a factor two in programming
energy may be saved without impact on BNN accuracy
(section III).



II. BINARIZED NEURAL NETWORKS CAN TOLERATE
ST-MRAM BIT ERRORS WITHOUT ECC

Binarized Neural Networks are a class of neural networks,
in which the synaptic weights and the neuronal states, can only
take two values: +1 or —1 (whereas they assume real values
in conventional neural networks). Therefore, the equation for
neuronal activation A in a conventional neural network

A=f (Z Win-) , (1)

(X, are inputs of the neuron, W; the synaptic weights and f
the neuronal activation function) simplifies into

A = sign (POPCOUNT (XNOR (W;, X;)) — T) )

T is the threshold of the neuron and is learned. POPCOUNT
counts the number of 1s, and sign is the sign function.

It should be noted that the synapses also feature real weights
during training. The binarized weights, which are equal to the
sign of the real weights, are used in the equations of forward
and backward passes, but the real weights are updated as
a result of the learning rule [19]. As the real weights can
be forgotten once the learning process is finished, BNNs are
outstanding candidates for hardware implementation of neural
network inference:

« Area and energy expensive multiplications in eq. (1) are

replaced by one-bit exclusive NOR (XNOR) operations.

o Neurons and synapses require a single bit of memory.

ASIC implementations of BNNs have been proposed using
purely CMOS solutions [24]. Nevertheless, the most attractive
implementations propose using RRAMs or ST-MRAMs for
implementing the synaptic weights, in architectures that tightly
integrate logic and memory [8], [10], [11], [14], [22], [25]-
[27].

However, a major challenge of RRAMs and ST-MRAMs
is the presence of bit errors. In the case of ST-MRAM, this
issue is traditionally solved by using ECC [1]-[3] or special
programming strategies [28]. In this work, we look at the
possibility to use ST-MRAMs directly to store the binarized
synaptic weights, without relying on any of these techniques.

For this purpose, we perform simulations of BNNs, with
bit errors added artificially. We consider three type of neural
networks (Fig. 1):

o A shallow fully connected neural network with two 1024
neurons hidden layers, trained on the canonical task of
MNIST handwritten digit classification.

o A deep convolutional network trained on the CIFAR-10
image recognition task. CIFAR-10 consists in recognizing
32 x 32 color images out of ten classes of various animals
and vehicles. Our neural network features 6 convolutional
layers with number of filters 384, 384, 384, 768, 768 and
1536. All convolutional layers use a kernel size of 3 x 3,
and a stride of one. These layers are topped by three fully
connected layers with 1024, 1024 and 10 neurons.

o The classic AlexNet deep convolutional neural network
trained on the ImageNet recognition task [29]. ImageNet
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Fig. 1. (a) Fully connected neural network used for the MNIST task, and
example of MNIST dataset images. (b) Examples of CIFAR-10 dataset images.
(c) Examples of ImageNet dataset examples.
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Fig. 2. Recognition rate on the validation dataset of the fully connected
neural network for MNIST, the convolutional neural network for CIFARIO0,
and AlexNet for ImageNet (Top-5 and Top-1) accuracies as a function of the
bit error rate over the weights during inference. Each experiment was repeated
five times, the mean recognition rate is presented.



consists in recognizing 128 x 128 color images out of
1000 classes, and is a considerably harder task than
CIFAR-10.

Training of the MNIST neural network is done with Python
using NumPy libraries. For CIFAR-10, training is done using
the TensorFlow framework. For ImageNet, we use pretrained
weights [30] obtained with the Caffe framework. In all cases,
a softmax function and cross-entropy loss are used during
training. Adam optimizer was used for better convergence,
and dropout was used in the MNIST and CIFAR-10 cases to
mitigate overfitting. For inference, softmax is no longer needed
and replaced by a hardmax function.

Fig. 2 shows the results of these simulations. It plots the
validation accuracy obtained for the three networks, as a
function of the weight BER. Each simulation was repeated five
time, and the results were averaged. In the case of ImageNet,
we present both the Top-5 and Top-1 accuracies.

Interestingly, at BER up to 1074, no effect on neural
network accuracy is seen: the network performs just as well as
when no error is present. As ST-"MRAMs can achieve BERs
of 106, [1], [2], this shows that they can be used directly,
without ECC, for image recognition tasks. BERs of 10~2 also
have practically no effect (the Top-5 accuracy on ImageNet is
reduced from 69.7% to 69.5%). At a BER of 0.01, the perfor-
mance starts to decrease significantly. The more difficult the
task, the most substantial the performance reduction: MNIST
accuracy is reduced from 98.3% to 98.1%, CIFAR-10 accuracy
is reduced from 87.65% to 86.9%, ImageNet Top-5 accuracy
is reduced from 69.7% to 67.9%. These results highlight the
inherent error correction capability of neural network, which
originates in their highly redundant nature. It should be noted
that these results could be further enhanced if one knows in
advance the BER at inference time, by incorporating weight
errors during training [23].

III. SAVING ENERGY BY ALLOWING MORE ST-MRAM
BIT ERRORS

The results from section II suggest that ST-MRAMs can
be used in a BNN with a BER much higher than the usually
targeted 10~°, without error correction. We now investigate the
benefit that increasing the BERs can have in terms of energy
consumption, based on physical modeling of ST-MRAM cells.
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Fig. 3. Programming circuit for magnetic tunnel junctions.
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ST-MRAMs are based on magnetic tunnel junctions (MTJs),
nanodevices composed of stack of various materials. These
materials implement two nanomagnets (reference and free
magnet), separated by an oxide tunnel barrier. The reference
and free magnet may have either parallel or anti-parallel
magnetizations, which constitutes the memory state of the
device. Due to the tunnel magnetoresistance (TMR) effect,
a magnetic tunnel junction exhibits different resistance values
in the parallel (Rp) or antiparallel (Rap) states. The TMR
parameter is defined by:

Rap — Rp
TMR = ——.
Rp

Due to the spin transfer torque effect, the state of a magnetic
tunnel junction can be switched by applying positive or
negative electrical currents to it. Unfortunately, the physics
of spin torque switching is inherently stochastic [18], [31]-
[35], which is a source of intrinsic bit errors. The physics of
this phenomenon is now well understood. As a reasonable
approximation, spin torque switching may be modeled by
Sun’s model [36]. The mean switching time is given by:

Ve
V-V’
where 7y is a characteristic time, and V is called the critical
voltage of the junction. This equation is valid for voltages
significantly higher than V..

Many works have evaluated the statistical distribution of the
actual switching time of the junctions. Here, we use the model
proposed in [18]. The distribution of switching time ¢ is given
by the gamma distribution:

3)

4)

T =170

Pt exp ()
NOZ

For the skewness k, we use the value suggested in [18] k£ =
16.0 (corresponding to a relative standard deviation of 0.25),
and we take 0 = 7/k.

We assume that the magnetic tunnel junctions are pro-
grammed with the standard circuit of Fig. 3, which allows
applying positive or negative currents to the junction. In this
work, we propose to reduce the MTJ programming time
in order to reduce the required programming energy, while
increasing the BER. This has been identified as the most
efficient strategy to use MTJs as “approximate memory” in
[9], and here we look at the impact of this strategy on BNNSs.

In all results, the circuit is simulated using the Cadence
Spectre simulator, with the design kit of a 28 nm commercial
technology. The magnetic tunnel junction is modeled with a
Verilog-A model described in [9], parametrized with values
inspired by a 32nm technology using perpendicular magneti-
zation anisotropy [37], [38]. The diameter of the junctions is
32nm, the thickness of the free layer is 1.3 nm, its saturation
magnetization is 1.58 T/pug. The resistance area (RA) product
of the junction is 4Q-pm2, its TMR value is 150%, and its
critical voltage V. is 190 mV. The junctions are programmed
with a voltage of 2.0 x V.. In Monte Carlo simulations, we

fsw(t; k,0) = (5)



consider mismatch and process variations of the transistors,
as well as typical variations of MTJ parameters (5% relative
standard deviation on TMR and Rp [31]).

Fig. 4 presents the correspondence between BER and pro-
gramming energy using the circuit of Fig. 3. Two cases are
evaluated: considering only the intrinsic stochastic effects of
the MTJs (black curve), and adding the effects of transistor and
MT] variability (red curve). This curve confirms the existence
of an interplay between programming energy and BER.

Figs. 5 and 6 associate the results of Figs. 2 and 4 to
highlight the interplay between programming energy and BNN
accuracy for the CIFAR-10 task (Fig. 5) and ImageNet (Fig. 6).
The points with highest programming energy correspond to a
BER of 1076,

We see that on both tasks the programming energy can be
reduced approximately by a factor two with no impact on BNN
accuracy. This result is not only useful in terms of energy
efficiency. As the area of ST-MRAMs cells is dominated by
transistor and not MT1Js, this result means that we may be able
to use lower area cells for BNNs (with lesser drive current)
than for conventional memory applications. This strategy of
reducing programming energy if one accepts increased BER
is also applicable to other memory technology such as oxide-
based RRAM [23], even if the underlying physics of these
devices differ considerably from ST-MRAMs.
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Fig. 4. ST-MRAM programming energy per bit as a function of corresponding
BER, ignoring (black line) or taking into account (red line) CMOS and MTJ
device variations. Results obtained by Monte Carlo simulation.

IV. CONCLUSION

In this work, we saw that Binarized Neural Networks can
tolerate high bit error rates (up to 10~2) on their binarized
weights, even on difficult tasks such as ImageNet. This makes
them especially appropriate for in-memory hardware imple-
mentation with emerging memories such as ST-"MRAMs. Not
only can we use ST-MRAMSs without the use explicit error
correcting codes, but we can also program ST-MRAMSs with
reduced energy. Based on physical modeling of ST-MRAMs,

90 8

.§f.,—,gl—-——.‘l— » = e °
/

80F  w 1

/

70 // .
g

60 - |

50+ . L.

—a— No device variation

—e— With device variation B

CIFAR-10 Validation Accuracy

20 |
10}® ]
0.15 020 025 030 035 040 045

Programming Energy per Bit (pJ)

Fig. 5. Validation accuracy of the convolutional binarized neural network
trained on the CIFAR-10 dataset as a function of the ST-"MRAM programming
energy per bit, ignoring (black line) or taking into account (red line) CMOS
and MTJ device variations.
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Fig. 6. Top-1 and Top5 validation accuracy of binarized AlexNet trained on
the ImageNet dataset as a function of the ST-"MRAM programming energy
per bit, ignoring (black line) or taking into account (red line) CMOS and MTJ
device variations.

we showed that a factor two in programming energy can be
saved.

These results highlight that neural networks differ from
more traditional forms of computation. In a way that is
reminiscent of brains, which function with imperfect and
unreliable basic devices, perfect device reliability might not
be necessary for hardware neural networks.
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