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ARTICLE

The stability of multitrophic communities under
habitat loss
Chris McWilliams1, Miguel Lurgi 2, Jose M. Montoya 2, Alix Sauve3 & Daniel Montoya 2

Habitat loss (HL) affects species and their interactions, ultimately altering community

dynamics. Yet, a challenge for community ecology is to understand how communities with

multiple interaction types—hybrid communities—respond to HL prior to species extinctions.

To this end, we develop a model to investigate the response of hybrid terrestrial communities

to two types of HL: random and contiguous. Our model reveals changes in stability—temporal

variability in population abundances—that are dependent on the spatial configuration of HL.

Our findings highlight that habitat area determines the variability of populations via changes

in the distribution of species interaction strengths. The divergent responses of communities

to random and contiguous HL result from different constraints imposed on individuals’

mobility, impacting diversity and network structure in the random case, and destabilising

communities by increasing interaction strength in the contiguous case. Analysis of inter-

mediate HL suggests a gradual transition between the two extreme cases.
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Habitat loss (hereafter, HL) is one of the main threats to
biodiversity, driving both local and global extinctions of
species1. In his ‘empty forest’ hypothesis, Janzen first

remarked that, in addition to species extinctions, HL leads to the
‘most insidious type of extinction’: the extinction of ecological
interactions2. This has also been referred to as the ‘missed
component of biodiversity loss’ that accompanies or precedes
species extinctions3. This observation prompted research to
understanding the effects of HL on communities with particular
emphasis on species-interaction networks3–7. These studies show
that mutualistic and trophic networks respond differently to HL:
whereas mutualistic networks tend to break into smaller sub-
networks6 with lower nestedness (the degree to which the diets of
consumers are proper subsets of other, more generalist con-
sumers) and reduced interaction strengths8, trophic networks lose
modularity (the extent to which interactions occur more fre-
quently within modules than between modules) and increase in
interaction strength5. In all cases, both types of networks shift
towards structures that have shown to beget unstable community
dynamics9,10.

Such network changes are not a mere by-product of species
extinction caused by HL. For instance, host-parasitoid commu-
nities subjected to a gradient of habitat modification show
structural changes in their interaction network, i.e. lower even-
ness of interaction frequencies and ratio of parasitoid to host
species, without any significant modification in species richness11.
Similarly, empirical data on insect food-webs show that interac-
tion diversity declines faster than species diversity with HL12.
These observations raise an important question: do changes in
network structure precede species extinctions?

HL is a complex phenomenon. It entails the fraction of
destroyed habitat, but also several features of how the loss takes
place. Whether destroyed habitat patches are spatially-correlated
(contiguous HL) or are randomly distributed throughout
the landscape (random HL) is important, as this can influence the
mobility of individuals across the landscape and, in turn, the
encounter probability between potentially-interacting species.
Thus, the effects of HL on species interactions may depend on the
spatial patterning of HL, i.e. random vs contiguous. A number of
modelling studies have concluded that extinction thresholds—the
point at which species richness experiences an abrupt decline
following a disturbance—occur at higher fractions of HL when HL
is contiguous, as opposed to random loss13,14, because spatially-
correlated loss leaves larger areas of pristine habitat where species
can persist13. The differential effects of the type of HL are also
supported by empirical findings5,15. Therefore, the effect of HL on
interaction frequencies and thus on the stability of multitrophic
communities is likely to depend on the nature of HL.

Two major gaps exist in our understanding of how HL affects
ecosystems. Firstly, multiple types of interaction (e.g. trophic and
mutualistic) are rarely considered simultaneously16–21. Hence, we
know little about HL-induced changes that precede species
extinctions in communities with different architectures and
interactions types. Secondly, ecologists tend to focus on species
persistence, while HL is likely to affect other aspects of commu-
nity stability such as resistance, robustness or resilience22,23. Since
habitat alterations can modify the structure of interaction
networks6,11,12, and network structure can in turn affect its
stability10,24,25, we can expect that HL impacts the stability of
biological communities in the absence of species extinctions.
Wang and Loreau26 recently proposed a stability analogue to the
species–area relationship, suggesting that temporal variability of
population abundances scales inversely with habitat area27. Also,
empirical4 and theoretical25 studies suggest that variability may
increase in smaller fragments of habitat. Different mechanisms
have been suggested to explain such changes in temporal

variability at different spatial scales, including spatial averaging
over asynchronous response of species to environmental fluc-
tuations26, higher predation pressure25, and an increase in
interaction strengths4. Of these, only the latter has received
empirical support28, although in a context unrelated to HL.
Despite evidence on bivariate relationships between area and
stability, and between interaction strength and stability, it is not
clear how HL can affect the relationship between interaction
patterns and stability of multitrophic communities.

In this study, we conduct a systematic exploration of the
responses of hybrid communities (communities with both trophic
and mutualistic interactions) to different types of HL. We use an
individual-based model of community dynamics driven by bio-
energetics, spatial constraints, and species interactions. To
investigate community responses to HL beyond its effects on
species richness, we keep the number of species constant. We
specifically address three key questions:

Firstly, how does the stability of hybrid communities respond
to HL, and what mechanisms drive this response? We simulta-
neously investigate changes in network structure and temporal
variability in population abundances (CV population) and the
variability in species’ range areas (CV range)29—over a gradient
of HL. On one hand, we opt for CV population because there is
evidence that interaction strengths can be altered by HL5,8, which
we hypothesise to be associated with changes in variability. On
the other hand, HL can affect the mobility of individuals, which
may in turn affect the spatial range of species and, consequently,
the strength of interactions between species. Based on empirical
evidence28, we hypothesize that the impacts of HL on stability are
mediated by changes in the distribution of interaction strengths.

Secondly, do changes in stability differ between different types
of HL? We consider two types of HL (i.e. random and con-
tiguous) because they represent two extremes of spatial correla-
tion in the pattern of HL used in previous studies30–37, and
correspond to the two extreme cases of optimising land use (i.e.
land-sparing vs land-sharing38). While under land-sparing bio-
diversity is essentially concentrated into one or a few large habitat
fragments (i.e. the loss of habitat is contiguous), under land-
sharing it is distributed across the whole landscape but in a large
number of smaller, fragmented, patches of habitat—result of
random HL. To provide insight into the transition between the
two extreme cases, we further simulate an intermediate scenario
of HL halfway between random and contiguous loss. We hypo-
thesize that random HL will result in more spatially-fragmented
communities compared with contiguous HL, and that commu-
nities experiencing random HL will show stronger negative effects
on community structure and stability.

Thirdly, does the proportion of mutualistic to trophic inter-
actions influence community responses to HL? Recent studies
show that mutualistic interactions can either stabilize21,39 or
destabilize40 the temporal dynamics of undisturbed hybrid
communities; thus, although the sign of the effect is not clear, we
expect that the fraction of mutualism will affect how stability
responds under HL.

Our analysis indicates that changes in the structure and
dynamics of ecological communities are strongly dependent on
the spatial configuration of HL. Community responses to random
and contiguous HL emerge from different constraints imposed on
individual mobility patterns. Such differences impact diversity
and network structure in the random case, and destabilise com-
munities by increasing interaction strength in the contiguous
case. These effects are not associated with changes in network
structure, and are not qualitatively affected by the fraction of
mutualism. The response of communities under intermediate HL
lies in-between the random and contiguous HL, thus suggesting a
gradual transition between the two extreme cases.
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Results
Diversity and network structure. Changes in diversity and net-
work structure differed between random and contiguous HL
(Fig. 1). Under random HL, abundances became more evenly
distributed between species while the relative abundance of top
predators (RATP) decreased. Prey species became more vulner-
able, while predator species became more generalist in their diets.
Intermediate HL produced similar responses for some of these
metrics (e.g. distribution of abundances, RATP), yet the size of
the trend was generally weaker. However, changes in network
structure (i.e. species vulnerability and generality) were not
observed under contiguous loss of habitat. The contrasted
responses of network properties to random and contiguous HL
scenarios were independent of changes in the number of links,
which always decreased (due to reduced co-occurrence between
interaction partners), suggesting that the way links were lost from
the networks differed between HL scenarios. For some of these
properties (e.g. RATP), changes observed across the gradient of
HL were significant, however, the effect sizes were small (Sup-
plementary Fig. 10). A list and definition of the variables used to
describe the communities are provided in Table 1.

Interestingly, our results show that community responses across
the three HL scenarios were gradual, going from random through
intermediate and ending in contiguous loss (Fig. 2). This suggests
that the magnitude of changes experienced by communities due to
HL are predictable based on the degree of spatial autocorrelation
of the lost habitat. Redundancy analysis (RDA) revealed that
20.26% of the variability across replicates can be explained by HL
type. Furthermore, this RDA axis ordered community responses
to HL across a continuum from random to contiguous loss
(Fig. 2), which is consistent with a gradual transition.

Stability. Variability of population abundances grew with the
fraction of habitat lost under the contiguous loss scenario. This
response was strongly correlated with an increase in mean
interaction strength (hereafter IS) (Fig. 3c; R2CV= 0.54, R2IS=
0.64). Conversely, random HL produced the opposite response: a
decrease in temporal variability which correlated with reduced IS
(Fig. 3a; R2CV= 0.47, R2IS= 0.30). We also observed a clear
clustering of data points in IS—CV population space according to
the amount of HL. Points describing community responses to
small levels of random HL (40% loss or less) clustered towards

high IS and high CV population values, whereas we observed the
opposite for the contiguous loss scenario (Fig. 3, panels D and F).
This clustering exemplifies the contrasting effects of the different
HL types on variability and IS. Changes in the variability of
population abundances and IS for intermediate HL were in-
between those observed for the random and contiguous scenarios
(Fig. 3b; R2CV= 0.33, R2IS= 0.007), and the above clustering was
not clearly observed (Fig. 3b, e). On the other hand, the mean
coefficient of temporal variation in species range area (CV range)
decreased under random and intermediate HL but increased
under contiguous HL, suggesting various effects of fragmentation
on individual mobility and species range area (Fig. 1).

The role of mutualism. The fraction of mutualism did not
qualitatively alter the response of communities to HL (Fig. 1). All
variables responded consistently to HL for at least 9 out of the 11
fractions of mutualism studied. The only two exceptions were
nestedness and RATP, for which significant trends in changes
occurred only at two fractions of mutualism. However, in these
cases the effect sizes were small (Supplementary Figs. 9, 10).

In certain cases, the fraction of mutualism quantitatively
affected community response by altering the magnitude of the
effect (see colour scale in Fig. 1). In most cases this could be
attributed to inherent differences between communities prior to
HL (i.e. at HL= 0). Typically, communities with higher fractions
of mutualism had larger abundances in pristine landscape, but
this difference diminished across the HL gradient as all
communities tended towards extinction (Supplementary Fig. 8).
Similar reductions in the effect size across the HL gradient were
observed for RATP (Supplementary Fig. 10).

Routes to instability. The net effect of HL on stability was
opposite between HL types, with random loss causing a decrease
(standardised model coefficient: −0.279) and contiguous loss an
increase (0.312) in the temporal variability of populations. This is
because many of the hypothesized relationships between diver-
sity, network structure and stability (Supplementary Note 2)
differed in sign or strength between random and contiguous HL,
according to our linear models (Fig. 4, Table 2). Both random and
contiguous HL directly decreased CV population (−0.111 and
−0.080, respectively; Table 2). However, the total impact of HL
on CV population was mainly mediated through indirect effects
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that differed in sign between the contiguous and the random HL
(0.392 and −0.169, respectively; Table 2). This accounts for the
marked differences between HL scenarios observed in Fig. 1, and
reveals different major pathways through which HL affects sta-
bility of multitrophic communities (Fig. 4, Table 2). Intermediate
HL directly decreased CV population (−0.086), and its total effect
on stability was negative (−0.161).

Structural equation models (SEMs) therefore support our
expectation that the impacts of HL on the stability of multitrophic
communities are driven by changes in the distribution of
interaction strengths. We identified four variables (Links, RATP,
IS and CV range) mediating the effect of HL on stability. All four
were always net contributors to CV population (Table 2),
although the number of links had a much more pronounced
effect in the contiguous HL scenario than in the random one.
Under random HL (Fig. 4a), the strongest influence of HL on CV
population was mostly mediated by CV range (0.308).

Conversely, HL affected CV population mostly through IS alone
under contiguous HL (0.834, Fig. 4c), with a small negative
contribution to this effect mediated through CV range (−0.045).
The distribution of IS shifted to lower values under random HL,
whereas they became stronger under contiguous HL (Supple-
mentary Fig. 12). For intermediate HL, community response
patterns are closer to random than to contiguous loss, but the
standardised coefficients are significantly reduced (Fig. 4b).

Mobility patterns under habitat loss. Individuals explored a
larger portion of the landscape under contiguous HL as compared
with random or intermediate HL (Fig. 5). This was because of the
contrasting effect of HL types on the spatial configuration of the
remaining habitat: whereas contiguous loss compresses commu-
nities to smaller regions of habitat (Fig. 5d), random loss spatially
segregates these communities by exposing them to fragmentation

Table 1 List of variables to describe communities

Metric Definition

Diversity Number of species: with at least one individual present in the
landscape.

S

Number of individuals: N ¼ PS
i¼1 ni, where ni is the number of individuals belonging to species i.

Shannon index: measures evenness in distribution of species
abundances.

DShannon ¼ �PS
i¼1 ri log ri

� �
, where ri is the relative abundance of species i.

Shannon equitability: is the Shannon index, normalised to control
for number of species present.

EShannon ¼ DShannon
logðSÞ , where DShannon is the Shannon index defined above.

RATP: relative abundance of top predator species. RATP ¼ PP
j¼1 nj

� �
=

PS
i¼1 nj

� �
, where P is the number of top predator

species, i indexes all species, and j indexes top predators only.
Network Number of links: the number of links present in the realised

interaction network. (Presence defined as at least one interaction
event in the landscape during 200 time steps.)

L

Compartmentalisation: the degree to which species share
common neighbours across the network51.

C ¼ 1
S S�1ð Þ

P
j≠i

PS
i¼1 cij, where cij is the number of species with which

both i and j interact, divided by the number of species with which neither
i or j interact.

Nestedness: the extent to which specialist species interact with
subsets of the species with whom generalists interact40.

Calculated for the mutualistic sub-network only, using the NODF
algorithm52.

Generality: weighted quantitative generality53. Gq ¼
PS

k¼1
b:k
b::
nN;k , where b:k is the total amount of biomass going into

species k, and b:: is the total amount of biomass flowing through the
entire ecological network. nN;k is the number of species predated on by
species k. Here, the biomass flowing from one species to another was
calculated as the number of individuals of a given prey species eaten by
individuals of predator species k.

Vulnerability: weighted quantitative vulnerability53. Vq ¼
PS

k¼1
bk:
b::
nP;k , where bk: is the total biomass emanating from species

k. b:: is the total amount of biomass flowing through the entire ecological
network. nP;k is the number of predator species that feed upon prey
species k. Here, the biomass flowing from one species to another was
calculated as the number of individuals of prey species k eaten by a given
predator species.

Mean interaction strength (IS): average inter-specific interaction
strength (averaged over all interactions in realized network)

P
i≠j

bij
2ninj

, where bij is the total biomass flowing from prey species i to

predator species j—quantified here as the total number of individuals (or
fractions of it, in the case of plants) from species i eaten by individuals of
species j. This way of calculating interaction strengths quantifies the per-
capita effect of a predator species over its prey, and it is thus analogous
to Paine’s index and Lotka–Volterra interaction coefficients9,54. Hence,
these values allow to assess and understand community stability based
on the strengths of ecological interactions.

Stability CV population: mean coefficient of temporal variation in species
population abundances.

1
S

PS
i¼1

σ nið Þ
μ nið Þ, where μ ni

� �
and σ ni

� �
are the mean and standard deviation in

the abundance ni of species i over 200 simulation time steps.
CV range: mean coefficient of temporal variation in species
range area.

1
S

PS
i¼1

σ aið Þ
μ aið Þ, where μ ai

� �
and σ ai

� �
are the mean and standard deviation in

the range area ai of species i over 200 simulation time steps. The range
area of a species is defined as the area of the circle, centred on the
centre of mass of the species spatial distribution, that contains 95% of
the individuals belonging to that species.
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(Fig. 5b). Intermediate HL is halfway between these two extreme
scenarios (Fig. 5c), and this affects individual mobility patterns
accordingly (Fig. 5e). This difference in individual mobility is
associated with opposite changes in RATP, IS, CV range and CV

population (Figs. 1 and 4), suggesting that mobility patterns
influence those metrics.

Discussion
HL has major consequences for the stability of communities
within the remaining areas of habitat. Our model of a spatial
ecological network of trophic and mutualistic interactions sug-
gests that: (1) the type of HL strongly mediates changes in sta-
bility in terms of temporal variability of population abundances,
(2) changes in stability are largely driven by changes in the dis-
tribution of interaction strengths following area loss, and (3)
changes in stability are independent of the number of species and
the structural properties of the network of interactions. Our
analysis of three scenarios of HL suggests that community
responses are approximately gradual and predictable based on
degree of spatial autocorrelation of the lost habitat. In particular,
our results highlight a strong relationship between habitat area,
IS, and variability of multitrophic communities, which is con-
sistent with empirical studies linking strong interactions and high
variability in population dynamics9,28. It also suggests that the
reported relationships between habitat area, IS and stability are
generalizable to terrestrial communities of multiple species and
trophic and mutualistic interactions.

Changes in stability—the temporal variability in population
abundances—of multitrophic communities following HL are
associated with changes in a limited number of community
properties (Table 2, Fig. 1). However, the effects of HL on these
properties depend on the type of HL. Contiguous loss compresses
communities to smaller fractions of habitat where population
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variability increases without major changes in their structure.
Meanwhile, random loss of habitat fragments the landscape while
altering diversity, network structure and stability. This is con-
sistent with previous results showing that random HL has a larger
negative effect on communities than contiguous loss13,14, given
the more pronounced changes in diversity and network archi-
tecture under the former scenario.

Our results suggest that differences in community responses
are due to the different pathways through which HL affects the
stability of communities. In general, changes in population

variability are largely driven by changes in the distribution of IS,
either directly (contiguous loss) or indirectly (random and
intermediate loss). Further, the relationship between area loss, IS
and variability is independent of any change in network archi-
tecture as observed under random loss. However, contiguous HL
decreases variability by enhancing IS, while random HL does just
the opposite. These contrasting responses in variability result
from the different constraints that HL type—random vs con-
tiguous—imposes on the mobility patterns of individuals within
the remaining habitat. Such differences in individual mobility
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patterns scale up to the community level and explain the differ-
ences in RATP, IS, CV range and CV population under different
types of HL.

We found that temporal variability of populations increases with
habitat area. The increase in temporal variability following con-
tiguous HL is consistent with empirical observations on stability
(variability)—area relationships in biological communities26,27.
Our results give support to two mechanisms responsible for such
reduction in stability under contiguous HL. Firstly, by restricting
communities to smaller regions of space that have no major bar-
riers to motion and dispersal, HL increases the encounter prob-
abilities between interacting partners and shifts IS distributions to
higher values. The negative effect of strong interactions in tem-
poral variability reported here has been observed in mesocosm
experiments28. Secondly, under contiguous HL the relative abun-
dance of top predator populations remained nearly constant, and
the SEMs revealed that the resulting predation pressure con-
tributed to the loss of stability. This is consistent with the spatial-
compression mechanism proposed by McCann et al.25 in a
metacommunity context, whereby pressure from mobile predators
is a main driver of local variability.

Contrary to contiguous HL, random HL generates more frag-
mented communities in space by creating barriers to motion

which constrain individuals’ mobility within the remaining
habitat. This limitation on mobility at the individual level has
profound consequences for community structure and dynamics.
Firstly, random HL has a larger impact on diversity and network
structure when compared with contiguous HL. This is illustrated
by species abundances becoming more evenly distributed, pre-
dator abundance decreasing, and vulnerability and generality
decreasing and increasing, respectively. Secondly, low mobility
reduces encounter rates between individuals and pushes com-
munities towards lower IS, which in turn increases the variability
of their populations. Paradoxically, communities become less
variable over time under random HL. However, this does not
mean that random HL is beneficial for biological communities.
Rather, these communities are structurally simpler and more
fragmented/disconnected, and undergo extensive changes, such as
the collapse of predator populations, which have been associated
with higher local variability25.

Random and contiguous loss of habitat thus relate to two
different hypotheses on community responses to such dis-
turbance: spatial compression of ecological networks and the
‘empty forest’ hypothesis. Actually, each type of HL represents
one extreme of spatial correlation in the pattern of HL that
corresponds to the two extreme cases of land use optimisation:

Table 2 Direct and indirect effects sizes of predictor variables on stability (CV population)

Predictor Random Intermediate Contiguous

Direct Indirect Total Direct Indirect Total Direct Indirect Total

HL −0.111 −0.169 −0.279 −0.086 −0.075 −0.161 −0.080 0.392 0.312
Links −0.029 0.046 0.017 −0.041 0.253 0.212 −0.154 0.554 0.400
RATP — 0.152 0.152 — 0.132 0.132 −0.116 0.305 0.189
IS 0.145 0.308 0.452 0.143 0.115 0.258 0.878 −0.045 0.834
CV range 0.705 — 0.705 0.504 — 0.504 0.295 — 0.295

Effects sizes are given by standardized model coefficients (Fig. 4), and indirect effects are calculated by multiplying coefficients along the major pathways. Significant models were selected based on AICc

and Fisher’s C of the overall path model. Then each individual path is evaluated for significance, excluding those that have a p-value > 0.05 (F-test). Omitted values (−) are either not significant (p-value
> 0.05) or not retained in the model structure.
HL habitat loss, RATP relative abundance of top predators, IS mean interaction strength, CV range coefficient of temporal variation in species range area
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land-sparing and land-sharing38. Their joint study allows to grasp
the transition from a scenario where HL and fragmentation shape
the resulting communities (random HL—land-sharing) to a sce-
nario where the effects of area loss alone (contiguous HL—land-
sparing) determine the community responses to HL. Under land-
sparing, biodiversity is concentrated into one or a few large
habitat fragments and communities suffer from spatial-
compression mechanisms that lead to higher IS and higher
population variability. In contrast, under land-sharing biodi-
versity is distributed across the whole landscape but in a large
number of smaller, fragmented patches of habitat; this has strong
effects on the diversity and network structure of the fragmented
communities. The strict dichotomy of land-sparing vs land-
sharing has been criticised41, and most land-use management
probably lies in-between these two extremes, so that real-world
communities are exposed simultaneously to the effects of HL and
fragmentation. Such ‘middle’ or halfway responses to HL are
observed for the intermediate scenario, suggesting a gradual
transition of community responses to HL where elements of the
spatial compression of communities as well as the ‘empty forest’
hypotheses are in place.

To analyse community responses to HL beyond its effects on
species richness, we kept the number of species constant by
having high immigration. Additional analyses with lower immi-
gration rates showed that, if immigration is constrained, HL
isolates communities by preventing colonizers to invade42, and
this eventually causes loss of species within habitat fragments.
Importantly, despite species extinctions, the general trends in IS
and the temporal variability of population abundances were not
qualitatively affected by lower immigration rates (see Supple-
mentary Note 4). Collectively, these results suggest that, in order
to understand community responses to HL, it is fundamental to
understand the type of HL as it can affect communities in diverse,
sometime opposite, directions.

Two additional results emerge from our model. Firstly, the
fraction of mutualism did not qualitatively affect the response of
hybrid communities to HL. Although the magnitude of effect
sizes differed, the stabilizing effect of mutualistic interactions
revealed in recent theoretical studies21,39 was not detected here,
nor the destabilizing influence of mutualism30. However, we must
take this result cautiously. On one hand, our study and others
measure stability in different ways—we focused on population
variability (as in refs. 21,26), while others looked at the stabilizing
role of mutualisms by focusing on persistence or asymptotic
resilience10,40,43,44. Despite stability metrics can be correlated in
undisturbed communities22, these correlations can break apart
under disturbances (e.g. HL) and comparisons between different
stability components are increasingly difficult to establish for such
disturbed communities. On the other hand, the fraction of
mutualism in our study refers to the proportion in relation to
herbivore links in the second trophic level rather than to the
whole set of interactions in the community (e.g. random dis-
tribution of interactions across the network39). A 100% of
mutualism does not mean that all interactions in the community
are mutualistic (when all trophic interactions are replaced by
mutualistic interactions the average fraction of mutualism is 24.29
(sd= 6.68%); this is representative of recent studies that consider
the meta-web of species and interactions20, although numbers
may vary depending on habitat type18), and therefore we cannot
rule out the possibility that mutualistic interactions at or between
other trophic levels have a significant (de)stabilizing effect on
community stability.

Secondly, we did not observe any relationship between network
structure and variability. This is surprising as studies of com-
munities with single interaction types have found that mutualistic
and trophic communities respond differently to HL, especially in

terms of nestedness and compartmentalization5,6. Yet, neither
property changed consistently under any HL scenario. Similar
results have been reported in recent studies of non-perturbed
hybrid communities19,21, suggesting that the lack of relationships
between such network patterns and temporal variability is not
derived from perturbations per se, but from the simultaneous
consideration of trophic and mutualistic interactions.

Our approach has several caveats. Firstly, we mainly focused on
two extreme scenarios of HL. Despite these two types of HL were
chosen to represent the land-sparing vs land-sharing framework
and to make results comparable with most studies on HL, an
exploration of a wider range of HL scenarios would be relevant
from a theoretical perspective. It would allow investigating the
transition from one regime to the other and to more specifically
disentangle the effects of fragmentation on biological commu-
nities. The results for the intermediate scenario, however, are
consistent with a gradual transition from random to contiguous
loss, as the response of diversity, network and stability metrics lies
halfway between these two extreme cases. Secondly, this study
follows recent claims to integrate trophic and mutualistic inter-
actions simultaneously, but other types of interactions exist—
namely competition, commensalism, amensalism—that may be
affected by HL, e.g. inter-specific competition might increase
along the gradient of HL. Although competition for space is
implicitly considered in our model, future studies investigating
hybrid communities would benefit from including additional
types of interaction. Thirdly, our model depicts intensively-
managed terrestrial ecosystems where destroyed habitat is
unsuitable for biodiversity. However, there are other types of
ecosystems (e.g. aquatic) and other management scenarios (e.g.
organic farming) with different characteristics that allow certain
species to inhabit fragmented habitats. In these cases, the effects
of HL on biological communities may differ from the ones
reported here. Our model does not consider differences between
species in terms of their home ranges (HL would more strongly
affect top predators as their home ranges are larger) or habitat
preferences (edge vs core species45,46), nor it considers intra-
specific variability in immigration rates, which can have a strong
effect on communities47. Although the outcome of immigration
in our model can vary among individuals (Supplementary Note 1)
and varying immigration rates did not significantly alter our main
results (Supplementary Note 4), future studies should address
inter- and intra-specific differences in demographic parameters.
Finally, because there is no experimental data to inform all
parameters in the model, we selected values that produced rea-
listic community patterns (e.g. log-normal rank-abundance dis-
tributions, exponential degree distributions; Supplementary
Figs. 13, 14) and stable dynamics21, and that reflected ecological
realism (e.g. assimilation rate higher for plant than animal bio-
mass). Sensitivity analysis shows that our results are robust to
variations in the value of each model parameter (Supplementary
Note 3), yet future extensions of this and other individual-based
models should account for experimentally-tested values as they
become increasingly available. Despite these limitations, our
model is a very useful step towards a better understanding of the
effects of perturbations on several levels of biodiversity, and it
reveals important mechanisms of how HL affects the relationship
between interaction patterns and stability of multitrophic ter-
restrial communities.

Our study aligns with recent efforts to assess changes in eco-
logical communities beyond species extinctions3,48. By control-
ling the number of species, we were able to disentangle the effect
that HL has on community structure from its effect on com-
munity composition. HL not only reduces the abundance of
species, but may also lead to changes in several aspects of the
structure and stability of communities prior to extinctions. Our
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work relates with research exploring changes in local diversity
following global change, currently under a heated debate49. We
suggest that, irrespective of a positive, negative or neutral change
in local diversity, the type of HL changes the structure and
dynamics of ecological communities in very different, contrasting
ways. Finally, our findings suggest that conservation efforts
focusing on alleviating the effects of loss of natural habitats would
benefit from (i) including several aspects of community structure
and stability, in addition to species persistence, into assessment
and management plans, and (ii) integrating the type of HL into
conservation planning, as it can strongly determine the response
of communities.

Methods
Individual-based model. We use an individual-based, bio-energetic model
developed to simulate dynamics of ‘hybrid’ ecological communities in a spatially-
explicit context21, and extend it to investigate the response of communities to HL.
We use the term ‘hybrid’ not as a description of a modelling framework (e.g.
models with both deterministic and stochastic components), but as a definition of
communities combining trophic and mutualistic interactions. In this section, we
present the key features of the model. Full model specifications can be found in
Supplementary Note 1.

Several reasons justify our choice of an individual-based model (IBM) over
ordinary differential equations (ODEs). Firstly, IBMs are better suited to investigate
different HL scenarios more thoroughly given their spatially-explicit nature. The
IBM used here accurately describes (in terms of rank-abundance and degree
distributions21) the structure and dynamics of non-disturbed communities.
Secondly, IBMs constitute more intuitive modelling frameworks when one is
interested in scaling up processes happening at the individual level (e.g. individual
movement across the landscape) to patterns at the community level (e.g. network
properties, community stability). A third reason to choose IBMs is that we want to
include variability at the individual level in our model, so that every individual can
potentially be at different physiological or bio-energetic states at any given time
step or location. This will turn affect its demographic activity (e.g. reproduction,
death, etc). In addition, technically, it is virtually impossible to model the dynamics
of thousands of individuals with ODEs, as this would require a very large number
of equations, and analytical solutions would be elusive. IBMs are better suitable to
include such elements, and therefore we prefer them over ODEs to accomplish the
specific goals of this study.

The model does not explicitly consider any spatial scale. This is because our
goal is not to represent faithfully a particular terrestrial community or specific
ecosystem, but to investigate the response of a standard/ideal community to the
loss of its habitat. Defining spatial units more specifically is highly dependent on
the system studied, and would make model parameterization much more complex.
For similar reasons, the model does not consider a specific temporal scale. The
model allows consumers to always take resources, and this is a realistic assumption
given that all individuals spend energy in each time step according to bio-
energetics. This assumption of the model implies that the length of a time step can
be seen as the time at which an individual spends a sufficient amount of energy as
to feel the need to find more resources.

Community dynamics under habitat loss. The model is fed with an interaction
network which defines the potential interactions between pairs of species in a
simulated ecosystem. This network is generated in two stages. Initially, the niche
model50 is used to produce a food-web displaying structural features similar to
those observed in nature. Subsequently, a given fraction of the trophic links
between primary producers and second trophic level species are turned into
mutualistic links in order to obtain an ecological network with trophic and
mutualistic interaction types. This is equivalent to, for example, replacing some
herbivorous interactions with pollination interactions. Therefore, our networks
reproduce some of the most studied mutualistic interactions, such as seed-dispersal
and plant–pollinator interactions, embedded in larger ecological networks. The
fraction of links thus replaced is referred to as the fraction of mutualism. Varying
the fraction of mutualism allows us to determine the role of mutualistic interac-
tions in mediating community responses to HL. Although we could have included
mutualistic interactions in a configuration that is more typical of mutualistic
networks (e.g. binary nestedness pattern), we prefer to be consistent when gen-
erating the full network of species interactions. Further, the niche model describes
trophic niche occupancy between consumers and resources along a resource axis
and successfully generates network structures that approximate well the central
tendencies and the variability of a number of food-web properties. Because it
arranges consumers and resources along a resource axis, the niche model can be
applied to other types of consumer–resource interactions (aside from antagonistic
predator–prey interactions)50.

Once the interaction network is established, community dynamics driven by
bio-energetics, spatial constraints, and species interactions are then simulated
through time using an individual-based model21. Our model departs from others in

the following ways: (i) individuals within species have different extinction rates not
dependent on stochastic processes (i.e. they are independent from any pre-defined
probability), which eliminates the need to define fixed extinction probabilities for
all species in the community, (ii) more complex demographic processes such as
reproductive ability and immigration are taken into account, (iii) bio-energetic
constraints, such as energy transfer efficiency and energy loss at the individual
level, drive population dynamics of species in the community. Stochasticity is
modelled based on pre-defined probabilities; these probabilities at every time step
are obtained using a pseudorandom number generator provided by Python. The
model has been demonstrated to generate in silico communities that quantitatively
resemble empirical ones in terms of rank-abundance and network degree
distributions (Supplementary Figs. 13, 14)21. To disentangle the effects of HL from
those associated with changes in species richness, we control for the number of
species by including a high, yet realistic, rate of immigration from a regional species
pool. This mechanism is similar to the ‘rescue effects’ common to metacommunity
modelling42. Therefore, the model is representative of communities open to
immigration, rather than closed communities, such as remote island systems. The
dependence of model outcomes on immigration rates is tested with sensitivity
analysis (Supplementary Note 4).

The landscape consists of a homogeneous squared two-dimensional lattice
(200 × 200 cells) on which individuals move around and interact subject to bio-
energetic constraints. To avoid edge effects, the lattice has periodic boundary
conditions such that the topology of the landscape is toroidal, i.e. the sides of the
lattice are connected, thus creating a continuous space. Each lattice cell has a space
for an inhabitant and a visitor, such that a cell may contain at most two species.
Basal species (plants) may only occupy empty, available cells, whilst all other
species may occupy both empty cells and cells already occupied by a plant. For
simplicity, available, non-destroyed cells do not differ in habitat quality. Initial
conditions are defined randomly (and independently for each replicated
simulation) via the following procedure: for each cell in the landscape an individual
belonging to a randomly selected basal species is placed in the inhabitant space, so
that all cells contain a plant individual. Then individuals from randomly selected
non-basal species are placed in the visitor space of randomly selected cells, until the
desired fraction of the landscape (given by parameter OCCUPIED CELLS, see
Supplementary Note 1) is filled with animal individuals. Simulations are then run
following the local demographic and interaction rules described in section 1.1,
Supplementary Note 1.

During each simulation, undisturbed communities with stable dynamics are
first generated. Once a stable community is obtained, the landscape is perturbed by
destroying a specified fraction of the lattice cells (the intensity of HL), in successive
steps (% of HL), according to one of two HL scenarios—random or contiguous—
which represent the two extreme cases of optimising land use—land-sparing vs
land-sharing38. This also allows our model results to be comparable with other
results, as previous studies have modelled random30–32, contiguous HL33–35, or
both13,36,37. Disturbed communities at each fraction of HL are let to evolve through
transient phase. Subsequently, the model computes the metrics for that given
fraction of HL. Under the random scenario, lattice cells to be destroyed are chosen
uniformly at random from the set of remaining cells. Under the contiguous
scenario, an initial seed cell is chosen at random, from which the loss proceeds
radially outwards to produce a contiguous region of destroyed habitat. We further
consider a third intermediate scenario that corresponds to a degree of spatial
correlation of 0.5 (halfway between random and contiguous loss). Once a lattice
cell is destroyed, it can no longer harbour any individuals or be colonized. Thus,
this represents intensively-managed landscapes where biodiversity is prevented
from perturbed fragments. Model simulations consist of 5000 time steps or updates
of each cell in the landscape according to the rules of engagement between
individuals (Supplementary Note 1). For each HL scenario, we ran simulations at
11 different fractions of mutualism (range: 0.0–1.0), and 10 different intensities of
HL (range: 0–90%), with 25 replicate simulations for each pairwise combination of
fraction of mutualism and HL, yielding a total of 2750 simulations. Each simulation
is initiated with a unique random placement of individuals for each species from
the community, and a uniquely generated interaction network structure.

We expected that the two extreme HL types to have contrasting effects on the
spatial configuration of the remaining habitat, and this may in turn influence
individual mobility across the landscape. Individual mobility therefore reflects the
realized effects of fragmentation, with individuals exploring a smaller fraction of
the landscape when fragmentation is high and vice versa. To investigate the effects
of HL type on the average movement pattern of individuals, we run 100 additional
simulations for 5000 time steps with a single individual belonging to a consumer
species, at each level of HL and for all types of HL. We quantify individual mobility
as the average fraction of the pristine landscape cells visited during the
simulation time.

Community responses to habitat loss. To characterize communities and study
their responses to HL we quantify three categories of community metrics
describing diversity, network structure and stability properties. We list them below
and give full definitions in Table 1.

Diversity. We measure total abundance, and different features of the species
abundance distributions. We use the Shannon diversity and equitability indices to
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measure how evenly abundance is distributed between species, and quantify the
relative abundance of top predators (RATP) as an indicator of the density of top
predator populations.

Network structure. The realized network of interactions is evaluated at the end of
each simulation by tracking the interaction events between pairs of individuals
during the final 200 time steps of each simulation. We do this to avoid misleading
results due to transient dynamics (the last 200 time steps are considered to be
‘stable’). We measure several network properties which are commonly used in
ecological networks studies: number of links (i.e. realized interactions between
pairs of species), compartmentalization51 and nestedness52. We also account for
changes in interaction frequencies (i.e. number of recorded encounters between
individuals of two potentially-interacting species) which are not reflected on
topological modifications by evaluating properties such as the quantitative gen-
erality (Gq) and vulnerability (Vq)53. In addition, we compute summary statistics of
interaction distributions by calculating the mean inter-specific interaction strength
between species (IS)54, since there is strong evidence that interaction strengths are
related to population variability28.

Stability. We quantify two stability metrics during the final 200 time steps of each
simulation (to avoid transient phase): (i) temporal variability, a metric that has
been extensively used in both the theoretical and empirical literature23,55, and
measured as the average (across species) of the coefficient of variation in popu-
lation abundances through time (CV population); and (ii) area variability, pro-
posed by Lurgi et al.21, measured as the average of the coefficient of variation in
species range area through time (CV range). On one hand, we opt for CV popu-
lation because there is evidence that interaction strengths may be altered by HL
which we hypothesise to be associated with changes in variability. Although
asynchrony in the abundance or biomass fluctuations across trophic groups can
contribute to stabilize ecosystem functioning56, it may mask inherent variability
when adding population time series to obtain the community biomass dynamics.
Therefore, we consider the use of species level variability is more appropriate than
community level variability in this multitrophic context (see ref. 55 for clarification
of these two concepts). On the other hand, HL affects individual mobility, which
may affect the spatial range of species and the strengths of species interactions; CV
range captures the average variability of species’ range areas in the landscape. It is
worth noting that the response of CV population and CV range to HL may differ;
for instance, a change in the population density of species may alter its spatial
range without an associated change in its abundance.

Statistical analyses and robustness. To test how communities respond to HL, we
fit linear models to the relationship between HL and each of the response metrics
described above. These models are fitted using the package statsmodels in Python57.
Variables that respond non-linearly to HL were transformed before linear fitting
(these transformations are specified below where relevant). From each significant
linear model, we obtain estimates of the direction and magnitude of the response
across the HL gradient. We refer to the magnitude of the response as the ‘effect’
size. In order to further assess differences of community responses across HL types,
redundancy analysis is performed on the standardised (scaled to zero mean and
unit variance) values of all response variables except for number of species, com-
partmentalisation and nestedness (due to their weak or null response to HL). Thus,
redundancy analysis is performed over a number of individuals, Shannon diversity
and equitability, number of links, generality, vulnerability, RATP, CV population,
CV range and mean interaction strength (IS) using HL type as the constraining
variable. Only community responses to HL fractions equal or larger than 50% (i.e.,
between 50 and 90% habitat lost both inclusive) are included in the analysis to
capture strong responses across the measured variables and thus highlight the
differences across HL types. HL type (random, intermediate, and contiguous) is
used as the constraining factor in the redundancy analysis. This analysis is per-
formed using the rda function from vegan’s R library.

Due to the large array of variables measured, and the scope for collinearity
amongst them, we use piecewise structural equation models58 (SEMs) to provide a
more mechanistic understanding of the trade-offs, feedbacks, and other
interactions among diversity, network structure and stability. The focus of the SEM
analysis is on disentangling the potential mechanisms driving changes in stability
under HL. Since the results from the SEMs are not qualitatively affected by the
fraction of mutualism (Supplementary Note 2), we combine the simulation results
for all fractions of mutualism into a single dataset, effectively increasing the
number of replicate simulations. The full details of the methodology and
underlying hypotheses for the SEM analysis are given in the Supplementary Note 2.

The parameter values used come from Lurgi et al.21, where this model is
introduced and shows that simulated communities display patterns similar to those
observed in real communities. Some of these quantitative patterns include log-
normal rank-abundance distributions and exponential degree distributions
(Supplementary Figs. 13, 14). Certain parameter values are also based on ecological
realism, e.g. assimilation rate is higher for plant biomass than animal biomass
(HERB EFFICIENCY > EFFICIENCY TRANS). However, in order to explore model
robustness to the variability of parameter values, we perform a sensitivity analysis
using latin-hypercube sampling59. In general, our results are robust to variations of

±20% in the value of each model parameter. The details of model parameters and
the sensitivity analysis are provided in Supplementary Note 1 and 3.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The simulation code that supports the findings of this study is available at https://github.
com/cm1788/Stability-of-multitrophic-communities-under-habitat-loss (https://doi.org/
10.5281/zenodo.2634231).
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