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Alternating TLM symmetrical condensed
node

S. Le Maguer and M.M. Ney

A new alternating scheme for the transmission line matrix (TLM)

method is proposed. As shown, this scheme is no longer based on the

alternate use of TLM cells in the computational volume, but rather on

an alternating process in the cell itself. This feature allows easy

treatment of boundaries, which is the usual drawback of alternating

schemes.

Introduction: The transmission line matrix (TLM) method is a well-

known numerical technique for electromagnetic field simulations.

Using a time and space discretisation, this method allows a wideband

characterisation in a single run. Since Johns’ paper [1], that intro-

duced the symmetrical condensed node (SCN), much effort has been

put into decreasing the computational cost. A major insight in

memory reduction resulted from the alternating-TLM scheme

(ATLM) [2]. This model allows the use of any type of TLM node

(SCN [1], HSCN [3, 4] or SSCN [5]) while decreasing the computa-

tional effort by a factor of two. Unfortunately, this technique has a

major drawback in that boundaries have to be placed at the centre of

the TLM cell. This feature breaks the generality of the TLM scheme

since special nodes have to be created for each type of boundary.

Later, the ATLM scheme was associated with rotated-TLM

(RTLM) [6], to yield the AR-TLM scheme [7] that leads to a further

50% computer-effort economy. However, boundary treatment in some

configurations has not yet been solved.

In this Letter, a new alternating TLM scheme is proposed. Unlike

usual alternating TLM techniques, it is no longer based on the alternate

use of TLM cells in the computational volume, but rather on an

alternating process in the cell itself. To this purpose, an alternate

direction implicit (ADI) [8] discretisation of Maxwell’s equations is

used. As shown, numerically and theoretically, the alternating scheme

obtained is equivalent to the SCN scheme. Furthermore, memory

expenditure is divided by a factor of two and boundary conditions

are treated according to the standard TLM algorithm.

Fig. 1 Two sub-cells

a Step 1
b Step 2

Scheme derivation: Let us start with the ADI scheme (see [8] or [9]).

It is a two-step algorithm, which usually leads to an implicit method

by approximating Maxwell’s equations in a convenient manner. These

two sub-steps are equivalent to one iteration (time step: Dt) of a

classical scheme. Let us describe the ADI approximation for the Ex

component of the field in a Cartesian grid:
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where ‘n’ is the time-step index. The approximation of (1) (which

corresponds to step 1) and (2) (step 2) can be derived in a TLM form

using the technique proposed by Peña and Ney [10]. In the present

Letter the technique is developed without a stub (i.e. a cubic cell in an

homogenous medium at maximum time-step). Equations (1) and (2)

lead, respectively, to the following expressions of the Ex field compo-

nent at the centre of the cell:

DlEn�ð1=4Þ
x ¼ ða2 þ a9Þ

n�ð1=2Þ ð3Þ

DlEnþð1=4Þ
x ¼ ða1 þ a12Þ
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where Dl is the space discretisation. a denotes an incident voltage and

the subscript is the number of the port with respect to Johns’ notation

[1]. Furthermore, reflected voltages (denoted b) are obtained from the

field at the centre of the cell. For instance, at the end of step 2 one can

obtain the following equation:
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where Z0 is the impedance of free space. From (3), (4) and (5), it can be

observed that the classical 12-port SCN degenerates in a pair of six-port

nodes. These nodes are used one after the other in the iterative scheme.

This implies that memory storage is divided by a factor of two.

Furthermore, the scheme remains explicit and boundary conditions

are treated as is usually done with TLM (using voltage reflection

coefficients). The algorithm is summarised in Fig. 1, where the two

six-port nodes are illustrated.

Equivalence between new scheme and SCN: Proving that fields at the

centre of the cell and reflected voltages have the same expression as

that of the SCN can show the equivalence between the new scheme

and the SCN algorithm. Let us first examine the field at the centre.

Since the alternating scheme is a two-sub-step algorithm where field

components at the centre of the cell are calculated at [n� (1=4)]Dt for

step 1 and at [nþ (1=4)]Dt for step 2, the equivalent field component

with SCN is evaluated at nDt. Thus, from (3) and (4):
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From (6), it can be observed that it is the exact expression of the

component calculated with SCN (compare with expressions in [1])

except that incident voltages are staggered in time. Furthermore, if one

takes into account that:

Z0DlH
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it is obvious using (5) that:
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which is the exact expression of this reflected voltage as extracted from

the usual SCN scattering matrix (see [1]). As a result, the schemes are

equivalent except that voltages are staggered in time. This equivalence

has to be confirmed numerically.

Fig. 2 Longitudinal magnetic field component Fourier transform magni-
tude obtained in hollow cavity; comparison between new alternating
scheme and SCN-TLM

To this purpose, the new TLM scheme is tested in the case of a

hollow metallic cavity composed of a rectangular waveguide

(20� 10 mm cross-section) short-circuited at each extremity (total

length: 50 mm). The TE10m modes are excited and, after a 4000

iteration simulation, Fourier transform is performed. The results are
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shown in Fig. 2 where they are compared with an SCN-TLM simula-

tion. The space discretisation used in the simulations is Dl¼ 10�3 m.

As can be observed, the staggered nature of the new algorithm does not

appear to add any numerical dispersion compared to the SCN scheme.

This tends to confirm that both schemes are numerically equivalent.

Conclusion: A new alternating TLM scheme (ATLM) is proposed. It

was developed without a stub (i.e. cubic cell in vacuum at maximum

time-step). As a result, the new scheme is composed of two nodes

used one after the other in the iterative scheme. Consequently, the

memory storage is divided by a factor of two (six voltages compared

to 12 with SCN). Numerical results and theory show the perfect match

between the new scheme and classical SCN-TLM. Furthermore, the

new scheme is explicit and boundary conditions are treated as in

standard TLM. This last point is a major advantage compared to

previous alternating schemes. Future work will concern extension of

this algorithm to general SCN situations (i.e. any medium and any

time-step) while keeping its explicit form.
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