Formation and removal of disinfection by-products in a full scale drinking water treatment plant: supporting information

Henry MacKeown¹, Junias Adusei Gyamfi^{1,2}, Klaas Schoutteten^{3,4}, David Dumoulin¹, Liesbeth Verdickt⁴, Baghdad Ouddane¹, Justine Criquet^{1*}

¹Univ. Lille CNRS, UMR 8516 – LASIR, Equipe Physico-Chimie de l'Environnement, F-59000, Lille, France.

²Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, PO Box 5048, GA Delft, 2600, The Netherlands.

³Ghent University, Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Coupure Links 653, 9000 Gent, Belgium.

⁴De Watergroep, Vooruitgangstraat 189, 1030 Brussels, Belgium.

*Corresponding author: justine.criquet@univ-lille.fr

Table S1: Information relative to the campaigns performed on the drinking water treatment plant.

Campaigns	A	В	С
Date	10th of April 2018	24th of June 2019	5th of June 2019
Analysis of treated waters	х	x	Х
DOC characterization	Х	Х	Х
DBP Formation potential	Х	Х	
THMs	х	X	х
HAAs			Х
Bromide, iodide, iodate	Х	х	Х
Total iodine		Х	

Table S2: Analytical figures of merit for the determination of HAAs and THMs by HS-trap GC-MS in SIM mode.

Compound	Formula	Limit of quantification (ng L ⁻¹)	Retention time (min)	m/z *		
Irinalomethanes	T					
I FIVI4						
(chloroform)	Chers	3	1.05	47, <u>03</u> , 03		
Bromodichloromethane	CHBrCl₂	3	2.73	83, <u>85</u> , 129		
Dibromochloromethane	CHBr₂Cl	3	4.17	127, <u>129</u> , 131		
Tribromomethane (bromoform)	CHBr ₃	3	6.18	171, <u>173</u>		
	I-T	HMs				
Dichloroiodomethane	CHCl₂I	0.4	4.75	83, <u>85</u> , 127		
Bromochloroiodomethane	CHBrCll	1	7.21	<u>127</u> , 129, 131		
Dibromoiodomethane	CHBr ₂ I	0.2	10.38	171, <u>173</u> , 300		
Chlorodiiodomethane	CHCII ₂	0.5	11.42	<u>175</u> , 177, 302		
Bromodiiodomethane	CHBrl ₂	0.8	14.66	219, <u>221</u> , 348		
Triiodomethane (iodoform)	CHI₃	2	17.2	140, <u>267</u> , 394		
Haloacetic acids			I			
	н	AA5				
Chloroacetic acid	CICH ₂ COOH	50	3.51	<u>108</u> , 79, 59		
Bromoacetic acid	BrCH ₂ COOH	25	4.67	<u>152</u> , 93, 95		
Dichloroacetic acid	Cl₂CHCOOH	10	4.91	<u>85</u> , 83, 59		
Dibromoacetic acid	Br ₂ CHCOOH	10	9.97	171, 59, <u>173</u>		
Trichloroacetic acid	Cl₃CHCOOH	10	6.94	<u>117</u> , 59, 119		
Others						
Bromochloroacetic acid	BrClCHCOOH	10	7.16	<u>129</u> , 59, 127		
Iodoacetic acid	ICH ₂ COOH	2	7.10	<u>200</u> , 169, 141		
Internal standards						
1,2-dibromopropane			5.35	93, <u>121</u> , 123		
(tor THM analysis)			E 20	97 100 125		
(for HAA analysis)			5.30	<u>07</u> , 109, 155		

*Mass used for quantification underlined

Table S3: GC conditions for THMs and for HAAs

Parameter	Conditions			
Column	ZB-5MS Phenomenex $^{\circ}$ column (30 m × 0.25 mm 1 μ m film thickness)			
Inlet conditions	Splitless, 200°C. Column flow rate: controlled by the HS column pressure*			
GC temperature program	40 °C for 3 min, 20 °C/min to 60 °C hold 3 min. 5 °C/min to 100 °C, and 25 °C/min to 200 °C hold 5 min			
Ion source temperature	250 °C			
MS transfer line temperature	290 °C			

* The GC-MS was directly connected with the TurboMatrix Headspace 40 Trap, thus bypassing the inlet split of the GC injector. By installing the fused silica tubing in this way, the GC carrier gas is supplied by the HS and the incoming HS sample is not split or diluted in any way.

Table S4 : Headspace trap parameters

Parameter	Optimum conditions		
Sample volume	10 mL		
thermostatting	10 min, 60 °C		
needle temperature	90 °C		
transfer line temperature	100 °C		
trap load temperature	42 °C		
trap desorption temperature	220 °C		
number of cycles	1		
pressurization time	1 min		
decay time	1.3 min		
Dry purge time	4 min		
desorption time	0.5 min		
trap hold	13 min		
column pressure	15,6 psi		
vial pressure	40 psi		
desorption pressure	15,6 psi		

For HAAs, each sample should be analyzed 3.5 hours after preparation (allowing sufficient time to hydrolyze the excess of dimethylsulfate) but no more than 5 hours later, to limit methyl ester hydrolysis.

Injection Volume (μL)	25	
Elution flow rate (µL min ⁻¹)	400	
Elution gradient	10 mM NaOH held for 3 min,	
	increased to 20 mM in 1 min,	
	held at 20 mM for 8 min,	
	decreased back to 10 mM in 30 s,	
	held for another 5 minutes for equilibration	
	(total run time : 17.50 minutes).	
Targets retention times	IO ₃ ⁻ : 2 min 50 s	
	Br⁻: 5 min 20 s	
	I ⁻ : 12 min 10 s	

Table S5: HPLC conditions for iodine and bromine speciation by HPLC-ICP-MS

Table S6: THMFP/DOC measured in both raw and treated waters with the same THMFP test in the literature

Chlorination	THMFP/DOC raw waters	THMFP/DOC	
conditions	(µg THM mgC⁻¹)	treated waters	
		(µg THM mgC⁻¹)	
7 days, pH	27.3	21.64-25.53	(Teksoy et al. 2008)
7, 25 °C 3-5	48.2		(Tubić et al. 2013)
mg L⁻¹ free	59-167		(Pifer and Fairey 2014)
chlorine	95 (average)	76 (average)	(Yang et al. 2015)
residual	43-145		(Delpla and Rodriguez
			2016)
	149	71	(Golea et al. 2017)

Table S7: Average retention by the activated carbon filtration and standard deviation observed for the 3 campaigns of measurement for THMs and percentage obtained for campaign B for HAAs. Chemical and Physical properties of THMs and HAA when available.

Species	Average removal during GAC filtration (%)	Relative standard deviation (3 campaigns) (%)	MW (g mol ⁻¹)	Solubility (g L ⁻¹)	log K _{ow}			
	Trihalomethanes							
CHCl ₃	15	17	119.4	8.0	1.97			
CHBrCl₂	18	10	163.8	4.0	2.0			
CHBr ₂ Cl	43	9	208.3	2.7	2.16			
CHBr₃	58	15	252.7	3.1	2.4			
<u>Σ</u> ΤΗΜ4	31	6						
CHCl₂I	77	8	210.8	0.717 (a)	2.03 (a)			
CHBrClI	88	6	255.3	0.346 (a)	2.11 (a)			
CHBr₂l	94	5	299.7	0.162 (a)	2.20 (a)			
CHCll₂	96	2	302.3	0.082 (a)	2.53 (a)			
CHBrl ₂	Not present	-	346.7	0.038 (a)	2.62 (a)			
CHI₃	Not present	-	393.7	0.100	3.03 (a)			
∑ I-THMs	87	6						
	Ha	aloacetic acids						
Chloroacetic acid	91	-	94.5		0.22			
Bromoacetic acid	97	-	138.9		0.41			
Dichloroacetic acid	96	-	128.9	minsible	0.92			
Dibromoacetic acid	97	-	217.8		0.70			
Trichloroacetic acid	85	-	163.4	IIISCIDIE	1.33			
Bromochloroacetic acid	96	-	173.4		0.61			
Iodoacetic acid	>91 (b)	-	185.9		0.85			
ΣHAAs	95	-						

References: Pubchem Open database

(a) Environ. Sci. Technol. 2018 52(22): 13047-13056. doi: 10.1021/acs.est.8b04625.

(b) Calculated with the limit of quantification

Individual cytotoxicity					
Trihalomethanes	LC50 (M)	LC50 (µg L ⁻¹)	Haloacetic acids	LC50 (M)	LC50 (µg L ⁻ 1)
CHBr ₃	3.96 x 10 ⁻³	15.7	Chloroacetic acid	8.10 x 10 ⁻⁴	8.57
CHBr ₂ Cl	5.36 x 10 ⁻³	25.7	Bromoacetic acid	9.60 x 10 ⁻⁶	0.07
CHBrCl ₂	1.15 x 10 ⁻²	70.2	Dichloroacetic acid	7.30 x 10 ⁻³	56.6
CHCl₃	9.62 x 10 ⁻³	80.6	Trichloroacetic acid	2.40 x 10 ⁻³	14.7
CHI ₃	4.47 x 10 ⁻⁵	0.11			
CHBrl ₂	1.91 x 10 ⁻³	5.5	Dibromoacetic acid	5.90 x 10 ⁻⁴	2.7
CHCII ₂	2.40 x 10 ⁻³	7.9	Iodoacetic acid	2.95 x 10⁻ ⁶	0.02
CHBr ₂ I	1.40 x 10 ⁻³	4.7	Bromochloroacetic acid	7.78 x 10 ⁻⁴	4.5
CHCl ₂ I	4.13 x 10 ⁻³	19.6			
CHBrCll	2.42 x 10 ⁻³	9.5			

Table S8: Individual LC 50 chronic cytotoxicity (Lethal Concentration for 50% of a population) from Wagner and Plewa, 2017)

Figure S1: THMFP reduction across the treatment line. a) campaign A and b) campaign B.

Figure S2: Average evolution of the THMFP/DOC across the treatment line for campaigns A and B.

Figure S3: Chromatograms of waters samples obtained by size exclusion chromatography with UV detection at 254 nm. a) campaign C, and b) campaign B. 1: raw water, 2: after nitrification, 3: after coagulation-decantation, 4: after intermediate chlorination and sand filtration, 5: after GAC filtration, 6: after final chlorination. A: biopolymers, B: humic substances, C: building blocks, D: low molecular weight acids, E: low molecular weight neutrals.

Figure S4: Bromine incorporation factor (BIF) evolution along the treatment line

Figure S5: bromide evolution after the different treatment steps. a) campaign A, b) campaign B, c) campaign C.

Figure S6: Evolution of the bromine incorporation factor (BIF) for Δ THMFP as a function of the Br/DOC concentration ratio and chlorine consumption. 1: Raw water, 2: after nitrification, 3: after coagulation-decantation, 4: after intermediate chlorination and sand filtration, 5: after GAC filtration, 6: after final chlorination.

Figure S7: lodide and iodate evolution across the treatment line. a) campaign A, b) campaign B, c) campaign C.

Figure S8: Total I-THMs in the last 3 treatment steps for all 3 campaigns.

.

Bibliography:

L.C. Bauman, and M. K. Stenstrom. 'Removal of Organohalogens and Organohalogen Precursors in

Reclaimed Wastewater—I'. Water Research, 24 (8) (1990), pp. 949-955.

https://doi.org/10.1016/0043-1354(90)90116-N.

I. Delpla, and M. J. Rodriguez. 'Experimental Disinfection By-Product Formation Potential Following Rainfall Events'. Water Research, 104 (2016), pp. 340-348.

https://doi.org/10.1016/j.watres.2016.08.031.

D. M. Golea, A. Upton, P. Jarvis, G. Moore, S. Sutherland, S. A. Parsons, and S. J. Judd. '**THM and HAA** Formation from NOM in Raw and Treated Surface Waters'. Water Research, 112 (2017), pp. 226-235. https://doi.org/10.1016/j.watres.2017.01.051.

M. Hyung Kim and M. J. Yu. 'Characterization of NOM in the Han River and Evaluation of

Treatability Using UF–NF Membrane'. Environmental Research, 97 (1) (2005), pp. 116-123.

https://doi.org/10.1016/j.envres.2004.07.012.

C. Musikavong, S. Wattanachira, T. Marhaba, and P. Pavasant. 'Reduction of Organic Matter and

Trihalomethane Formation Potential in Reclaimed Water from Treated Industrial Estate Wastewater by Coagulation'. Journal of Hazardous Materials, 127 (1–3) (2005), pp. 48-57. https://doi.org/10.1016/j.jhazmat.2005.06.042.

A. D. Pifer and J. L. Fairey. 'Suitability of Organic Matter Surrogates to Predict Trihalomethane
Formation in Drinking Water Sources'. Environmental Engineering Science, 31 (3) (2014), pp. 117-126. https://doi.org/10.1089/ees.2013.0247.

 P. Rakruam and S. Wattanachira. 'Reduction of DOM Fractions and Their Trihalomethane Formation Potential in Surface River Water by In-Line Coagulation with Ceramic Membrane Filtration'. Journal of Environmental Sciences, 26 (3) (2014), pp. 529-536. https://doi.org/10.1016/S1001-0742(13)60471-4.

- P. C. Singer, J. J. Barry III, G. M. Palen, and A. E. Scrivner. 'Trihalomethane Formation in North Carolina Drinking Waters'. Water Resources Research Institute of the University of North Carolina (1982), 127 p.
- A. Teksoy, U. Alkan, and H. S. Başkaya. 'Influence of the Treatment Process Combinations on the Formation of THM Species in Water'. Separation and Purification Technology, 61 (3) (2008), pp. 447-454. https://doi.org/10.1016/j.seppur.2007.12.008.

 A. Tubić, J. Agbaba, B. Dalmacija, J. Molnar, S. Maletić, M. Watson, and S. U. Perović. 'Insight into Changes during Coagulation in NOM Reactivity for Trihalomethanes and Haloacetic Acids Formation'. Journal of Environmental Management, 118 (2013), pp. 153-160. https://doi.org/10.1016/j.jenvman.2012.11.046.

J-S. Yang, D-X. Yuan, and T-P. Weng. 'Pilot Study of Drinking Water Treatment with GAC, O3/BAC and Membrane Processes in Kinmen Island, Taiwan'. Desalination, 263 (1–3) (2010), pp. 271-278. https://doi.org/10.1016/j.desal.2010.06.069.

L. Yang, D. Kim, H. Uzun, T. Karanfil, and J. Hur. 'Assessing Trihalomethanes (THMs) and N-

Nitrosodimethylamine (NDMA) Formation Potentials in Drinking Water Treatment Plants Using Fluorescence Spectroscopy and Parallel Factor Analysis'. Chemosphere, 121 (2015), pp. 84-91. https://doi.org/10.1016/j.chemosphere.2014.11.033.