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DEFORMATIONS OF REPRESENTATIONS OF FUNDAMENTAL

GROUPS OF NON-COMPACT COMPLEX VARIETIES

LOUIS-CLÉMENT LEFÈVRE

Abstract. We describe locally the representation varieties of fundamental
groups for smooth complex manifolds admitting a compactification into a Käh-
ler manifold, at representations coming from the monodromy of a variation of
mixed Hodge structure. Given such a manifold X and such a linear representa-
tion ρ of its fundamental group π1(X, x), we use the theory of Goldman-Millson
and pursue our previous work that combines mixed Hodge theory with derived
deformation theory to construct a mixed Hodge structure on the formal local
ring Ôρ to the representation variety of π1(X, x) at ρ. Then we show how
a weighted-homogeneous presentation of Ôρ is induced directly from a split-
ting of the weight filtration of its mixed Hodge structure. In this way we
recover and generalize theorems of Eyssidieux-Simpson (X compact) and of
Kapovich-Millson (ρ finite).
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1. Introduction

1.1. Topology of non-compact varieties. Our objects of study will be complex
manifolds X admitting a compactification into a compact Kähler manifold X such
that the complement is a simple normal crossing divisor. This includes the case of
smooth quasi-projective varieties, since smooth projective varieties are examples of
compact Kähler manifolds.
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The cohomology groups of X then come equipped with mixed Hodge structures
(MHS), defined and constructed first by Deligne [Del71]. Then mixed Hodge struc-
tures have been constructed on other topological invariants of such varieties, in
particular on the rational homotopy groups by Morgan [Mor78] and Hain [Hai87].
They can be used to give concrete restrictions on the possible fundamental groups
of these varieties.

In previous work [Lef19] we constructed MHS on certain invariants associated to
linear representations of the fundamental group π1(X,x). We want to pursue this
work and analyze the restrictions that this gives on the representations.

1.2. Deformations of representations of fundamental groups. For X as
above, π1(X,x) is always a finitely presentable group. Hence the set of repre-
sentations of π1(X,x) into some fixed linear algebraic group G, defined over some
field k ⊂ R or k = C, has a natural structure of affine scheme that we denote by
Hom(π1(X,x), G). Given such a representation ρ, our main object of study is the
formal completion of the local ring to Hom(π1(X,x), G) at its k-point ρ. We denote

it by Ôρ. Its associated deformation functor, a functor from the category Artk of
local Artin k-algebras with residue field k to the category of sets, is given by

(1.1) Def
Ôρ

(A) := Hom(Ôρ, A), A ∈ Artk

and is canonically isomorphic to the functor of formal deformations of ρ

(1.2) Defρ(A) := {ρ̃ : π1(X,x)→ G(A) | ρ̃ = ρ over G(k)}.

Thus, if one can give a concrete presentation of Ôρ as

(1.3) Ôρ ≃ k[[X1, . . . , Xn]]/(P1, . . . , Pr)

where P1, . . . Pr are polynomials then one can describe completely the deformation
theory of ρ: deformations over A are given by elements x1, . . . , xn of A satisfying
the equations P1, . . . , Pr. In particular, if an order N is bigger than the maximal
of the degrees of P1, . . . , Pr then there are no obstructions for lifting deformations
of order N to deformations of order N + 1.

This was described first by Goldman and Millson in [GM88] in the case where
X is a compact Kähler manifold and ρ is the monodromy of a polarizable variation

of Hodge structure over X : they show that Ôρ has a quadratic presentation, i.e. a
presentation with P1, . . . , Pr of degree at most 2.

A presentation of Ôρ was also obtained by Kapovich-Millson [KM98] when X
may be non-compact and ρ is a representation with finite image: they show that
there is a presentation with weights 1, 2 on the variables X1, . . . , Xn and polyno-
mials P1, . . . , Pr that are homogeneous of possible degrees 2, 3, 4 with respects to
these weights on the variables.

These two results have concrete applications to exhibit classes of groups that
cannot be fundamental groups of smooth varieties. Our motivation is to generalize
these results and unify them, and make more explicit the use of mixed Hodge
structures.

Theorem 1.1. Let ρ be the monodromy representation of a variation of mixed
Hodge structure over X that is admissible in X, and unipotent at infinity. Then

there is a mixed Hodge structure on Ôρ, functorial in X and ρ, depending explicitly
on the base-point x. Furthermore, one obtains a weighted-homogeneous presentation

of Ôρ by splitting the weight filtration.
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In our previous work, we constructed this MHS on Ôρ only in the case treated by
Goldman-Millson (recovering a result of Eyssidieux-Simpson [ES11]) and in the case
of finite image treated by Kapovich-Millson. This already provided some unification
of these two theories that is suitable for further generalizations, enlightening the
role of mixed Hodge theory, but we were not able to fully recover the weighted-
homogeneous presentation of Kapovich-Millson. It will now appear clearly that the
weights 1, 2 on generators come from the MHS of H1(X) and the weights 2, 3, 4 on
the relations come from the MHS of H2(X).

1.3. Deformations via DG Lie algebras. Let ρ be a representation of π1(X,x)
into a linear algebraic group G with Lie algebra g, as above, at a fixed base-point.
To this is associated a flat principal bundle P with associated bundle ad(ρ) :=
ad(P ) = P ×G g: this is a local system of Lie algebras over X . Let L be the algebra
of C∞ differential forms over X with values in ad(ρ). This has a natural structure
of differential graded (DG) Lie algebra.

The theory introduced by Goldman-Millson states that it is possible to associate
to L a deformation functor DefL, again from Artk to sets, that will be isomor-
phic to Defρ and that a quasi-isomorphism of DG Lie algebras L → M induces

an isomorphism of deformation functors DefL → DefM . So the local ring Ôρ is
determined by the data of L up to quasi-isomorphism, and the obstruction theory
(i.e. the presentation (1.3)) can be understood in terms of L only.

The conclusion in the compact cases that they treat follows quite easily when
proved that in these cases, using the particular properties of harmonic analysis
on Kähler manifolds, L is formal, i.e. quasi-isomorphic as DG Lie algebra to its

cohomology H(L), which is finite-dimensional and with zero differential. So Ôρ is
essentially isomorphic to the formal local ring at 0 to the equation [x, x] = 0 in
H1(L) with values in H2(L), this is a quadratic presentation.

In order to pursue this method to the non-formal case, we argued in our previous
work [Lef19, § 4] that the right tool to use is L∞ algebras. Namely on H(L) there
exists a sequence of multilinear higher operations (for each n ≥ 1, a multilinear
operation in n variables on H(L), which for n = 2 is the Lie bracket, for n = 1 the
differential which is zero here) arranged in a certain algebraic and combinatorial
structure called L∞ algebra such that L and H(L) become quasi-isomorphic as
L∞ algebras and such that DefL can be written in terms of H(L) with its L∞
structure only. So, we can again understand DefL via linear algebra in finite-
dimensional vector spaces but at the cost of working with more operations. A
similar argumentation is central in a recent work of Budur-Rubió [BR18].

1.4. Hodge theory. In several special cases, the cohomology ofX with coefficients
in a local system V also carries a MHS. If ρ is the monodromy representation of V
then the associated DG Lie algebra L as above also carries a MHS on cohomology
and the Lie bracket is a morphism of MHS. What we want to exploit is precisely
the interaction between the MHS on H•(L) and the deformation functor of L.

A very interesting class of such local systems is provided by the variations of
(mixed) Hodge structure (VHS, VMHS). The fact that H•(X,V) carries a MHS was
conjectured by Deligne and proved first in the case where X is compact; this then
motivated a long development of the theory of VHS, VMHS, and their asymptotic
behavior around the simple normal crossing divisor D = X \ X . The MHS was
constructed in the following cases:
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(1) When X is compact, due to Deligne and written by Zucker [Zuc79, § 1–
2] for the case of pure VHS. This also gives straightforwardly the case of
VMHS.

(2) When V is a pure VHS that extends to X. After a theorem of Griffiths,
this is the same as requiring that the monodromy of V is trivial around D.

(3) When X is one-dimensional and V is a pure VHS, due to Zucker [Zuc79,
§ 13].

(4) When X is one-dimensional and V is a VMHS, due to Steenbrink-Zucker
[SZ85]. The VMHS has to satisfy the admissibility condition, that they
introduce, relatively to X .

(5) In the most general case, when V is a VMHS on X admissible in X , due to
Saito [Sai86] using his theory of mixed Hodge modules.

The MHS on the cohomology of L actually always comes from a pre-existing
structure at the level of L called mixed Hodge complex. This is the notion introduced
by Deligne in [Del74], consisting of two complexes: LQ over Q carrying the weight
filtration, and LC over C carrying the Hodge and weight filtrations, with a quasi-
isomorphism LQ ⊗ C ≈ LC and axioms ensuring that the weight-graded pieces of
cohomology glue to pure Hodge structures, defining a MHS on each H•(L).

In our previous work [Lef19, § 7–9] we explained that the only input of geometry

that we need in order to put a MHS on Ôρ is to have such an L which is at
the same time a DG Lie algebra and a mixed Hodge complex. This is not so
obvious because the naive way of constructing LQ, via sheaf theory or via singular
cochains, does not provide a DG Lie algebra: the cup-product is not commutative
at the level of cochains. The global picture is quite similar to the work of Morgan:
in order to construct his MHS on homotopy groups, it is necessary to have an
object A which is at the same time a mixed Hodge complex (thus containing all the
information on the MHS on H•(X)) and a commutative DG algebra (by rational
homotopy theory, this up to quasi-isomorphism contains all the information about
the rational homotopy type of X). So he constructs AQ as an algebra of rational
polynomial differential forms on X with logarithmic poles along D. Similarly, in
our work LQ is an algebra of rational polynomial differential forms with coefficients
in a rational local system. Fortunately, the Thom-Whitney functors, introduced
by Navarro Aznar [Nav87] when reviewing this work of Morgan, allow us to give a
straightforward and functorial construction of this LQ.

The data of such a structure on L is usually not unique (it depends on the
chosen compactification X) but it is unique up to quasi-isomorphism. The con-

struction of our MHS on Ôρ from L is directly invariant under quasi-isomorphisms
(of simultaneous structures of DG Lie algebra and mixed Hodge complexes) of L.
Furthermore it is functorial in X, ρ and the base-point x, as soon as L can be
constructed functorially in X,x, ρ.

1.5. Results. Our method divides the construction of a MHS on Ôρ into two well-
distinct part. In the first part, we construct L which is at the same time a DG
Lie algebra and a mixed Hodge complex. This strongly depends on the “geometric
situation” that we fix (a situation for X and ρ), hence through § 4–7 we will devote
one section to each of the cases listed in § 1.4. The second part is purely algebraic
and refers to L only and not any more to geometry. We treat this only in § 8.
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In our previous work, we constructed this structure only for the situations where
X is compact and ρ is the monodromy of a polarizable VHS, or when X may be
non-compact and ρ has finite image. Our result in the most general case can now
be stated as follows.

Theorem 1.2. Let ρ be the monodromy representation of a graded-polarizable vari-
ation of mixed Hodge structure over X ⊂ X, admissible in X, unipotent at infinity.
Then one can construct an object L which is at the same time a DG Lie algebra
and a mixed Hodge complex which computes the cohomology of X with coefficients
in the local system ad(ρ). It is functorial in X,x, ρ up to quasi-isomorphism.

By the main result of [Lef19] this is enough to construct the MHS on Ôρ, func-
torial in X,x, ρ.

To put our work in a slightly more general context, that could allow to construct
mixed Hodge complexes with many other possible algebraic structures, we actu-
ally construct a mixed Hodge complex MHC(X,X,V) attached to the VMHS V,
functorial in (X,X) and in V, equipped with canonical maps for two VMHS V1,V2

(1.4) MHC(X,X,V1)⊗MHC(X,X,V2) −→ MHC(X,X,V1 ⊗ V2)

(together with an identity and associativity condition) that are compatible with
the interchange map of V1 and V2. In particular if V alone is equipped with a
Lie bracket [−,−] then there is an induced Lie bracket on MHC(X,X,V) via the
composition

(1.5) MHC(X,X,V)⊗MHC(X,X,V)

−→ MHC(X,X,V⊗ V)
[−,−]
−−−→ MHC(X,X,V).

Typically MHC(X,X,V) is called a lax symmetric monoidal functor (§ 3.1) in the
data of V, and by this same argument inherits every kind of algebraic structure
that can be described on V by multilinear maps (i.e. by a linear operad, though we
will not need to work with this language).

Now, we study the interaction between the deformation functor of L, that can
be written in H(L) with higher operations of L∞ algebras, and the existing MHS
on H(L). What we show in § 8 is that there is a splitting of the weight filtration
on H(L) that is compatible with the higher operations of L∞ algebra. Because the
higher operations are multilinear and respect the weights, but the weights of H(L)
in each degree are limited, this forces many higher operations to vanish and the
remaining ones give the equations for the deformation functor. The most general
result, in its purely algebraic version, is:

Theorem 1.3. Assume that the MHS on H1(L) has only strictly positive weights.

Then Ôρ has a weighted-homogeneous presentation as in (1.3) with weights of gen-
erators coming from weights of H1(L) and weights of relations limited to the weights
of H2(L).

For example in the case of Kapovich-Millson, the MHS on H1(L) is directly
related to the MHS on H1(X) and has only weights 1, 2, and the MHS on H2(L)
is directly related to the one of H2(X) and has only weights 2, 3, 4. Our method
allows us to perform such a detailed analysis of the weights from the weights of
H•(L). We sum this up in our last section 8.6.
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In particular the hypothesis on the weights of H1(L) is satisfied when L comes
from a pure VHS, because then the adjoint Lie algebra is a VHS of weight zero. So
we get:

Theorem 1.4. If ρ is the monodromy representation of a polarizable pure VHS over

X ⊂ X with unipotent monodromy at infinity, then Ôρ has a weighted-homogeneous
presentation.

The precise understanding of the weights depends on the behavior of the VHS
near infinity and this is easier so see in the case of curves. So once again we find
interesting to treat these cases separately. For VMHS, our method does not allow us
to show that the presentation is finite, but it sill allows to write down homogeneous
equations.

1.6. Acknowledgements. I thank notably Yohan Brunebarbe, Nero Budur, Joana
Cirici, Brad Drew, Clément Dupont, Konstantin Jakob, Marcel Rubió, for useful
conversations all along the preparation of this work. I thank particularly Philippe
Eyssidieux and Jochen Heinloth for conversations as well as for comments on the
final version of this work.

2. Reminder on mixed Hodge theory

We will denote by k a fixed sub-field of R. We always denote increasing filtrations
by a lower index and decreasing filtrations by an upper index: W•, F

•. Filtrations
of cochain complexes are always assumed to be biregular, i.e. they restrict to a
finite filtration in each degree.

2.1. Mixed Hodge structure. Recall briefly that a pure Hodge structure (HS)
of weight k over k is given by a finite-dimensional vector space Hk over k with a
decomposition HC := Hk⊗C =

⊕
p+q=k H

p,q with Hp,q = Hq,p, complex conjuga-
tion being taken with respect to Hk ⊂ HC. In this case the Hodge filtration F • is
defined as F pHC :=

⊕
r≥p H

r,q.

A mixed Hodge structure (MHS) is given by a finite-dimensional vector space Hk

over k equipped with an increasing filtration W• and a decreasing filtration F • of
HC, such that each term GrW

k Hk := WkHk/Wk−1Hk with the induced filtration
F • over C is a pure Hodge structures of weight k, whose bigraded terms are again
denoted by Hp,q.

For a pure Hodge structure H of weight k, a polarization is given by a bilinear
form Q : Hk ⊗Hk → k which is (−1)k-symmetric and satisfies the two relations

(1) Q(Hp,q, Hr,s) = 0 if (p, q) 6= (r, s),
(2) ip−qQ(v, v̄) > 0 for 0 6= v ∈ Hp,q.

Mixed Hodge structures form an abelian category with tensor product and in-
ternal Hom. Hence one can consider various kinds of algebras internally to MHS:
for example a Lie bracket [−,−] on the MHS H will have to be defined over k and
satisfy [WkHk,WℓHk] ⊂Wk+ℓHk and [F pHC, F

rHC] ⊂ F p+rHC.
A direct sum of pure HS of various weights is automatically a MHS with an

obvious weight filtration. Such MHS are said to be split. In general however,
MHS coming from the cohomology of complex varieties are not split. Nevertheless,
there exists a canonical way of splitting a MHS H over C by defining subspaces
Ap,q ⊂ HC that projects to Hp,q. This splitting if functorial and compatible with
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tensor products. In this work, after having constructed a MHS, we will be mainly
interested in describing such a splitting.

2.2. Variations of mixed Hodge structure. Let X be any complex manifold.
We will always use the letter Ω•X to denote the complex of holomorphic differential
forms on X .

Definition 2.1. A variation of Hodge structure (VHS) of weight k over X is the
data of a local system V of finite-dimensional k-vector spaces, to which is associated
a flat connection ∇ on the holomorphic vector bundle V := V⊗OX , and a filtration
of V by holomorphic sub-vector bundle F•, such that at each point x ∈ X the data
(Vx,F•x) forms a pure Hodge structure of weight k, and furthermore ∇ satisfies
∇(Fp) ⊂ Ω1

X ⊗F
p−1.

A polarization for the VHS V is a flat bilinear pairing defined over k, Q : V⊗V→
k, such that each (Vx,F

•
x , Qx) is a polarized Hodge structure.

In the following we will work only with polarizable variations of Hodge structure.

Definition 2.2 ([SZ85, 3.4]). A variation of mixed Hodge structure (VMHS) over
X is the data of a local system V of finite-dimensional vector spaces over k and a
filtration W• of V by sub-local systems W•, together with a filtration as above of
V = V⊗Ox by sub-vector bundles F•, such that the induced flat connection again
satisfies ∇(Fp) ⊂ Ω1

X ⊗ F
p−1 and furthermore each GrW

k V with the induced F•

forms a variation of Hodge structure of weight k.
It is said to be graded-polarizable if each term GrW

k V is a polarizable VHS.

2.3. Mixed Hodge complexes. Mixed Hodge structures exist only at the level
of the cohomology of a variety and are not so easy to construct. The structure that
naturally comes from geometry, and whose cohomology carries a MHS, has been
introduced by Deligne.

Definition 2.3. A pure Hodge complex of weight k is the data of a bounded-below
complex K•

k
over k with each Hi(Kk) finite-dimensional, a bounded-below filtered

complex (K•C, F
•) over C, and a chain of quasi-isomorphisms Kk ⊗ C ≈ KC, such

that

(1) The differential d of KC is strictly compatible with F ,
(2) The filtration F defines a pure Hodge structure of weight i+ k on Hi(KC),

with form over k coming from Hi(Hk).

A mixed Hodge complex (MHC) is the data of a filtered bounded below-complex
(K•

k
,W•) over k with each Hi(Kk) finite-dimensional, a bifiltered bounded-below

complex (K•C,W•, F
•) over C, a filtered quasi-isomorphism (Kk,W )⊗C ≈ (KC,W ),

such for all k the data GrW
k (Kk), (GrW

k (KC), F ) forms a pure Hodge complex of
weight k.

The main theorem of Deligne is that for a mixed Hodge complex K the W -
spectral sequence of K degenerates at E2 and these are the weight-graded pieces of
a MHS on each Hi(K) with the induced filtration F and the shifted filtration W [i]
with W [i]k := Wi+k.

For the needs of rational homotopy theory, Morgan introduced the notion of
mixed Hodge diagram which is simply a mixed Hodge complex K whose both com-
ponents K•

k
, K•C are commutative DG algebras (non-negatively graded, and com-

patibly with the filtrations) and the quasi-isomorphisms relating them are quasi-
isomorphisms of commutative DG algebras. Though being algebraically a simple
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variant of the notion of mixed Hodge complexes, the construction of such mixed
Hodge diagrams is more evolved because the commutative DG algebra K•

k
does not

come from differential forms nor from singular cochains. Similarly we introduced:

Definition 2.4 ([Lef19, § 8]). A mixed Hodge diagram of Lie algebras is a mixed
Hodge complex L whose both components Lk, LC are also DG Lie algebras and
the quasi-isomorphisms between them are quasi-isomorphisms of DG Lie algebras.

The notion of pure and mixed Hodge complex also exist at the level of sheaves,
and this will be more practical for us.

Definition 2.5. Let X be a topological space. A pure Hodge complex of sheaves
of weight k over X is the data of a bounded-below complex of sheaves K•

k
over

k, a bounded-below filtered complex of sheaves (K•C, F
•) over C, and a quasi-

isomorphism Kk ⊗ C ≈ KC, such that applying RΓ(X,−) to all this data (i.e. to
the complexes, the filtrations, and the quasi-isomorphisms between them) gives a
pure Hodge complex of weight k.

Similarly, a mixed Hodge complex of sheaves over X is the data of a filtered
bounded-below complex of sheaves (K•

k
,W•) over k, a bifiltered bounded-below

complex of sheaves (K•C,W•, F
•) over C, and a filtered quasi-isomorphism (Kk,W )⊗

C ≈ (KC,W ) such that applying GrW
k to all this data gives a pure Hodge complex of

sheaves of weight k; in this case applying RΓ(X,−) gives a mixed Hodge complex.

Remark 2.6. Mixed Hodge structures and mixed Hodge complexes can also be
defined over the base field k = C but this requires an appropriate modification
of the definitions, see for example [ES11, § 1]. Essentially we drop the complex

conjugation but we introduce a third filtration, denoted by G
•
, playing the role of

the conjugate F of F . The properties of F that would have followed simply by
conjugation from F need to be included as axioms for G. In any MHC over k,
keeping only its component over C and the three filtrations W,F, F defines a MHC
over C. This notion matters because we ultimately care about a splitting of the
weight filtration which is already interesting if defined over C, and MHS over C are
simpler.

3. Thom-Whitney functors

3.1. A few words on lax symmetric monoidal functors. Instead of writing
purely categorical diagrams, let us explain briefly the following classical situation.
For any sheaf F of abelian groups over a topological space X , there is a canonical
Godement resolutionG(F ) which is a complex of sheaves with a quasi-isomorphism
F → G(F ). The Godement resolution has the advantage of being functorial. If
F comes equipped with a multiplication F ⊗F → F then one can define a multi-
plication on G(F ) using the Eilenberg-Zilber theory. However if the multiplication
on F is commutative then the multiplication on G(F ) will usually not be. For
example, with F the locally constant sheaf QX , the multiplication on G(QX) looks
like a cup-product formula, which is known to be non-commutative.

The categorical nature of this phenomenon is that the functor G is a lax monoidal
functor, that is, for sheaves F ,G there are canonical maps

(3.1) G(F ) ⊗G(G ) −→ G(F ⊗ G )
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satisfying natural identity and associativity conditions, but there is no commutative
diagram

(3.2) G(F ) ⊗G(G ) // G(F ⊗ G )

G(G )⊗G(F ) //

≀

OO

G(G ⊗F )

≀

OO

where the vertical maps are the natural isomorphisms coming from the symmetry
of the tensor product.

If the above diagram were commutative, then G would be a lax symmetric
monoidal functor. In this case any commutative algebra structure (for example
Lie algebra) on F induces a commutative algebra structure on G(F ).

3.2. Thom-Whitney resolutions. In this section k can be any field of charac-
teristic zero. Since the construction of these functors is based on some differential
forms with rational coefficients, it really matters that k be both a field and that it
has characteristic zero. The reference is [Nav87, § 1–6].

For a continuous map f : X → Y between topological spaces and for a bounded-
below complex of sheaves of k-vector spaces F on X is defined the Thom-Whitney
direct image RTWf∗F . This is again a bounded-below complex of sheaves which
is quasi-isomorphic to the classical Rf∗F but the advantage is that it is lax sym-
metric monoidal. In particular if F is a sheaf of commutative DG algebras then
so is RTWf∗F . For f the constant map to a point, RTWf∗F is also denoted by
RTWΓ(X,F ) (the Thom-Whitney global sections). For f the identity what we get
is just the Thom-Whitney resolution of F , denoted by TW∗F .

Let us recall everything that we will need.

Proposition 3.1. The Thom-Whitney functors have the following properties:

(1) RTWf∗F is functorial in F .
(2) RTWf∗ is naturally homotopy-equivalent to the classical Rf∗ defined as the

derived functor of f∗ using the Godement resolution.
(3) RTWf∗ is a lax symmetric monoidal functor.
(4) F → TW∗F is a soft resolution of F .
(5) RTWf∗ transforms quasi-isomorphisms of complexes of sheaves into quasi-

isomorphisms.
(6) The Thom-Whitney resolution also provides filtered resolutions. If F is

equipped with a filtration, then RTWf∗F gets an induced filtration, and
filtered quasi-isomorphism of complexes of sheaves are sent to filtered quasi-
isomorphisms.

(7) If g : Y → Z is a second continuous map of topological spaces the the
functors RTW(g ◦ f)∗ and RTWg∗ ◦RTWf∗ are naturally quasi-isomorphic.
Similarly, for filtered complexes of sheaves, the functors are filtered quasi-
isomorphic.

For example, for the locally constant sheaf QX , RTWΓ(X,QX) looks like an
algebra of polynomial differentials forms over X whereas RΓ(X,QX) looks like a
cochain complex with a non-commutative cup-product.

3.3. Application to Hodge theory. From the point of view of Hodge theory,
this has the following consequence. Let X ⊂ X be an open subset of a compact
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Kähler manifold whose complement is a SNC divisor. Let j : X →֒ X . Navarro
Aznar ([Nav87, § 7–8]) shows that on RTWj∗QX there is a canonical filtration τ
such that

(3.3)
(
(RTWj∗QX , τ), (Ω•

X
(logD),W, F )

)

is a mixed Hodge diagram of sheaves, whose components are sheaves of commutative
DG algebras. From the axioms on Thom-Whitney resolutions that we wrote above,
it follows that applying RTWΓ(X,−) to the above diagrams (i.e. to each component
and to the filtered quasi-isomorphisms between them) gives a mixed Hodge diagram
of commutative DG algebras, whose cohomology computes the cohomology of X
and puts a MHS on it. Furthermore such a diagram is functorial for morphisms,
up to natural quasi-isomorphisms.

In our cases of interest, we deal with the cohomology with local coefficients.

Corollary 3.2. If K is a mixed Hodge complex of sheaves over a manifold X,
computing the cohomology of X with local coefficients and lax symmetric monoidal
in the data of the local system, then RTWΓ(X,K) is again a mixed Hodge complex
that computes the cohomology with local coefficients and is lax symmetric monoidal
in the data of the local system.

For brevity we will simply say that our MHC, that will always be used to compute
cohomology with local coefficients in a variation of (mixed) Hodge structure, are
lax symmetric, when they are lax symmetric monoidal functors in the data of the
VMHS. So if the VMHS has a Lie bracket, then we will get mixed Hodge diagrams
of Lie algebras.

Also, because of this corollary, we will focus exclusively on constructing mixed
Hodge complexes at the level of sheaves, since one then only has to apply the
Thom-Whitney global section to get the mixed Hodge complex we care about.

4. VHS and VMHS over a compact base

We start with the simplest case where the base of the VHS is compact, that we
already worked out in our previous article, but that will be useful to introduce the
ideas. In this section X = X is a compact Kähler manifold. We fix again any field
k ⊂ R (everything could also work with MHS over C).

4.1. Pure case. Assume first that V is a pure polarizable VHS of some weight
w ∈ Z defined over k on X . Then there is a pure HS of weight w + i on Hi(X,V),
for all i, constructed by Deligne-Zucker. Define a filtration F • on Ω•X(V) := Ω•X⊗V
by

(4.1) F p(Ω•X(V)) =
⊕

r+e=p

F rΩX ⊗ F
eVC.

In other words the classes of Hodge type (p, q) in Hi(X,V) will come from differ-
ential forms of type (r, s) with values in Ve,f (the C∞ vector bundle of Hodge type
(e, f)) for (r + e, s+ f) = (p, q). The statement is then:

Theorem 4.1 ([Zuc79, Thm. 2.9, Cor. 2.11]). If X is compact Kähler and V is a
pure polarizable VHS of weight w then

(4.2)
(
V, (Ω•X(V), F )

)
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is a pure Hodge complex of sheaves of weight w, which is lax symmetric monoidal
in V.

Proof. The cited theory of Deligne-Zucker already shows that this is a mixed Hodge
complex. For two polarizable VHS V1,V2 there is a diagram

(4.3) Ω•X(V1)⊗ Ω•X(V2) // Ω•X(V1 ⊗ V2)

(V1 ⊗ C)⊗ (V2 ⊗ C) //

≈

OO

(V1 ⊗ V2)⊗ C

≈

OO

where the two vertical morphisms are quasi-isomorphisms (this is simply the holo-
morphic Poincaré lemma extended to local systems) and the top morphism is in-
duced by the product in Ω•X . This diagram is compatible with the symmetry
exchanging V1 and V2. Whence the lax symmetric condition. �

So, we get with the Thom-Whitney functors:

Corollary 4.2. The data

(4.4)
(
RTWΓ(X,V), (RTWΓ(X,Ω•X(V), F )

)

forms a pure Hodge complex of weight w which is lax symmetric monoidal in V.

Remark 4.3. This is just a re-writing of [Lef19, § 10] using only RTWΓ instead of
the more classical resolution by C∞ differential forms with values in V.

4.2. Mixed case. Assume now that V is a graded-polarizable VMHS. Since the
base is compact Kähler there are no extra conditions on the behavior at infinity
of the VMHS. The filtration F is defined exactly as in the previous case but V

also carries a filtration by sub-local systems W•. Define a filtration W• on Ω•X(V)
simply as

(4.5) Wk(Ω•X(V)) := Ω•X(Wk).

Then by definition

(4.6) GrW
k (Ω•X(V)) = Ω•X(GrW

k (V))

but the terms GrW
k (V) are polarizable VHS of weight k to which the previous section

applies. So we get immediately the following:

Theorem 4.4 (See [SZ85, Rem. 4.18.iii]). If X is compact Kähler and V is a
graded-polarizable VMHS then

(4.7)
(
(V,W ), (Ω•X(V),W, F )

)

is a mixed Hodge complex of sheaves, which is lax symmetric monoidal.

Again the lax symmetric monoidal condition is obvious and we can applyRTWΓ(X,−)
to get our lax symmetric MHC.
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5. VHS extendable to a compactification

Now we turn to the situation where the base X may be non-compact, but is
compactified in a Kähler manifold j : X →֒ X by a SNC divisor D. But we first
make the simpler but interesting hypothesis that V is a pure polarizable VHS of
some weight w ∈ Z over X that extends as VHS to X, again defined over some field
k ⊂ R (or k = C). After a theorem of Griffiths, this is the same as requiring the
monodromy of V to be trivial locally around D: then the local system underlying
V extends across D and Griffiths’ theorem [Gri70, Theorem 9.5] shows that the
holomorphic bundles F• also extend so as to define a VHS on X.

Over X we can introduce the logarithmic complex Ω•
X

(logD) which carries two

filtrations W,F as usual and we can form the logarithmic complex with local coef-
ficients Ω•

X
(logD,V) := Ω•

X
(logD) ⊗ V. It again carries two filtrations F,W and

since V is pure W is simply the shift by w of the weight filtration of Ω•
X

(logD).

This will be the complex part of the MHC of sheaves.
It is easy to see that we again have a diagram

(5.1) Ω•
X

(logD,V1)⊗ Ω•
X

(logD,V2) // Ω•
X

(logD,V1 ⊗ V2)

(V1 ⊗ C)⊗ (V2 ⊗ C) //

≈

OO

(V1 ⊗ V2)⊗ C

≈

OO

where the vertical maps are quasi-isomorphisms and the top horizontal one is the
product of differential forms.

For the component over k we take RTWj∗V. The filtration is obtained for the
canonical filtration τ . Recall that for any complex K• the canonical filtration τ
is defined by τkK

n = 0 if k < n, τkK
n = Ker(d) if k = n and τkK

n = Kn for
k > n. Any quasi-isomorphism is then automatically a filtered quasi-isomorphism
with respect to τ . On RTWj∗V we take for W the shifted filtration τ [w], with
τ [w]k := τw+k.

Proposition 5.1 (Compare [Nav87, Prop. 8.4]). There is a canonical chain of
filtered quasi-isomorphisms

(5.2) (RTWj∗V,W )⊗ C
≈
←→ (Ω•

X
(logD,V),W ).

Proof. First, the holomorphic Poincaré lemma with local coefficients implies that
there is a quasi-isomorphism of sheaves over X

(5.3) V⊗ C
≈
−→ Ω•X(V)

that we compose with the Thom-Whitney resolution

(5.4) Ω•X(V)
≈
−→ TW∗Ω•X(V)

to get the chain

(5.5) RTWj∗V⊗C = RTWj∗(V⊗C)
≈
−→ RTWj∗Ω

•
X(V)

≈
−→ RTWj∗(TW∗Ω•X(V)).

These are automatically filtered quasi-isomorphisms for τ as well as for τ [w]. On
the other hand there is a canonical morphisms over X

(5.6) Ω•
X

(logD,V) −→ j∗Ω
•
X(V)
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which, composed with j∗(Ω
•
X(V))→ j∗(TW∗Ω•X(V)), induces a quasi-isomorphism

(5.7) Ω•
X

(logD,V)
≈
−→ j∗(TW∗Ω•X(V)).

Then since TW∗Ω•X(V) is a soft sheaf we get

(5.8) j∗(TW∗Ω•X(V))
≈
−→ RTWj∗(TW∗Ω•X(V)).

To sum up this gives

(5.9) Ω•
X

(logD,V)
≈
−→ j∗(TW∗Ω•X(V))

≈
−→ RTWj∗(TW∗Ω•X(V))

where again these quasi-isomorphisms are filtered quasi-isomorphisms for τ and
for τ [w].

Finally the classical filtered quasi-isomorphism

(5.10) (Ω•
X

(logD), τ)
≈
−→ (Ω•

X
(logD),W )

also induces with local coefficients

(5.11) (Ω•
X

(logD), τ)⊗ V
≈
−→ (Ω•

X
(logD),W )⊗ V.

By our choice of W = τ [w] over k this gives

(5.12) (Ω•
X

(logD,V), τ [w])
≈
−→ (Ω•

X
(logD,V),W ).

�

The classical theory of residues of forms with logarithmic poles is also easily
extended to the case of local coefficients in our context. Recall that for this we
decompose the SNC divisor into its components D =

⋃
I Di (I a finite set), for

each set J ⊂ I we write DJ := ∩i∈JDi and we let D̃k :=
⋃
|J|=k DJ with its

canonical inclusion ik into X. For k = 0 this is X . The classical residue is a
morphism

(5.13) Res : WkΩn

X
(logD) −→ (ik)∗Ω

n−k

D̃k

which induces a quasi-isomorphism

(5.14) GrW
k Ωn

X
(logD)

≈
−→ (ik)∗Ω

n−k

D̃k
.

It is this fact that allows to verify the axioms of mixed Hodge complex by computing

the GrW terms, since on the right-hand side the terms D̃k are compact Kähler
manifolds. Namely the terms GrW

k Ωn

X
(logD) comes equipped with pure Hodge

structures of weight k + n on their cohomology.
We easily define a residue morphism with local coefficients

(5.15) Res⊗ idV : Wk+wΩn

X
(logD,V) −→ (ik)∗Ω

n−k

D̃k
(V)

and this allows us to conclude, combining with the case of compact Kähler mani-
folds:

Theorem 5.2. For a polarizable VHS V defined over X and extending as VHS to
the compactification j : X →֒ X, the data

(5.16)
(
(RTWj∗V,W ), (Ω•

X
(logD,V),W, F )

)

is a mixed Hodge complex of sheaves over X that computes H•(X,V) and that is
lax symmetric in V.
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Proof. Via the map (5.15), the terms GrW
k+w Ωn

X
(logD) carry pure Hodge structures

of weight n + k + w, because on the right-hand side we get cohomology groups of
compact Kähler manifolds with coefficients in the polarizable VHS V of weight w.

�

From the construction we see that the GrW
w part of this MHC is the pure Hodge

complex of weight w computing H•(X,V). Hence for all i, Hi(X,V) has weights

between i+ w and 2i+ w, with GrW
w+iH

i(X,V) = Hi(X,V).

6. Degenerating VMHS and the case of curves

We now want to deal with VMHS, including the case of pure VHS, over X which
degenerate when approaching to the boundary D. The preliminary technical step,
that we will also need in the next section, is to understand the extension of local
systems across D. After, we will specialize to the case where the base is a curve
since this situation is simpler to understand.

6.1. Preliminaries on extensions of local systems. In this section X is still
allowed to be any open subset of compact Kähler manifold X whose complement
is a SNC divisor D.

Let V be a local system over X of vector spaces over C. Deligne has shown
([Del70, § II.5], see also [HTT08, § 5]) that its associated flat vector bundle (V ,∇)
extends as a meromorphic bundle M to X. For each half-open interval I of length

1, there is a unique vector bundle with connection (V
I
,∇) over X, seen as a lattice

inside M, extending (V ,∇) such that ∇ has logarithmic poles on D and such that
the residue of ∇ along any component Di of D

(6.1) ResDi
(∇) ∈ Ω1

Di
(End(V))

has eigenvalues of real part contained in I.
For two such flat bundles (V1,∇1), (V2,∇2) with associated meromorphic exten-

sionsM1,M2 the meromorphic extension of V1⊗V2, equipped with the connection

(6.2) ∇ = ∇1 ⊗ id2 + id1 ⊗∇2,

is exactly M1 ⊗M2. However the construction of V
I

is not compatible with this
tensor product.

Hence we will make the assumption that our local systems have unipotent mon-
odromy around each component Di. In this case we can take for (V ,∇) the unique
extension for which the residues are nilpotent (i.e. have 0 as only eigenvalue) and
call it the canonical extension of (V ,∇). Note that the residue of a tensor product
(V ,∇) = (V1,∇1)⊗ (V2,∇2) is

(6.3) ResDi
(∇) = ResDi

(∇1)⊗ id2 + id1 ⊗ ResDi
(∇2)

which is again nilpotent if both residues are.
Classically, there is a quasi-isomorphism Rj∗VC ≈ Ω•

X
(logD,V) over X and we

want first to replace Rj∗V by RTWj∗V. So we will need the following proposition.

Proposition 6.1. For the local system V over X with unipotent monodromy around
D and with canonical extension V as vector bundle over j : X →֒ X, there are two
chains of quasi-isomorphisms

(6.4) RTWj∗V
≈
−→ RTWj∗Ω

•
X(V)

≈
−→ RTWj∗(TW∗Ω•X(V))
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and

(6.5) Ω•
X

(logD,V)
≈
−→ j∗(TW∗Ω•X(V))

≈
−→ RTWj∗(TW∗Ω•X(V)).

Proof. Comparing to the previous section, only the part

(6.6) Ω•
X

(logD,V) −→ j∗(TW∗Ω•X(V))

is different. But since TW∗Ω•X(V) is a soft resolution of Ω•X(V) which itself is
quasi-isomorphic to V, then j∗(TW∗Ω•X(V)) represents Rj∗V and the fact that this
is a quasi-isomorphism is also classical (see [HTT08, Theorem 5.2.24]). �

Again, the above chain is lax symmetric monoidal in V because we restricted to
local systems with unipotent monodromy.

6.2. Degenerations of VMHS. We continue with an open manifold j : X →֒ X.
First, it is known that the local monodromy of a polarizable VHS on X around
D which is defined over a number field k is automatically quasi-unipotent ([Sch73,
Lemma 4.5]). Hence there is some finite cover of X ramified along D over which it
is unipotent. This justifies that we will only work with unipotent VHS.

We then specialize to the case where X is a curve, so D is a finite set of points.
In his study of degenerations of pure polarizable VHS, Schmid [Sch73] has shown
that the holomorphic bundles F• of a polarizable VHS V of weight w on X can
be extended to X as holomorphic sub-vector bundles of V . Around x ∈ D the
residue operator is a nilpotent operator N(x) of the fiber Vx to which is associated
a monodromy filtration:

Definition 6.2 ([SZ85, 2.1]). The monodromy filtration associated to a finite-
dimensional vector space V and a nilpotent endomorphism N , centered at w ∈ Z,
is the unique increasing filtration M• such that for all i ∈ Z:

(1) N(Mi) ⊂Mi−2,

(2) N i induces an isomorphism Grw+i
M V

≃
−→ Grw−i

M V .

Schmid then shows that the this monodromy filtration centered at w together

with F
•

x gives a MHS on Vx.
In this situation Zucker [Zuc79, § 13] constructed, first a pure HS of weight i+w

on each Hi(X, j∗V), and then a MHS on Hi(X,V) whose part of lowest weight is
exactly Hi(X, j∗V). The Hodge filtration is defined on Ω•

X
(logD,V) as usual using

the bundles F
•
⊂ V. The description of the weight filtration uses the previous

monodromy filtration; in particular the upper bound for the weights of Hi(X,V)
depends on the order of nilpotency ofN(x). The MHS constructed by Zucker comes
indeed from a MHC and is defined over the field k ⊂ R if V is.

Suppose now that X is still a curve but that V is a graded-polarizable VMHS.
The local systems W• ⊂ V also extend as vector bundles to W• ⊂ V . The problem
of getting a similar good theory of degenerations is studied in detail in the paper
of Steenbrink-Zucker. There is introduced the notion of admissible VMHS ([SZ85,
3.13]). For this is required graded-polarizability, that the filtration F• ⊂ V also

extend to F
•
⊂ V , and that the nilpotent residue N(x) around x behaves well

with respect to the weight filtration of each fiber Vx, i.e. there exists the relative
monodromy filtration:
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Definition 6.3 ([SZ85, 2.5]). The relative monodromy filtration associated to a
finite-dimensional vector space V with an increasing filtration W• and a nilpotent
endomorphism N respecting W• is a filtration M• of V such that:

(1) For all i ∈ Z, N(Mi) ⊂Mi−2,

(2) M induces on each Grk
W V the monodromy filtration of endomorphism in-

duced by N , centered at k.

It is unique when it exists. Pure polarizable VHS are then admissible because of
the results of Schmid. Also, VMHS of geometric original are shown to be admissible
in their paper (§ 5). For admissible VMHS, they are then able to construct a MHS
on Hi(X,V), again coming from the cohomology of a MHC and defined over k ⊂ R

if V is.
Also, since we work on tensor product, we will need to know:

Proposition 6.4 ([SZ85, Appendix]). For two finite-dimensional vector spaces
V1, V2 with nilpotent endomorphisms N1, N2 and filtrations W 1

• ,W
2
• , having relative

monodromy filtrations M1
• ,M

2
• , then the monodromy filtration of V1⊗V2 with respect

to the endormophism N = N1⊗ idV2
+ idV1

⊗N2 and the filtration W 1⊗W 2 exists
and is M1 ⊗M2. Consequently, the category of admissible VMHS on a curve is
closed under tensor product.

6.3. Construction for admissible VMHS. First we follow entirely the construc-
tion of Steenbrink-Zucker.

Theorem 6.5 ([SZ85, § 4]). For an admissible VMHS V over a curve j : X →֒ X
with unipotent monodromy around the singularities, there exists a filtration W• on
all terms of Theorem 6.1 such that the data

(6.7)
(
(RTWj∗V,W), (Ω•

X
(logD,V),W, F )

)

forms a mixed Hodge complex of sheaves computing H•(X,V), defined over k ⊂ R

if V is defined over k.

Construction. At each point x of D, on the fiber Vx, is defined a filtration W•(x)
(coming from the canonical extensionsW• of the local systems W• with associated
flat bundles (W•,∇)), a nilpotent endomorphism N(x) (residue of ∇), and the
relative monodromy filtration M•(x) whose existence is part of the admissibility
conditions. Then is defined a filtration

(6.8) Zk(x) := N(x)(Wk(x)) +Mk−1(x) ∩Wk−1(x).

This defines uniquely a filtration W• of Ω•
X

(logD,V) by sub-complexes, where

WkΩ•
X

(logD,V) is the sub-complex of Ω•
X

(logD,Wk) formed by Wk in degree 0

and whose part in degree 1 at x lies between Im(∇) and Ω1
X

(logD,Wk) and is sent

to Zk(x) via the residue

(6.9) Resx : Ω1
X

(logD,Wk) −→Wk(x).

For a local coordinate t at x, with Zk(x) extending to a local system Zk and a
sub-bundle Zk of Wk, the complex WkΩ•

X
(logD,V) is

(6.10) Wk
d
−→

dt

t
⊗ (Zk + tWk).

On Rj∗V, for any functorial resolution Rj∗, this corresponds to the following
construction: WkRj∗V is the sub-complex of Rj∗V formed by
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(1) First consider Rj∗(Wk) ⊂ Rj∗V.
(2) Then truncate: (τ≤1Rj∗(Wk))0 = Rj∗(Wk)0,

(6.11) (τ≤1Rj∗(Wk))1 = Ker
(
d : Rj∗(Wk)1 −→ Rj∗(Wk)2

)

and (τ≤1Rj∗(Wk))i = 0 for i > 1. It has the same cohomology as Rj∗(Wk)
since on a curve Rij∗(Wk) = 0 for i > 1.

(3) Finally (WkRj∗V)0 := (Rj∗(Wk))0 and

(6.12) (WkRj∗V)1 := d(Rj∗(Wk)0) + (τ≤1Rj∗(Wk))1 ∩Rj∗(Zk)1.

In our situation, we apply this with Rj∗ replaced by any of the functors appearing
in Proposition (6.1), that is, with RTW, RTWj∗Ω

•
X , RTWj∗(TW∗Ω•X), j∗(TW∗Ω•X).

When V is defined over the field k, then so is Z•(x), hence W• onRTWj∗V is defined
over k.

The computations of GrW• done in their article indeed show that this gives a
mixed Hodge complex of sheaves. �

Proposition 6.6. The above mixed Hodge complex is lax symmetric monoidal in V.

Proof. It will obviously be symmetric once it is lax monoidal because we used the
Thom-Whitney functors. Given two VMHS V1, V2 and a fixed base point x, with
associated residues N1(x), N2(x), monodromy filtrations M1

• (x),M2
• (x), filtrations

Z1
•(x), Z2

• (x) etc, the maps

(6.13) RTWj∗V1 ⊗RTWj∗V2 −→ RTWj∗(V1 ⊗ V2)

and

(6.14) Ω•
X

(logD,V1)⊗ Ω•
X

(logD,V2) −→ Ω•
X

(logD,V1 ⊗ V2)

are the obvious ones (recall that V1 ⊗ V2 = V1 ⊗ V2 since we work with unipotent
monodromy around D). The compatibility with the filtrations F • is also obvious.

So what it remains is to check the compatibility with the weight filtration. Since
our complexes are concentrated in degrees 0 and 1 the only non-trivial multiplication
is the one between degrees 0 and 1. If we denote by M•(x) the relative monodromy
filtration of V1⊗V2 at x, for the residue N(x) with its associated Z•(x), all we have
to do (explicit for example in equation (6.10)) is to check that there is a natural
inclusion

(6.15) W
1

k(x)⊗ Z2
ℓ (x) ⊂ Zk+ℓ(x)

for all k, ℓ.
This is linear algebra; to compute this let us drop the letter x and write W•

for W•. Recall that N = N1 ⊗ id2 + id1 ⊗ N2, M = M1 ⊗M2, W = W 1 ⊗W 2

and Zℓ = N(Wℓ) + Mℓ−1 ∩Wℓ−1. But it will be more practical to have another
expression for Z• as proved in [Kas86, § 3.4]:

(6.16) Zℓ = N(Wℓ) +
⋂

j≥0

(N j)−1(Wℓ−j).

So, to compute W 1
k ⊗ Z

2
ℓ , for one term of the sum

(6.17) W 1
k ⊗N2(W 2

ℓ ) ⊂ (N1 ⊗ id2 + id1 ⊗N2)(W 1
k ⊗W

2
ℓ ) ⊂ N(Wk+ℓ) ⊂ Zk+ℓ
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and for the other term

(6.18) W 1
k ⊗

⋂

j≥0

(N j
2 )−1(W 2

ℓ−j)

⊂
⋂

j≥0

(
(N1 ⊗ id2 + id1 ⊗N2)j

)−1
(W 1

k ⊗W
2
ℓ−j)

⊂
⋂

j≥0

(N j)−1(Wk+ℓ−j) ⊂ Zk+ℓ.

This concludes. �

In this construction, if V has weights greater than w then Hi(X,V) has weights
greater than w + i for all i.

Remark 6.7. If V is a pure VHS of weight w, then in the above construction the
filtrationW• is concentrated in weight w and M• is simply the monodromy filtration
of N , so the formula for Z is

(6.19) Zk(x) = N(x)(Vx) +Mk−1(x), w ≤ k ≤ w + q + 1

(where q is the order of nilpotency of N(x)), with Zk(x) = 0 or Vx outside of this
range. So the above construction reduces to the one of [Zuc79, § 13], modified for
using RTWj∗ instead of Rj∗.

Remark 6.8. If furthermore there is a point x of D over which V is non-degenerate
(i.e. extends as VHS, equivalently has trivial monodromy) then the following hap-
pens: the monodromy is trivial, the canonical extension of V is V itself, the operator
N(x) is zero, the monodromy filtration is trivial and the weight filtration is con-
centrated in w. One can then check line by line that everything reduces to the case
of our section 5.

7. Mixed Hodge modules

The theory of mixed Hodge modules of Saito is the most general one in order
to understand admissible variations of mixed Hodge structure over a general base
manifold and to construct mixed Hodge structures on various related objects. It
is contained in two articles [Sai88], [Sai86]. See also the survey of Schnell [Sch14].
Since we focus only on the construction of MHS on cohomology with local coef-
ficients, the survey of Arapura [Ara10] as well as the short note [Sai89] are very
useful.

The notion of admissible VMHS is studied by Kashiwara in [Kas86]. The def-
inition is given by testing the admissibility of Steenbrink-Zucker on pull-backs to
curves; the admissibility condition for a VMHS on X depends on the choice of a
compactification X but is invariant under birationally equivalent compactifications,
hence it is independent of X if X is quasi-projective.

In this section we restrict to VMHS over the field Q in order to cite directly the
literature, but it seems that this also works with a field k ⊂ R. It is however not
obvious at all if there exists a notion of mixed Hodge module for VMHS over C.
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7.1. Brief reminder. For any complex manifold X of some dimension N is defined
a category MF(X) of filtered DX-modules with Q-structure whose objects are triples
(P,M•, α) where P is a perverse sheaf over Q on X , M a regular holonomic DX -
module with a good filtration F•, and α is a quasi-isomorphism DR(M) ≃ P ⊗ C

where

(7.1) DR(M) :=
{
M−→ Ω1

X ⊗M −→ · · · −→ ΩN
X ⊗M

}
[N ].

Any VHS (V,F•,∇) over X defines an object of MF(X) where P is V[N ] (shifting
the local system over Q by the dimension of X to make it a perverse sheaf on X)
and M is the DX -module coming from the flat connection (V⊗OX ,∇). Griffiths’
transversality is then precisely the statement that F• forms a filtration of M as
DX -module.

For each w ∈ Z, the category of pure Hodge modules of weight w is a full sub-
category MH(X,w) ⊂ MF(X). The axioms are quite evolved; they imply that
each element of MH(X,w) has a decomposition by strict support running over the
irreducible closed subvarieties Z ⊂ X , and that such an element with strict support
Z is a VHS of weight w − dim(Z) over some dense open subset of Z.

Inside MH(X,w) there is also the full sub-category of polarizable Hodge modules,
corresponding to polarizable VHS. One important theorem of Saito is that any
(polarizable) variation of Hodge structure over X ⊂ X of weight w defines a pure
(polarizable) Hodge module of weight w +N over X with full support.

There is also a category MFW(X) whose objects are the objects of MF (X)
equipped with an additional increasing filtration W• (so W• is defined on P as
well as on M and α is a filtered quasi-isomorphism). Any VMHS (without addi-
tional assumption) over X defines on object of MFW(X) similarly as in the pure
case. Then the category of mixed Hodge modules MHM(X) is a full subcategory of
MFW(X), whose Grw

W of the objects are in MH(X,w), with additional axioms on
the way these graded parts are related.

Theorem 7.1 ([Sai86], [Sai89, 3.3]). Let V be a graded-polarizable VMHS over X,
admissible in j : X →֒ X, with unipotent monodromy around D = X \ X. Then
there are filtrations W•, F

• such that

(7.2)
(
(Rj∗V,W), (Ω•

X
(logD,V),W, F )

)

is a mixed Hodge complex of sheaves over X.

Sketch of construction. Consider on one sideM the meromorphic extension of the
flat connection (V ,∇) across D. This is the D

X
-module corresponding to the

perverse sheaf P := Rj∗V[N ] under the functor DR, containing V as canonical
lattice.

Then Saito proves that this defines a mixed Hodge module M on X ([Sai86,
Theorem 3.27]). The Hodge filtration is defined via the sheaves j∗F•. There is a
procedure to define a weight weight filtration (see details below) on P as well as on
M. And this defines the corresponding filtrations on Ω•

X
(logD,V) via the inclusion

(7.3) (Ω•
X

(logD,V),W•[N ], F•)[N ] ⊂ (DR(M),W•, F•)

(the shift is necessary because of the convention that a VHS of weight k extends to
a Hodge module of weight k+N) which becomes a bifiltered quasi-isomorphism. In

general if the monodromy is only quasi-unipotent we must use the extension V
[0,1)
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where the residues have eigenvalues of real parts in [0, 1). The weight filtration

is constructed in such a way that the terms GrWk M are pure polarizable Hodge
modules of weight k.

It remains to check the axioms of MHC for K := RΓ(X,M), the derived push-
forward to a point. This follows from the theorems of Saito ([Sai88, Theorem 5.3.1])

on pure Hodge modules: on the GrWk K, the filtration F is strict and the cohomol-
ogy carries pure Hodge structures. This is written by Saito for push-forward via
projective morphisms but for the push-forward to a point this also works for com-
pact Kähler manifolds (see [Sai88, 5.3.8.2]), since this relies only on the analytic
theory ([CKS87], and in dimension 1 this is just the work of Zucker). �

What we will need now is to have a better understanding of the weight filtration
and its multiplicativity.

Remark 7.2. There is no tensor product at the level of mixed Hodge modules, but
only in their derived category. So part of the complications is that we have to study
directly the functor from VMHS to MHC, and not the functor from VMHS to MHM,
which is not so often treated in the literature. Also, there is no tensor product at
the level of perverse sheaves. So we choose to drop the rational part and work
only with the complex part now. This will be enough to define a C-mixed Hodge
complex which will be lax symmetric monoidal. We do not know if it is possible to
introduce the Thom-Whitney functors here and to develop a commutative theory
of mixed Hodge modules (using for example RTWf∗ for a projective morphism f ,
and the Thom-Whitney vanishing nearby and vanishing cycles defined by Navarro
Aznar [Nav87, § 14-15]). We do not know if this even makes sense.

So let us explain the construction of the weight filtration. We reduce to X being
a polydisk of dimension N with coordinates x1, . . . , xN and X is the complement
of a normal crossing divisor D with components Di = {xi = 0}. We assume that
the admissible VMHS V has unipotent monodromy around D and is extended to
the D

X
-module M. Along each axis Di is defined an increasing V -filtration V (i)

of M indexed by Z (this is simpler with unipotent monodromy). It satisfies that

Gr
V (i)
0 M is the vanishing cycles ψxi

M of M for the function xi and Gr
V (i)
−1 M is

the nearby cycles ϕxi
M. There are canonical maps cani : ψxi

M→ ϕxi
M given by

−∂i, vari : ϕxi
M→ ψxi

M given by multiplication by xi, andNi the endomorphism
of ψxi

M given by the logarithm of the monodromy around Di.
For a subset of indices I ⊂ {1, . . . , N}, define ΨIM as the composition of the

N functors ϕxi
(if i ∈ I) and ϕxi

(if i /∈ I) (the order actually doesn’t matter).
There are various maps between these induced by can and var: for i 6∈ I, cani goes
from ΨI∪{i}M to ΨIM, and vari goes in the opposite direction. The important
fact is that the filtered D

X
-moduleM can be entirely reconstructed from this data

([GGM85], see also [Ara10, § 4.5], [Sai89]). In our case of unipotent monodromy,
all ΨIM are the vector space Vx, the canonical fiber at x = 0 (if the monodromy
is not unipotent, then there are other vector spaces corresponding to the different
eigenvalues of the monodromy). Each of it is equipped with the weight filtration W•
and the nilpotent endomorphisms Ni commuting between them and compatible
with W•.

Then what we have to do is to replace W• on ΨIM by another filtration WI,•.
If I = {i} then WI,k is given, as in the case of curves, by the filtration Zi(W )k :=
Ni(Wk) + Mk−1 ∩Wk−1 where M is the relative monodromy filtration for Ni. In
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general we iterate this process: if I = {i1, . . . , ir} then

(7.4) WI,k := Zi1
(Zi2

(· · ·Zir
(W )))k.

Again the order of application of Z does not matter.
The diagram of filtered vector spaces and maps between them that we get, and

use to re-constructM, gives us the filtered DX -module underlying the mixed Hodge

module extending the VMHS V to X.

Proposition 7.3. In the above MHC, the part (Ω•
X

(logD,V),W•, F
•) is lax sym-

metric monoidal in V, giving a C-mixed Hodge complex which is lax symmetric.

Again the difficult step is to prove the lax monoidal condition. The symmetry
will be obvious since we drop the rational part.

Proof. With the previous description, we see that this is a generalization of the case
of curves. Given the two VMHS on X V1,V2, under the hypothesis of the previous
theorem, and extended to mixed Hodge modules M1,M2 on X with underlying D

X
-

moduleM1,M2, the weight filtration is described as above with the vector spaces
ΨIM1, ΨIM2. The tensor product VMHS V = V1 ⊗ V2 with its tensor product
weight filtration W• is extended to a mixed Hodge module M with underlying
D

X
-module M which is exactly M1 ⊗M2 when forgetting the filtrations.

The important fact is that in our previous description of D
X

-modules near a
point of normal crossings, then under tensor product, ΨIM1 and ΨJM2 get paired
to ΨI∪JM if I ∩ J = ∅ or 0 else. This is because each ΨI corresponds to applying

Gr
V (i)
−1 for i ∈ I and Gr

V (i)
0 for i /∈ I.

So the compatibility to check between the tensor products of filtrations involve
similar computations as in the proof of Proposition 6.6 (the case of curves), that is,

(7.5) W 1
k ⊗W

2
ℓ ⊂Wk+ℓ

and

(7.6) W 1
k ⊗ Zi(W

2)ℓ ⊂ Zi(W )k+ℓ

applied several times �

We claim that this is enough for our needs and with a C-MHC we can construct

a C-MHS on Ôρ ([Lef19, Proposition 10.6]).

8. Application to the deformation theory of representations of

fundamental groups

In this final section we use the constructions of mixed Hodge diagrams of Lie
algebras (i.e. lax symmetric mixed Hodge complexes computing the cohomology
with coefficients in a local system of Lie algebras) to describe the formal deformation
theory of representation of the fundamental group of a variety X . Thus the result
presented here extend and improve directly the results of [Lef19].

8.1. Representations of fundamental groups. Let X be a complex variety,
compact or not: in all cases the fundamental group π1(X,x) at some fixed base-
point if finitely presentable. Let G be a linear algebraic group defined over the field
k (k ⊂ R or k = C), with Lie algebra g. The representations

(8.1) ρ : π1(X,x)→ G(k)
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are parametrized by the k-points of an affine scheme of finite type Hom(π1(X,x), G)

(see [LM85]). Fixing such a representation ρ, let Ôρ be the completion of the local
ring of Hom(π1(X,x), G) at its k-point ρ. It has an associated deformation functor
Defρ, which is a functor from the category of local Artin k-algebras with residue
field k (simply denoted by Artk) to the category of sets given by

(8.2) Defρ : A 7−→ {ρ̃ : π1(X,x)→ G(A) | ρ̃ = ρ over G(k)} = Hom(Ôρ, A).

Over R or C, the representation ρ defines a flat principal G-bundle P over X .
The associated bundle

(8.3) ad(ρ) := ad(P ) = P ×G g

where G acts on g via Ad is then a flat vector bundle with a Lie bracket. So the
algebra L of C∞ differential forms over X with values in ad(ρ)) has the structure of
a differential graded Lie algebra: the bracket combines the wedge product of differ-
ential forms and the Lie bracket in g, and the differential acts only on differential
forms since ad(ρ) is flat.

To any such DG Lie algebra (over any field k of characteristic zero) is associated
a deformation functor DefL. For A ∈ Artk with its unique maximal ideal mA,
L0 ⊗mA is a nilpotent Lie algebra, thus has a group structure denoted by

(8.4) (exp(L0 ⊗mA), ∗)

given by the Baker-Campbell-Hausdorff formula, and acts on L1 ⊗ mA by gauge
transformations. Then DefL is given by

(8.5) DefL(A,mA) :=
{
x ∈ L1 ⊗mA

∣∣∣∣ 0 = d(x) +
1

2
[x, x] ∈ L2 ⊗mA

}
/ exp(L0 ⊗mA).

Also, in our case L is equipped with an augmentation εx : L → g which evaluates
differential forms at x. To this is associated an augmented deformation functor
DefL,ε which is a small variation of DefL, explicitly written by Eyssidieux-Simpson
[ES11, § 2.1.1]:

(8.6) DefL,εx
(A,mA) :=

{
(x, eα) ∈ (L1 ⊗mA)× exp(g⊗mA)

∣∣∣∣ 0 = d(x) +
1

2
[x, x]

}
/ exp(L0 ⊗mA)

where, for eλ ∈ exp(L0 ⊗mA),

(8.7) eλ.(x, eα) := (eλ.x, eα ∗ e−εx(λ)).

See [Man04] for many more details on formal deformation theory and DG Lie
algebras.

Part of the main theorem of Goldman-Millson can be stated as follows:

Theorem 8.1 (Goldman-Millson [GM88]). For any complex manifold X and rep-
resentation ρ of π1(X,x) into a linear algebraic group G, and for L the DG Lie
algebra of C∞ differential forms with values in the flat bundle ad(ρ), there is an
isomorphism of deformation functors

(8.8) Defρ ≃ DefL,εx
.
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Furthermore, a quasi-isomorphism of DG Lie algebras L → M (resp. a quasi-
isomorphism augmented over g) induces an isomorphism of deformation functors
DefL → DefM (resp. DefL,εx

→ DefM,εx
).

In other words Ôρ can be computed from the data of L above g up to quasi-
isomorphism. In our previous work, we found canonical formulas compatible with

the notion of mixed Hodge complex to construct a functorial MHS on Ôρ in situa-
tions where L has a structure of mixed Hodge diagram of Lie algebras. Implicitly,

we consider Ôρ to be a projective limit

(8.9) Ôρ = lim
←
Ôρ/m

n

of its quotients by powers of its maximal ideal, that are finite-dimensional, hence

a MHS on Ôρ means a projective limit of MHS, that are also compatible with its
structure of algebra.

Theorem 8.2 ([Lef19]). When ρ is the monodromy of a representation of π1(X,x)
for which one can construct a mixed Hodge diagram of Lie algebras L over k (k ⊂ R

or k = C), computing the cohomology of X with local coefficients in ad(ρ), with

its augmentation εx : L → g at x, then one can construct a MHS on Ôρ over k,
functorial in the data of L, εx up to quasi-isomorphism.

Combining this with the constructions through § 4–7, we deduce:

Theorem 8.3. Let ρ be the monodromy representation of a graded-polarizable
VMHS V over X, admissible in X ⊂ X and with unipotent monodromy at infinity.

Then there is a MHS on Ôρ, functorial in X,x, ρ.
If V is defined over the field k (k ⊂ R or k = C) and either: X is compact,

or X is one-dimensional, or V is a pure VHS with trivial monodromy at infinity.
Then this MHS is defined over k. Else, V has to be defined over Q and the MHS
we get is defined only over C.

Proof. First, if ρ is the monodromy of a VMHS V over X , then ad(ρ) ⊂ End(V)
is again the monodromy of a VMHS by linear algebra. It is graded-polarizable if ρ
is, and it is again admissible if ρ is ([SZ85, Appendix]), and of course it is defined
over the same base field.

Thus by the constructions of this article, given a compactification X ⊂ X into
a compact Kähler manifold, we get in all the listed cases first a MHC of sheaves,
then a MHC L by applying RTW(X,−), that computes the cohomology of X with
local coefficients in ad(ρ) and that is lax symmetric monoidal in ad(ρ). It is defined
over k for the first listed cases when we can do this without mixed Hodge modules,
else only the part over C is proven to be lax symmetric monoidal. Then L has an
induced structure of Lie algebra coming from the Lie bracket on ad(ρ). This is the
mixed Hodge diagram required for Theorem 8.2.

To apply our method [Lef19, § 8-9] we also need the augmentation εx to be
a morphism of mixed Hodge diagrams, when g is considered as a mixed Hodge
diagram concentrated in degree zero. This is obvious in all these cases.

Furthermore the mixed Hodge diagramL will be functorial in the data ofX,X, x, ρ
for the same reasons as in the classical constructions (i.e. without the Thom-
Whitney functors). When working with quasi-projective varieties, it is independent
of X up to quasi-isomorphism (see for example the proof of [Lef19, Theorem 11.5])
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which is enough for the final MHS on Ôρ to be functorial in X,x, ρ only. For non-
quasi-projective varieties, the same argument applies when one fixes an equivalence
class of compactifications of X . �

Remark 8.4. If the monodromy ρ of V is only quasi-unipotent at infinity, then there
is a finite cover π : Y → X to which the pull-back π∗ρ is unipotent. So one can
construct the mixed Hodge diagram of Lie algebras in an equivariant way at the
level of Y , with the same ideas as in [Lef19, § 11] (the case of finite image): at
least if X is quasi-projective, then the cover π extends to a ramified cover Y → X
and Y is projective, furthermore it is possible to construct such a Y smooth and
equivariant. Hence if M is the mixed Hodge diagram constructed for (Y, Y , π∗ρ)
then taking the invariants under the finite group of the cover gives the mixed Hodge
diagram for (X,X, ρ). It is also possible to lift the augmentation εx to M , using
the augmentations on Y at all points in π∗(x). It is likely that this arguments also
holds if X is only compact Kähler, but not so obvious and we lack of references.

8.2. Deformation functor of DG Lie and L∞ algebras. We are going to
describe the consequence of L being a mixed Hodge diagram of Lie algebras, with
restrictions on the possible weights on cohomology, to its deformation functor.

To have a better understanding of the deformation functor of DG Lie algebras,
we will work with the much more powerful L∞ algebras. Briefly, a L∞ algebra is
given by a graded vector space L with anti-symmetric operations in r variables of
degree r − 2

(8.10) ℓr : L⊗r −→ r, r ≥ 1

satisfying an infinite list of axioms. Among these, ℓ1 is a differential d on L and ℓ2

behaves likes a Lie bracket, for which d is a derivation, except that it satisfies the
Jacobi identity only up to homotopy given by ℓ3, and ℓ3 itself satisfies higher order
relations. L∞ algebras enjoy the following very nice properties:

(1) L∞ algebras with ℓr = 0 for all r ≥ 3 are the same as DG Lie algebras.
(2) If L is a DG Lie algebra then its cohomology H(L) comes equipped with a

structure of L∞ algebra such that L and H(L) become quasi-isomorphic in
the sense of L∞ algebras. This is called a homotopy transfer of structure
from L to H(L).

(3) As a consequence, a DG Lie algebra L is formal (i.e. quasi-isomorphic to
its cohomology) if and only if there exists a homotopy transfer of structure
to H(L) with ℓr = 0 for all r 6= 2 (ℓ1 is always zero on H(L) since it is
induced by the differential).

See the lectures of Manetti [Man04] and the book of Loday-Vallette [LV12] for much
more motivation for L∞ algebras.

Such a L also has a deformation functor on Artk which is given by
(8.11)

DefL : (A,mA) 7−→



x ∈ L1 ⊗mA

∣∣∣∣∣∣
0 =

∑

r≥1

ℓr(x, . . . , x)

r!
∈ L2 ⊗mA



 / ∼

where ∼ is a certain notion of homotopy equivalence. Again it is invariant under
quasi-isomorphism. We see that if ℓr = 0 for r ≥ 3 we recover the previous
deformation functor.
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8.3. Homotopy transfer of structure. We need to recall briefly how the homo-
topy transfer of structure works.

Let L be a L∞ algebra with operations denoted by µr. This includes the case of
DG Lie algebras with µr = 0 for r > 2. What we need to choose is a decomposition
in each degree

(8.12) Ln := An ⊕Kn ⊕Bn

where An is a complement to Ker(dn) ⊂ Ln and Bn is a complement to Im(dn−1) ⊂
Ker(dn). Then Kn forms a space of representatives for the cohomology Hn(L).
This also determines maps of complexes i : K• → L• (inclusion), p : L• → K•

(projection), and h : L• → L•−1 (homotopy) where h is given by the inverse of
the isomorphism A•−1 → B• induced by d, extended by 0 to A ⊕K. These maps
satisfy pi = idK and idL−ip = dh− hd, so L deformation retracts onto K.

Once such a choice is a made, it determines operations ℓr on K ≃ H(L) with
ℓ1 = 0 and such that L and H(L) become quasi-isomorphic in the sense of L∞
algebras via i and p.

One way to describe ℓr is via the set RTr of rooted trees with r leaves, that is,
trees that when written vertically, have r leaves thought of as input data and one
leave as output data, with internal vertices also presented vertically with at least
two input edges and one output edge. Such a tree T corresponds to a composition
scheme for a sequence (µn) of operations in n variables, by plugging one operation
µn in an internal vertex with n inputs. One can also label the edges by linear maps.
The formula for ℓr (see [LV12, § 10.3.4]) is then the sum over all trees T ∈ RTr of
the following operations in r variables: apply the maps i on the input leaves of T ,
maps µn on the internal vertices with n inputs, maps h on the internal edges, and
a map p on the last output edge.

8.4. Higher operations and weights. Let us explain how powerful this point of
view is. Because of the homotopy transfer of structure and the invariance by quasi-
isomorphism of the deformation functor, then the deformation functor of any DG
Lie algebra L can be written directly in H(L). We will work in cases where L has
Hn(L) = 0 for n ≤ 0, so the homotopy relation in the formula for DefH(L) is trivial,
and the other terms Hn(L) are finite-dimensional. Hence the formula for DefH(L)

gives us directly a complete local algebra pro-representing DefL: it is given as the
quotient of the power series on H1(L) by the equations 0 =

∑
r≥2 ℓr(x, . . . , x)/r!

seen as power series with values in H2(L).
If furthermore one can show that only finitely many of the operations ℓr :

H1(L)⊗r → H2(L) are non-vanishing, then the formula for DefH(L) gives a fi-
nite presentation of this complete local algebra: it is the completion of the local
ring of the germ at 0 inside H1(L) defined by a finite number of polynomial equa-
tions. For brevity we will simply say that the deformation functor is given by a
finite number of polynomial equation.

Now we will use this combined with the existence of weights on H(L).

Theorem 8.5. Let L be a mixed Hodge diagram of Lie algebras. Then on H(L)
there is an extra grading H•(L) over k that splits the weight filtration, i.e.

(8.13) WkH
n(L) =

⊕

i≤k

Hn
i (L),
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and there are induced higher operations ℓr that all respect this grading, i.e.

(8.14) ℓr(Hn1

k1
(L), . . . , Hnr

kr
(L)) ⊂ Hn1+···+nr−2

k1+···+kr
(L).

Proof. The first essential step is to use the theorem of Cirici-Horel [CH17, The-
orem 7.8, Theorem 8.2] which shows that (L,W ), over k, is quasi-isomorphic to
M := EW

1 (L) (the first page of the W -spectral sequence). Since their theorem
is formulated as a formality result for mixed Hodge complexes as a symmetric
monoidal category, it holds as well for our DG Lie algebras. Since the W -spectral
sequence degenerates at E2, H(M ) = H(L), and this M already comes equipped
with a weight grading M• that on cohomology splits the weight filtration of H(L).

The second essential step is to show that the theorem on homotopy transfer of
structure holds with an extra grading, see [BR18, Corollary 5.6] for the case of
commutative DG algebras. But it is clear that this also works for L∞ algebra since
the splitting of M can be taken in a compatible way with its grading and then the
maps constructed from the homotopy transfer of structure will respect this grading.
So we get higher operations on H(M ) that respect the grading. �

Remark 8.6. Such an argument is intended to be improved if one could show directly
a theorem of homotopy transfer of structure for mixed Hodge diagrams (Joana
Cirici, personal communication, work in progress). Ideally the operations ℓr would
be morphisms of mixed Hodge structures, encoding faithfully at the level of H(L)
at the same time both structures of MHC and of DG Lie algebra of L.

Now this game of higher operations and weights allows us to show that many
operations vanish automatically when they don’t respect the weights, and this leads
to a quite concrete description of DefL in many cases.

Theorem 8.7. Assume that L is a mixed Hodge diagram of Lie algebras with
Hn(L) = 0 for n ≤ 0 and such that the weights of H1(L) are all strictly posi-
tive. Then the complete local algebra that pro-represents DefL has a finite presen-
tation with weights on the generators being the weights of H1(L) and with weighted-
homogeneous relations with weights those of H2(L).

Proof. Because of the previous theorem, we compute the deformation functor in
H(L). The main point is that if x1, . . . , xr ∈ H1(L) have weight k1, . . . , kr > 0
then ℓr(x1, . . . , xr) ∈ H2(L) has weight k1 + · · ·+ kr ≥ r. But H2(L), being finite-
dimensional, has only finitely many weights. Hence for some N big enough all the
operations ℓr : H1(L)⊗r → H2(L) vanish for r > N . The equations giving the
deformation functor

(8.15)
ℓ2(x, x)

2
+
ℓ3(x, x, x)

3!
+ · · ·+

ℓN (x, . . . , x)

N !
= 0

are really a finite number of polynomial equations with weights on the variable x
in H1(L) and the relations take values in H2(L) respecting those weights. �

8.5. The augmentation. To apply the above method with the isomorphism of
functors of Goldman-Millson, we need to work with the augmented deformation
functor DefL,ε. In [Lef19, § 5] we argue that it is actually the deformation functor
of a canonical L∞ algebra structure on the (desuspended) mapping cone C of ε
that is constructed and studied by Fiorenza-Manetti ([FM07]). We will denote by
µr (r ≥ 1) these operations.
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We write these formula directly in the form we need: C has components

(8.16) C1 = L1 ⊕ g, Cn = Ln (n 6= 1).

The differential µ1 is induced by the one of L with the exception of d1 : C0 → C1

given by

(8.17) d1(x) := (d(x), ε(x)), x ∈ L0.

The operation µ2 is induced in a natural way by the Lie bracket, the only part
needed to be described being C0 ⊗ C1 → C1 given by

(8.18) µ2(x, (y, v)) :=

(
[x, y],

1

2
[ε(x), v]

)
, x ∈ L0, y ∈ L1, v ∈ g.

Furthermore, there is one operation µr for r ≥ 3 as follows. Applied to r elements
of g and k > 1 elements of L, µr+k is 0. Else, applied to r elements u1, . . . , ur of g
and exactly one element x of L it is given by a formula of the type

(8.19) µr+1(u1, . . . , ur, x) = Br

∑

τ

±[uτ(1), [uτ(2), . . . , [uτ(r), ε(x)] . . . ]]

where the sum is over the symmetric group, with a constant Br and with signs
in the sum. Since this has values in g, µr+1 is a non-trivial higher operation
(C1)⊗r ⊗ C0 → C1 for all r ≥ 2.

Then:

Lemma 8.8 ([Lef19, 5.3]). For this L∞ algebra structure on C,

(8.20) DefL,ε := DefC

We are in situations where ε is surjective and the induced ε on H0(L) is injective.
Hence H0(C) = 0. Let us recall also that there is a long exact sequence for the
mapping cone, which reduces here to the short exact sequence

(8.21) 0 −→ g/ε(H0(L)) −→ H1(C) −→ H1(L) −→ 0

and of course Hn(C) = Hn(L) for n 6= 0, 1. If L is an augmented mixed Hodge
diagram of Lie algebras, then the above sequence is a short exact sequence of MHS.

With all of this, we are ready to state our theorem, first without Hodge theory.

Theorem 8.9. Let ε : L → g be an augmented DG Lie algebra, let C be the cone
as above with its structure of L∞ algebra, assuming that ε is surjective on L0 and
that the induced ε on H0(L) is injective. Then there exist a transferred structure
of L∞ algebra on H(C) given by operations ℓ′r, and a transferred structure of L∞
algebra on H(L) given by operations ℓr, such that the deformation functor of H(C)
can be written as a product

(8.22) DefH(C) = DefH(L)×(g/ε(H0(L))),

in other words for (A,mA) ∈ Artk

(8.23) DefH(C)(A) =


(x, t) ∈

(
H1(L)⊕ (g/ε(H0(L)))

)
⊗mA

∣∣∣∣∣∣
0 =

∑

r≥2

ℓr(x, . . . , x)

r!



 .
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Proof. For this we prepare a homotopy transfer of structure for L, so we choose a
decomposition

(8.24) Ln := An ⊕Kn ⊕Bn

where K forms a space of representatives for the cohomology. This determines
again the maps i, p, h and higher operations ℓr on K ≃ H(L).

Then we choose such a decomposition for C simply by choosing a subspace t ⊂ g

complement to ε(H0(L)). This gives a splitting of C with

(8.25) C1 := A1 ⊕ (K1 ⊕ t)⊕ (B1 ⊕ ε(H0(L))).

and determines again maps i′, p′, h′ (closely related to i, p, h) and higher operations
ℓ′r in H(C) with

(8.26) H1(C) ≃ K1 ⊕ t ≃ H1(L)⊕ (g/ε(H0(L))).

What we then want to show is that the only non-zero operations ℓ′r : H1(C)⊗r →
H2(C) = H2(L) are the one induced from ℓr, i.e. that

(8.27) for y = (x, t) ∈ K1 ⊕ t, ℓ′r(y, . . . , y) = ℓr(x, . . . , x).

This gives directly the above form of the deformation functor. Such a fact is already
clear for r = 1 (ℓ′1 is always zero on cohomology) and for r = 2 since ℓ′2 is induced
by µ2 on cohomology and µ2 satisfies this.

For higher r we have to understand in more detail what happens in the homotopy
transfer of structure for C. We take r elements yj = xj + tj ∈ K1 ⊕ t and want to
compute ℓ′(y1, . . . , yr). Let T be a planar rooted tree as in section 8.3 with r leaves.
We first apply apply a map i′ to some n elements yj1

, . . . , yjn
then apply µn. If

n = 2 then what happens is as before, µ2(i(yj1
), i(yj2

)) equals µ2(i(xj1
), i(xj2

)) by
definition of µ2. If n > 2 then µn(i(yj1

), . . . , i(yjn
)) is zero simply because there

is no such higher operation on C (the elements yj1
, . . . , yjn

are all of degree 1).
Hence we see that the formula for computing ℓ′(y1, . . . , yr) is the same as the one
for computing ℓ(y1, . . . , yr). �

Remark 8.10. If L is formal above g, then the above computations show that DefL

reduces to the product of the equation [x, x] = 0 in H1(L) and the vector space
g/ε(H0(L)). Thus we recover completely the result of Goldman-Millson [GM88,
Theorem 3.5], purely by methods of L∞ algebras and without invoking their oper-
ation ⊲⊳ (kind of homotopy fiber product of groupoids [ES11, § 2.1.1] used to define
DefL,ε from DefL).

In geometric situations, this is what we get.

Corollary 8.11. Let ε : L → g be a mixed Hodge diagram of L∞ algebras, with
Hn(L) = 0 for n < 0, ε surjective on L0 and injective on H0(L). Assume that
all the weights of H1(L) are strictly positive. Then again DefL,ε has a finite pre-
sentation, which is the product of the one of Theorem 8.7 with the vector space
g/ε(H0(L)).

Proof. First we apply, as in the proof of Theorem 8.5, the theorem of Cirici-Horel
to the map ε : L → g over k. This map is quasi-isomorphic to an augmented DG
Lie algebra τ : M → h with an extra grading (on M and on h, respected by τ)
splitting the weight filtration at the level of cohomology. Hence h is just a splitting
of the weight filtration of g. This also defines a weight grading of the cone C of τ ,
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which is quasi-isomorphic to C, compatible with the operations µr of the cone, and
splitting the weight filtration on H(C).

Then we combine the method of Theorem 8.5 with the previous theorem: we
choose a splitting for C by combining a splitting for M and a splitting for τ(H0(M )) ⊂
h, both in a compatible way with the grading. The homotopy transfer of structure
with an extra grading then gives us operations ℓ′r on H(C) respecting the weight
grading, and at the level of H1(C)⊗r → H2(L) these coincide with the operations
ℓr of Theorem 8.7. �

8.6. Consequences. Finally, we come back to the study of the complete local

ring Ôρ of the representation variety of π1(X,x) at a representation ρ for various
cases for X and ρ where one can construct the augmented mixed Hodge diagram
of Lie algebras L. The previous description of DefH(C) = DefL,ε gives us directly a

description of Ôρ with its weight grading at least in the cases where there are only
a finite number of non-vanishing higher operations ℓr on H(L).

Recall that when ρ is the monodromy representation of a pure VHS V then
ad(ρ) ⊂ End(V) is a VHS of weight zero, hence in all our cases Hi(X, ad(ρ)) has
weights greater or equal to i. This can also be seen at a higher level: the derived
category of mixed Hodge modules admits a six-functors formalism and a notion of
weights analogous to the one of ℓ-adic sheaves in [Del80] such that for a map f ,
Rif∗ increases the weights by i.

(1) If X is compact Kähler and ρ is the monodromy of a polarized VHS over X ,
then H1(L) is pure of weight 1 and H2(L) is pure of weight 2. We already
know, or we recover, that L is formal and that there are no operations ℓr

for r ≥ 3 and ℓ2 is the Lie bracket induced on cohomology. We recover

well again the result of Goldman-Millson: Ôρ is given by the product of the
equation [x, x] = 0 in H1(L) (quadratic) with the vector space g/ε(H0(L)).

(2) If X is quasi-projective and ρ has finite image then the weights of L are
directly related to the weights of the finite cover Y → X over which ρ is
trivial. Hence H1(L) has weights only 1, 2 and H2(L) has weights only
2, 3, 4. The non-vanishing operations ℓr exist only for r = 2, 3, 4: only
ℓ2(x, x) for x of weight 1, 2 and ℓ3(x, x, x), ℓ4(x, x, x, x) for x of weight 1
produce weights allowed in H2(L). Furthermore, since ρ has finite image,
g/ε(H0(L)) vanishes. Thus we recover completely the result of Kapovich-

Millson: Ôρ has a presentation with generators of weight 1, 2 and relations
of weight 2, 3, 4.

(3) In the above case, assume that H1(Y ) is pure of weight 2. Then H1(L)
is also pure of weight 2. And H2(L) is again limited to weights 2, 3, 4.
Thus the only possible non-zero operation is ℓ2(x, x) for x of weight 2. So

we recover the main result of [Lef17]: in this case Ôρ is quadratic. And
we recover some form of purity implies formality (see [CH17]): the purity
of weights implies some partial formality of L hence it behaves as in the
compact case.

(4) If X ⊂ X (with X compact Kähler) and ρ is the monodromy of a polarized
VHS over X extendable to X, then H1(L) has again weights 1, 2 and H2(L)
has weights 2, 3, 4. Thus we recover the same result as with finite images
except that in this case we also have a non-zero part g/ε(H0(L)).
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(5) If X is a curve and ρ comes from a polarized VHS, then the lowest possible
weight of H1(L) is 1 and the lowest possible weight of H2(L) is again 2.
The higher weights are not so easy to describe, depending on the behavior
of the VHS near the singularities, and are not bounded without further
hypothesis on the monodromy. This is however enough to conclude that

there is a finite weighted-homogeneous presentation for Ôρ.

(6) In the most general case of X ⊂ X (with X compact Kähler) and ρ coming
from a pure polarizable VHS over X then again we know that H1(L) has
lowest possible weight 1 and we conclude as for curves, and again we cannot
bound the weights in this generality.

If V is mixed then a priori we cannot ensure that H1(L) has weights greater or
equal to zero without further hypothesis, and we cannot prove this way that there
are only finitely many equations, but our methods still allows us to write down

weighted-homogenous equations for Ôρ.
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