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On the asymptotics of Maronna’s robust PCA
Gordana Drašković, Student Member, IEEE, Arnaud Breloy, Member, IEEE and Frédéric Pascal, Senior

Member, IEEE

Abstract—The eigenvalue decomposition (EVD) parameters
of the second order statistics are ubiquitous in statistical
analysis and signal processing. Notably, the EVD of the M -
estimators of the scatter matrix is a popular choice to perform
robust probabilistic PCA or other dimension reduction related
applications. Towards the goal of characterizing this process,
this paper derives new asymptotics for the EVD parameters
(i.e. eigenvalues, eigenvectors, and principal subspace) of M -
estimators in the context of complex elliptically symmetric
distributions. First, their Gaussian asymptotic distribution is
obtained by extending standard results on the sample covari-
ance matrix in the Gaussian context. Second, their convergence
towards the EVD parameters of a Gaussian-Core Wishart
Equivalent is derived. This second result represents the main
contribution in the sense that it quantifies when it is acceptable
to directly rely on well-established results on the EVD of
Wishart-distributed matrix for characterizing the EVD of M -
estimators. Finally, some examples (intrinsic bias analysis, rank
estimation, and low-rank adaptive filtering) illustrate where the
obtained results can be leveraged.

I. INTRODUCTION

SECOND order statistics play a key role in signal pro-
cessing and machine learning applications. In the con-

text of elliptical distributions, these are characterized by the
scatter matrix, which describes the correlations between the
entries of the samples (and is proportional to the covariance
matrix, when the latter exists). Usually, this parameter is
unknown and must be estimated in order to apply a so-
called adaptive process. In this scope, the M -estimators of
the scatter matrix, introduced in [1], have motivated research
[2]–[8] due to their robustness properties over the large fam-
ily of Complex Elliptically Symmetric (CES) distributions
[5]. They notably offer robustness to outliers and heavy
tailed samples (now common in modern datasets), where the
traditional Sample Covariance Matrix (SCM) usually fails to
provide an accurate estimation.

The statistical characterization of the M -estimators of the
scatter matrix is a complex issue because they are defined by
fixed-point equations. While the SCM in a Gaussian setting
follows a well-known Wishart distribution [9], the true distri-
bution of the M -estimators remains unknown. Several works
derived asymptotic characterizations for these estimators.
Their asymptotic Gaussian distribution is derived in [10]
and extended to the complex case in [5], [11]. Probably
approximately correct (PAC) error bounds have been studied
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in [12]. Their analysis in the large random matrix regime
(i.e. when both the number of samples and the dimension
tends to infinity at the same rate) has been established in
[13], [14]. Recently, in [15], [16] it has been showed that
their distribution can be very accurately approximated by
a Wishart one of an equivalent theoretical Gaussian model
referred to as Gaussian Core Wishart Equivalent (GCWE).

Additionally, the eigenvalue decomposition (EVD) of M -
estimators is required in numerous processes. Indeed, the
eigenvectors of the scatter matrix are involved in probabilis-
tic PCA algorithms [17], [18], as well as in the derivation of
robust counterparts of low rank filters or detectors [19], [20].
The eigenvalues of the scatter matrix are used in model order
selection [21], [22], functions of eigenvalues are involved
in various applications such as regularization parameter
selection [6], [23], detection [24], and classification [25].
Hence, accurately characterizing the distribution of the M -
estimators EVD represents an interest, both from the points
of view of performance analysis and optimal process design.
In this paper, we derive new asymptotic characterizations
for the EVD parameters of M -estimators in the general
context of CES-distributed samples. For the eigenvalues, the
eigenvectors, and the principal subspace (i.e. the subspace
spanned by the r strongest eigenvectors), we derive:

• The standard Gaussian asymptotic distribution. This
result is obtained by extending the analysis of [26]
(for the SCM) and perturbation analysis of [27], [28]
to the complex M -estimators. This asymptotic analysis
provides an extension of the results obtained in [17],
[29], [30] since it gives the information about the
covariance between the eigenvalues of an M -estimator
and provides the exact structure of the asymptotic
covariance and pseudo-covariance matrix of principal
subspace. Also, contrary to the analyis done in [17],
[29], [30], all the results in this paper are derived for
complex data.

• The Gaussian asymptotic distribution in the GCWE
regime by extending the results of [15], [16]. To do so,
a central limit theorem is established to show that the
EVD parameters of M -estimators are asymptotically
concentrated around their GCWE counterparts with a
variance that is significantly lower than the one of the
standard asymptotic regime (derived around the true
expected values). Thus, this result represents the main
contribution in the sense that it quantifies when it is
acceptable to directly rely on well established results
on the EVD of Wishart-distributed matrices [9], [31]
for characterizing the EVD of M -estimators.
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In the last part, we eventually give three examples where
the proposed results can be leveraged:

1) We address the complex issue of characterizing the
intrinsic bias [32] of M -estimators in the CES context.
This quantity has been studied in [32] for the SCM
in the Gaussian context thanks to the distribution of
the eigenvalues of a Wishart matrix [9]. Extending this
analysis to M -estimators in the general CES context
represents, at first sight, an intractable problem be-
cause of their unknown exact distribution. However,
the established convergence of the eigenvalues of an
M -estimator toward their GCWE counterpart allows to
derive an accurate approximation of this intrinsic bias;

2) In the context of model order selection (i.e., rank esti-
mation) from non-Gaussian samples, we show that the
use of M -estimators (rather than the SCM) in theoretic
criteria derived for Gaussian models [33], [34] yields
the same results as the one obtained with the theoretical
GCWE. Again, this justifies a plug-in approach (using
M -estimators in processes derived under the Wishart
assumption), instead of a complete re-derivation that
would require to assume an exact CES distribution;

3) The performance of low rank filters [35] built from M -
estimators are derived in the same way (i.e., approached
by the one of their GCWE) to illustrate that the ap-
proach also holds for adaptive processes based on the
eigenvectors.

The body of this paper is organized as follows. Section
II introduces the CES distributions and M -estimators.
Section III contains the main results about the EVD of M -
estimators. Section IV introduces LR models and presents
the main results about principal subspaces of M -estimators.
In Section V Monte Carlo simulations are presented in order
to validate the theoretical results. Examples of applications
of the results are presented in Section VI. Conclusions are
drawn in Section VII.

Notation: Vectors (resp. matrices) are denoted by bold-
faced lowercase letters (resp. uppercase letters). AT , A∗,
AH and A+ respectively represent the transpose, conjugate,
Hermitian operator and pseudo-inverse of the matrix A. The
acronyms i.i.d. and w.r.t. stand respectively for “independent
and identically distributed,” and “with respect to.” The nota-
tion ∼ means “is distributed as,” while d

= stands for “shares
the same distribution as,” and d→ denotes convergence in
distribution. The operator ⊗ denotes the Kronecker product,
while vec(·) is the operator that transforms a matrix p × n
into a vector of length pn (concatenating its n columns into
a single one). Moreover, Ip is the p × p identity matrix, 0
is the matrix of zeros with appropriate dimension and K
is the commutation matrix (square matrix with appropriate
dimensions) which transforms vec(A) into vec(AT ), i.e.
K vec(A) = vec(AT ). The operator diag(·) transforms a
vector in a diagonal matrix A = diag(a), with [A]i,i = ai.
The set of Hermitian positive definite matrices is denoted
H++
M . The Stiefel manifold (set of semi-unitary matrices)

is denoted as Upr =
{
U ∈ Cp×r,UHU = Ir

}
. Finally,

GCN (0,V,W) denotes the zero-mean non-circular im-
proper complex normal distribution with covariance matrix
V and pseudo-covariance matrix W [5].

II. BACKGROUND

A. CES distributions

Complex Elliptically Symmetric (CES) distributions form
a general family of circular multivariate distributions [5],
parameterized by a mean vector µ and a scatter matrix Σ,
which describes the correlations between the entries. In the
absolute continuous case, the probability density function
(PDF) of a CES distribution can be written as

fz(z) = C|Σ|−1 gz
(
(z− µ)HΣ−1(z− µ)

)
(1)

where C is a normalization constant and gz : [0,∞) →
[0,∞) is any function (called the density generator) ensuring
Eq. (1) defines a PDF. The Complex Normal (Gaussian)
distribution z ∼ CN (µ,Σ) is a particular case of CES
distributions in which gz(z) = e−z and C = π−p. The
density generator gz allows to describe heavier or lighter
tailed distributions (see [5] and Section V for more exam-
ples of CES distributions). These CES distributions will be
denoted as CES (µ,Σ, gz). CES-distributed vectors have the
following stochastic representation

z
d
=
√
QAu + µ (2)

where Σ = AAH , u is uniformly distributed on the complex
sphere Up1 , and Q is a non-negative real random variable,
called the modular variate, independent of u with a PDF
depending only on gz. For the rest of the paper, we will
focus on the case of known mean, which allows to set µ = 0
without loss of generality.

B. M -estimators of the scatter matrix

Let (z1, . . . , zn) be an n-sample of p-dimensional com-
plex i.i.d. vectors with zi ∼ CES(0,Σ, gz). An M -estimator,
denoted by Σ̂, is defined by the solution of the following
M -estimating equation

Σ̂ =
1

n

n∑
i=1

u(zHi Σ̂−1zi)ziz
H
i (3)

where u is any real-valued weight function on [0,∞)
that respects Maronna’s conditions, ensuring existence and
uniqueness of Eq. (3) [1]. When u(t) = −g′z(t)/gz(t),
Eq. (3) corresponds to the MLE of the scatter matrix
parameter for z ∼ CES(0,Σ, gz). However, u may not be
related to gz in practice. Despite this potential mismatch, M -
estimators ensure good performance in terms of estimation
accuracy on the whole CES family (formally characterized in
the following sections). Additionally, M -estimators present
robustness to contamination by outliers, which is why they
are also usually referred to as robust estimators. Below are
listed some examples of M -estimators that will be used
through the paper.
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Example II.1 (SCM [36]) The sample covariance matrix
(SCM) is given by

Σ̂SCM =
1

n

n∑
i=1

ziz
H
i . (4)

The SCM can be considered as a “limit case” of Eq. (3)
when u(zHi Σ̂−1zi) = 1. This estimator corresponds to the
MLE in the Gaussian case. Note that for the SCM, Eq. (3)
becomes explicit which makes this estimator very convenient
for statistical analysis. Indeed, for z ∼ CN (0,Σ), the SCM
follows a Wishart distribution with well-known properties
[9]. However, the SCM is not robust and can perform poorly
in comparison to M -estimators in the CES framework or in
the context of contaminated data.

Example II.2 (Tyler’s M -estimator [2]) Tyler’s M -
estimator is given as the solution of the following equation

Σ̂T =
p

n

n∑
i=1

ziz
H
i

zHi Σ̂−1zi
. (5)

In order to provide a unique solution, the trace of this
equation is usually normalized giving the estimation of so-
called shape matrix.

Example II.3 (Student’s M -estimator) Student’s M -
estimator is an MLE for Student’s t-distribution. It is given
as the solution of the following equation

Σ̂t =
p+ d/2

n

n∑
i=1

ziz
H
i

zHi Σ̂−1zi + d/2
, (6)

where d is number of degrees of freedom (DoF). When
d → ∞ the Student’s t-distribution yields the Gaussian
distribution and the Student’s M -estimator tends to the SCM
(u(t) → 1). On the other hand, for d = 0 Student’s M -
estimator is equivalent to Tyler’s one.

C. Standard Asymptotic Regime

For z ∼ CES (0,Σ, gz), denote Σσ the theoretical scatter
matrix M -functional, which is defined as a solution of

E[u(zHΣ−1σ z)zzH ] = Σσ. (7)

The M -functional is proportional to the true scatter matrix
parameter Σ as Σσ = σ−1Σ, where the scalar factor σ > 0
can be found by solving

E[Ψ(σt)] = p (8)

with Ψ(σt) = u(σt)σt and t = zHΣ̂−1z.

Theorem II.1 (Standard asymptotic [5], [11]) Let Σ̂ be
an M -estimator as in Eq. (3) built from n samples drawn
as z ∼ CES (0,Σ, gz). The asymptotic distribution of Σ̂ is
given by as

√
nvec

(
Σ̂−Σσ

)
d→ GCN (0,C,P) ,

where C and P are defined by{
C = ϑ1Σ

T
σ ⊗Σσ + ϑ2vec (Σσ) vec (Σσ)

H
,

P = ϑ1
(
ΣT
σ ⊗Σσ

)
K + ϑ2vec (Σσ) vec (Σσ)

T
.

(9)

The constants ϑ1 > 0 and ϑ2 > −ϑ1/p are given by

ϑ1 = c−2M aMp(p+ 1),
ϑ2 = (cM − p2)−2(aM − p2)− c−2M aM (p+ 1),

(10)

where aM = E[Ψ2(σQ)] and cM = E[Ψ′(σQ)σQ] + p2.

D. Gaussian-Core Wishart Equivalent (GCWE)

First, let us define two quantities related to the hidden
Gaussian cores of CES vectors.

Definition II.1 (Gaussian cores [16]) Let z ∼
CES(0,Σ, gz). This vector has a representation analogous
to Eq. (2), given as

z
d
=
√
QAg/‖g‖, (11)

where g ∼ CN (0, I). The vector x = Ag is referred to as
the Gaussian-core of z.

Definition II.2 (GCWE [16]) Let n measurements
(z1, . . . , zn) be drawn as z ∼ CES (0,Σ, gz) and denote
(x1, . . . ,xn) their Gaussian cores as zi =

√
Qi/‖xi‖Axi

(cf. Definition II.1). Let Σ̂ be an M -estimator built with
(z1, . . . , zn) using Eq. (3). The SCM built from the Gaussian
cores, i.e.

Σ̂GCWE =
1

n

n∑
i=1

xix
H
i (12)

is referred to as Gaussian Core Wishart Equivalent (GCWE)
of Σ̂.

Note that the GCWE can not be computed in practice, but
represents a theoretical, Wishart distributed, quantity. The
asymptotic distribution of the difference between an M -
estimator and its GCWE is derived in [16].

Theorem II.2 (Asymptotic GCWE [16]) Let Σ̂ be an M -
estimator as in Eq. (3) built from n samples drawn as
z ∼ CES (0,Σ, gz), Σ̂GCWE be its GCWE from Definition
II.2 and σ be the solution of Eq. (8). Then, the asymptotic
distribution of σΣ̂− Σ̂GCWE is given by [16]
√
nvec

(
σΣ̂− Σ̂GCWE

)
d→ GCN

(
0, C̃, P̃

)
, (13)

where C̃ and P̃ are defined by{
C̃ = σ1Σ

T ⊗Σ + σ2vec(Σ)vec(Σ)H ,

P̃ = σ1
(
ΣT ⊗Σ

)
K + σ2vec(Σ)vec(Σ)T ,

(14)

with σ1 and σ2 given by

σ1 = (aMp(p+ 1) + c(c− 2bM )) /c2M ,

σ2 = ϑ2 − 2p(bM − cM )/cM/(cM − p2), (15)

where aM and cM are defined in Theorem II.1, and bM =
E[Ψ(σQ)‖g‖2].
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III. ASYMPTOTICS OF M -ESTIMATORS’ EIGENVALUE
DECOMPOSITION

The EigenValue Decomposition (EVD) of the scatter
matrix Σ is denoted as

Σ
EVD
= UΛUH with

U = [u1, . . . ,up] ∈ Upp ,
Λ = diag(λ),

λ = [λ1, . . . , λp] .

(16)

In order to avoid ambiguity in this definition, we assume
ordered eigenvalues as λ1 > . . . > λp > 0, and an element
of each uj (e.g., the first entry) for j = 1, . . . , n, can be
assumed to be real positive. Similarly, we define matching
notations for the EVD of an M -estimator Σ̂ and its GCWE
Σ̂GCWE as

Σ̂
EVD
= ÛM Λ̂M

(
ÛM

)H
,

Σ̂GCWE
EVD
= ÛGCWEΛ̂GCWE

(
ÛGCWE

)H
.

(17)

In the following we derive the asymptotic distributions for
the quantities ÛM and Λ̂M , both under standard and GCWE
regimes.

Theorem III.1 (Standard asymptotic) Let Σ̂ be an M -
estimator as in Eq. (3) built from n samples drawn as
z ∼ CES (0,Σ, gz) and σ be the solution of Eq. (8). The
asymptotic distribution of the EVD of Σ̂ (Eq. (17)) is given
by

√
n
(
σλ̂

M
− λ

)
d→ N

(
0, ϑ1Λ

2 + ϑ2λλ
T
)
,

√
nΠ⊥j ûMj

d→ CN (0,Ξj) .
(18)

where
Ξj = ϑ1λj

(
UΛ(λjI−Λ)+

)2
UH (19)

with Π⊥j = I− uju
H
j and ϑ1, ϑ2 given by Eq. (10).

Proof: See Appendix A.

Theorem III.2 (Asymptotic GCWE) Let Σ̂ be an M -
estimator as in Eq. (3) built from n samples drawn as
z ∼ CES (0,Σ, gz), Σ̂GCWE be its GCWE (Definition II.2)
and σ be the solution of Eq. (8). The asymptotic distribution
of the difference between the EVD parameters of Σ̂ and
Σ̂GCWE is given by
√
n
(
σλ̂

M
− λ̂

GCWE
)

d→ N
(
0, σ1Λ

2 + σ2λλ
T
)
,

√
nΠ⊥j

(
ûMj − ûGCWE

j

) d→ CN (0, σ1/ϑ1Ξj) .
(20)

with Ξj and σ1, σ2 given by Eqs. (19) and (15), respectively.

Proof: See Appendix B.

Remark III.1 The results given in Theorem III.1 are
interesting since, besides the variance of each eigenvalue,
they provide the correlation between them. Note that for
a Wishart-distributed matrix this correlation is equal to
zero, as shown in [26] for real case. Conversely, Theorem

III.1 shows that the eigenvalues of an M -estimator are
asymptotically correlated, as stated in [17] (but not
explicitly characterized). This correlation depends on the
second scale parameter ϑ2. Concerning the eigenvectors,
note that the covariance depends only on ϑ1 since uj is
scale invariant w.r.t. to the covariance matrix (see [11] for
more details).

Remark III.2 Theorem III.2 characterizes the asymptotic
variance of the EVD of an M -estimator compared to the
one of its GCWE. It shows that their covariance structure is
the same as the one in the standard asymptotic regime, and
differs only through the variance scales (σ1, σ2) (instead of
(ϑ1, ϑ2)). As noted in [16], the total variance captured by
the GCWE factors is much smaller than the standard one.
For example, the factors σ1 and ϑ1 given in Table I for
the Student t-distribution differ by an order 1/p. This result
supports the idea that an underlying Wishart distribution
can offer a better approximation for characterizing the
distribution of the M -estimator’s EVD. This approximation
allows us to rely on well established results [9], [31],
and offers a thinner analysis compared to the asymptotic
Gaussian results. Some applicative examples illustrate this
point in Section VI.

IV. ASYMPTOTICS OF M -ESTIMATORS’ PRINCIPAL
SUBSPACE

Consider the case of a low-rank plus identity scatter
matrix (also referred to as factor model), that is commonly
used in signal processing to account for low dimensional
signals embedded in white noise

Σ = Σr + γ2Ip
EVD
= [Ur|U⊥r ]Λ[Ur|U⊥r ]H , (21)

with the rank r matrix Σr=UrΛrU
H
r , with Ur ∈ Upr and

Λr ∈ Rr×r.
This section focuses on the estimation of the orthog-

onal projector onto the range space spanned by Ur, the
r strongest eigenvectors of Σ (referred to as “principal
subspace” in the following). We define Rr{.} the operator
that extracts this principal subspace from a given matrix, i.e.,

Rr : H+
M −→ Gnr ,

Σ
EVD
= [Ur|U⊥

r ]Λ[Ur|U⊥
r ]

H 7−→ UrU
H
r ,

(22)

where Gnr is the set of rank r orthogonal projectors of Cn×n.
Let us consider an M -estimator Σ̂ built with an n samples

drawn as z ∼ CES (0,Σ) where Σ is low-rank structured as
in Eq. (21), and let Σ̂GCWE be its GCWE from Definition
II.2. We have the corresponding principal subspaces as

Πr = Rr{Σ},
Π̂M
r = Rr{Σ̂},

Π̂GCWE
r = Rr{Σ̂GCWE}.

(23)

In the following we derive the asymptotic distributions for
the quantities Π̂M , both under standard and GCWE regimes.
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Theorem IV.1 (Standard asymptotic) Let Π̂M
r be the es-

timator of the projector Πr obtained from an M -estimator
(Eq. (23)). The asymptotic distribution of Π̂M

r is given by
√
nvec

(
Π̂M
r −Πr

)
d→ GCN (0, ϑ1ΣΠ, ϑ1ΣΠK) , (24)

where
ΣΠ = AT ⊗B + BT ⊗A (25)

with A = Ur

(
γ2Λ−2r + Λ−1r

)
UH
r , B = γ2Π⊥r and ϑ1, ϑ2

given by Eq. (10).

Proof: See Appendix C.

Theorem IV.2 (Asymptotic GCWE) Let Π̂M
r and

Π̂GCWE
r be the estimators of the projector Πr defined in

Eq. (23). The asymptotic distribution of Π̂M
r is given by

√
nvec

(
Π̂M
r − Π̂GCWE

r

)
d→ GCN (0, σ1ΣΠ, σ1ΣΠK)

(26)
with ΣΠ and σ1, σ2 given by Eqs. (25) and (15), respec-
tively.

Proof: See Appendix D.

Remark IV.1 Theorem IV.1 (resp. IV.2) extends the results
of Theorem III.1 (resp. III.2) to the principal subspace of
M -estimators. We can draw the same conclusions as in
Remark III.2, notably, that an underlying Wishart equiva-
lent offers a more accurate asymptotic equivalent than the
standard Gaussian one.

V. VALIDATION SIMULATIONS

The theoretical results are validated through Monte-Carlo
simulations for Student t-distributed data with the DoF
parameter d, whose PDF is given by Eq. (1) with

gz(x) = (1 + 2x/d)
−(p+d/2) (27)

and Ct = 2pΓ(p + d
2 )/[(πd)pΓ(d2 )]. The corresponding

stochastic representation is given by Eq. (12) for Q ∼ pF2p,d

(a Fisher distribution with DoFs 2p and d). This distribution
has finite 2nd-order moments for d > 2. If not specified,
the scatter matrix is Toeplitz with entries [Σ]i,j = ρ(j−i)

for i ≤ j and [Σ]i,j = [Σ]
∗
j,i for i > j, i, j = 1, . . . , p,

with ρ = 0.9(1 +
√
−1)/

√
2. When referring to a low rank

model, the scatter matrix is constructed as Σ = Σr + I
with Σr = UrΛrU

H where only the 5 first eigenvalues and
eigenvectors of Σ are kept, and scaled so that Tr(Σr) = 100.
The results are illustrated for the Student’s M -estimator
(Eq. (6)) and Tyler’s M -estimator (Eq. (5)). The parameters
for the asymptotic distributions are given in Table I.

Figure 1 illustrates the validation of theoretical results.
The first (resp. second) row displays the results for Student
t-distributed data with d = 2.1 (resp. d = 3) and p = 20. The
third row shows the results for d = 3 and a larger dimension
p = 50. The values of d were chosen in that way to ensure
the existence of finite 2nd-order moments and to show the
behavior of the data when the parameter d increases.

Student’s M -estimator Tyler’s M -estimator

SA

ϑ1 =
p+ d/2 + 1

p+ d/2
ϑ1 =

p+ 1

p

ϑ2 =
2

d
×
p+ d/2 + 1

p+ d/2
ϑ2 = −

p+ 1

p2

G
C

W
E

σ1 =
1

p+ d/2
σ1 =

1

p

σ2 =
2

d
×
p+ d/2 + 1

p+ d/2
σ2 =

p− 1

p2

Table I: Coefficients ϑ1, ϑ2, σ1 and σ2 for Student’s
and Tyler’s M -estimator with t-distributed data. SA stands
for Standard asymptotic while GCWE refers to as GCWE
asymptotic

• The first column displays the empirical mean squared
error (MSE) of λ̂

t
− λ and λ̂

t
− λ̂

GCWE
as well as their

corresponding and its theoretical values, i.e., Tr(ϑ1Λ
2 +

ϑ2λλ
T)/n (Eq. (18)) and Tr(σ1Λ

2 +σ2λλ
T)/n (Eq. (20)).

Note that the results are not presented for Tyler’s M -
estimator due to its inherent scaling ambiguity. First, we
note that the empirical results tend to the corresponding
theoretical ones as n increases. We clearly observe that the
GCWE equivalent has lower variance than the standard one.
Thus, these results support the idea that the distribution of
the eigenvalues of an M -estimator (in this case Student’s M -
estimator) can be well-approximated with the one of their
GCWE. In addition, one can note that this difference is
slightly larger for d = 3, as expected. We additionally note
that the results are also valid for higher data dimension.
• The second column displays the corresponding quantities
for the first eigenvector for both Student’s and Tyler’s M -
estimator. We observe that the empirical MSEs coincide well
with their theoretical counterparts in both regimes. More-
over, the figure shows a significant difference between the
results for the standard regime and GCWE. The eigenvectors
are scale-invariant functions of the scatter matrix, so their
asymptotic variance only involve factors of σ1 (resp. ϑ1)
and not σ2 (resp. ϑ2). For the presented M -estimator, we
have σ1 � ϑ1 (especially when the data dimension grows)
which explains these results. Moreover, one can notice that,
as expected, Tyler’s M -estimator is closer to Student’s M -
estimator for a smaller degree of freedom d and the same
value of p (figure 1.(b) versus figure 1.(e)).
• Finally, the last column presents the MSE for the projector
defined by Eq. (23) in the structured model. Again, the
figures validate the theoretical results of Theorems IV.1 and
IV.2 and leads us to the same conclusions as previously.
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(a) Eigenvalues d = 2.1, p = 20
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(b) Eigenvectors d = 2.1, p = 20
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(c) Projector d = 2.1, p = 20
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(d) Eigenvalues d = 3, p = 20
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(e) Eigenvectors d = 3, p = 20
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(f) Projector d = 3, p = 20
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(g) Eigenvalues d = 3, p = 50
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(h) Eigenvectors d = 3, p = 50
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(i) Projector d = 3, p = 50

Figure 1: Validation of theoretical results for Student’s and Tyler’s M -estimator built with Student t-distributed data with
DoF d. From left to right: results for eigenvalues, eigenvectors and projector. From top to bottom: results for d = 2.1 and
p = 20, d = 3 and p = 20, d = 3 and p = 50.

VI. APPLICATIONS

In this section, we give some examples where the derived
results can be leveraged. The main result, consistent with
other sections, is that the distribution of an M -estimator’s
EVD can be accurately approached by the one of the
underlying Wishart model. This approximation allows us
to obtain theoretical derivations in the general CES/M -
estimator’s framework, where true distributions are, a priori,
not tractable (e.g. in the intrinsic bias analysis in Section
VI-A). On a second note, this also reinforces the standard
“plug-in” approach of M -estimators in criteria/processes
derived using the EVD parameters under the Wishart as-
sumption. Such type of application is illustrated for the

eigenvalues in Section VI-B (rank estimation) and the prin-
cipal subspace in Section VI-C (low-rank filtering).

A. Intrinsic bias analysis

In [32] were derived Intrinsic (i.e. Riemannian Mani-
fold oriented) counterparts of the Cramér-Rao inequality
(ICRLB). In the context of covariance matrix estimation,
these results allows notably to account for the natural Riem-
manian metric onH++

M , and bound the expected Riemannian
distance (rather than the Euclidean one)

d2nat (Σ1,Σ2) =
∥∥∥ln
(
Σ
−1/2
1 Σ2Σ

−1/2
1

)∥∥∥2
F
. (28)
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This analysis also reveals unexpected and hidden properties
of estimators, such as a bias of the SCM w.r.t. the natural
metric on H++

M (that does not exists w.r.t. the Euclidean
metric). In this scope, the biased ICRLB (B-ICRLB) is
established for the SCM in a Gaussian context in [32,
Theorem 7 and Corollary 5], and reads as follows.

Theorem VI.1 (B-ICRLB for SCM [32]) Let
(z1, . . . , zn) be an n-sample distributed as zi ∼ CN (0,Σ)
and Σ̂SCM be the SCM as in Eq. (4). The bias w.r.t. the
natural metric on H++

M of Σ̂SCM is

E
[
exp−1Σ Σ̂SCM

]
= −η(p, n)Σ (29)

with exp−1Σ Σ̂SCM = Σ1/2 log
(
Σ−1/2Σ̂SCMΣ−1/2

)
Σ1/2,

and

η(p, n) =
1

p
{p lnn+ p− ψ(n− p+ 1)

+ (n− p+ 1)ψ(n− p+ 2)

+ ψ(n+ 1)− (n+ 1)ψ(n+ 2)} ,

(30)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. More-
over, the natural distance Eq. (28) between Σ̂SCM and Σ
satisfies the following biased-ICRLB inequality:

E
[
d2nat

(
Σ̂SCM,Σ

)]
≥ p2

n
+ pη (p, n)

2
. (31)

For CES-distributed samples, the ICRLB on d2nat is de-
rived in [37] as follows:

Theorem VI.2 (IRCLB for CES [37]) Let (z1, . . . , zn)
be an n-sample distributed as zi ∼ CES(0,Σ, gz). Any
unbiased estimator Σ̂ of Σ satisfies the inequality

E
[
d2nat

(
Σ̂,Σ

)]
≥ p2 − 1

nα
+ (n(α+ pβ))−1, (32)

with α =

(
1 +

E[Q2u′(Q)]
p(p+1)

)
(where Q is the modular

variate as in Eq. (2)) and β = α− 1.

Characterizing a bias term in Theorem VI.2 (similarly
to the one in Theorem VI.1) would require us to derive
the intrinsic bias of an M -estimator obtained with CES-
distributed samples. The problem appears intractable since
this result is mainly obtained thanks to the exact distribution
of the eigenvalues of a Wishart-distributed matrix, and can-
not be recovered through a Delta method using the standard
asymptotic of Theorem III.1. However the strong proximity
of the eigenvalues of an M -estimator towards their GCWE
described in Theorem III.2 (also exhibited by the previous
simulation results) gives a reasonable theoretical ground for
the following approximation:

Approximation VI.1 (Intrinsic bias of M -estimators)
Let (z1, . . . , zn) be an n-sample distributed as
zi ∼ CES(0,Σ, gz). Let Σ̂ be an M -estimator of Σ
that is consistent in scale (i.e., σ = 1 in Eq. (8)) and

102 103
−25

−20

−15

−10

−5

0

n

η
(d

B
)

Eq.(30)
GCWE-IB
Student-IB d = 2.1
Student-IB d = 10

Figure 2: Empirical intrinsic bias for Student’s M -estimator
(Student-IB) and the Gaussian core SCM (GCWE-IB) com-
pared to the theoretical result obtained for the GCWE
(Eq. (30))

Σ̂GCWE its GCWE (Definition II.2). The matrix Σ̂GCWE

is Wishart distributed with center Σ, so the derivations
of Theorem 7 of [32] directly apply to its intrinsic bias.
Theorem III.2 then supports the approximation

E[exp−1Σ Σ̂] ' E[exp−1Σ Σ̂GCWE]

= −η(p, n)Σ.
(33)

Figure 2 confirms the previous results and supports the
proposed approximation. Indeed, it can be seen that the
empirical intrinsic bias obtained with the Student’s M -
estimator computed with t-distributed data coincides with
the intrinsic bias based on the GCWE and the theoretical
result (Eq. (30)).

Finally, we propose to incorporate an equivalent bias
term in Eq. (32) to obtain an accurate approximation of
the B-ICRLB of M -estimators build form CES-distributed
samples.

Approximation VI.2 (B-ICRLB for CES) Let
(z1, . . . , zn) be an n-sample distributed as
zi ∼ CES(0,Σ, gz). Let Σ̂ be an M -estimator of Σ
that is consistent in scale (i.e., σ = 1 in Eq. (8)). We have
the following approached B-ICRLB

E
[
d2nat

(
Σ̂,Σ

)]
≥ p2 − 1

nα
+ (n(α+ pβ))−1 + pη (p, n)

2
,

(34)
with α and β defined in VI.2 and η (p, n) from Eq. (30)).

Figure 3 illustrates this approximation. The empirical mean
of the natural Riemannian distance of the Student’s M -
estimator Σ̂t (denoted as εN

(
Σ̂t

)
) is compared to the

theoretical ICRLB in Eq. (32)) and the approached B-ICRLB
in Eq. (34). As expected, one can see that the approached
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Figure 3: Empirical mean of d2nat

(
Σ̂t,Σ

)
denoted as

εN
(
Σ̂t

)
versus theoretical CRLB for an unbiased estimator

in the CES framework (Eq. (32)) and approximated biased
instrinsic CRLB (aB-ICRLB)

bias term in B-ICRLB offers a more accurate theoretical
approximation for bounding the expected natural distance.

B. Rank estimation

The rank estimation, or more generally the model or-
der selection, is an important problem in data analysis. It
consists in determining r when the covariance of the data
is low-rank structured as in Eq. (21). In the context of
Gaussian-distributed samples, several rank estimators have
been proposed as functions of the eigenvalues of the SCM
λ̂
SCM

= [λ̂1, . . . , λ̂p] [21]. Notably, we can cite two of the
most commonly used:
1) The Akaike Information Criterion (AIC) [33], that mini-
mizes the following criterion

r̂AIC = argmin
k∈[0,p−1]

[
nl × ic(λ̂

SCM
) + k(l + p)

]
(35)

with l = p− k and

ic(λ̂
SCM

) = ln

(∏p−1
i=k λ̂

1
l−1
i /1

l

∑p−1
i=k λ̂i

)
. (36)

2) The Minimum Description Length (MDL) [34] (also
referred to as Bayesian Information Criterion (BIC)), that
minimizes the following criterion

r̂MDL = argmin
k∈[0,p−1]

[
2nl × ic(λ̂

SCM
) + k(l + p) lnn

]
. (37)

In the context of CES-distributed samples, a plug-in
approach using ic(λ̂

M
) (computed from the EVD of an

M -estimator) in Eq. (35) or Eq. (37) can be envisioned
rather that re-deriving information criterions assuming non-
Gaussian samples. This approach is motivated by the fact

that λ̂
M

quickly converges to eigenvalues of the equivalent
Wishart model (cf. Theorem III.2 and Remark III.2), i.e.
the problem can be processed as if the data were initially
Gaussian.

To illustrate this point, we consider the problem of de-
termining how many sources are observed by an array of
sensors. We assume that a planar array of p sensors observes
signals produced by r sources that are centered around
a known frequency ω, affecting the array from locations
θ1, . . . , θns . The sources-plus-white-noise signal received by
the array of sensors can be expressed as

z = As + n (38)

with s the signal vector, n the additive white noise and A =
[a(θ1), . . . ,a(θns

)] and

a(θ) =
[
a1(θ)e−jωτ1(θ), . . . , ap(θ)e

−jωτp(θ)
]T
, (39)

where aj the amplitude response of the jth sensor towards
direction θ and τj(θ) propagation delay between the refer-
ence point and the jth sensor. The total covariance matrix
has thus a low rank structure as in Eq. (21), and is given by

Σ = ASAH + γ2Ip, (40)

where E
[
ssH

]
= S and E

[
nnH

]
= γ2Ip.

In the considered problem, the received data z is CES-
distributed with the scatter matrix Σ given by Eq. (40). We
resort to the proposed plug-in approach to estimate r. Figure
4 shows the values of the AIC and MLE criteria computed
with different M -estimators. The data is t-distributed with
d = 2.1. The number of sensors is set to 20, while the
number of sources to estimate is equal to r = 4. The number
of samples is n = 200. A circle indicates the minimum
value of each criterion in order to highlight the estimated
number r of sources. We observe that Student’s and Tyler’s
M -estimator give an accurate estimation of r. Conversely,
the result for the SCM is, as expected, not accurate due to the
non-Gaussianity of the observations. Interestingly, the values
of the criteria for Student’s and Tyler’s M -estimator are
almost identical to the ones computed with the (theoretical)
GCWE, which validates the proposed approach.

C. SNR Loss

In the context of STAP, the covariance of the clutter plus
noise Σ is low rank structured as in Eq. (21), where the
rank r can be evaluated thanks to the Brennan rule [38].
The optimal filter wopt [39] given by

wopt = Σ−1p, (41)

where p is a known steering vector. In the low-rank clutter
case an alternative is to use the low-rank STAP filter wr

[40], [41] defined as

wr = Π⊥r p (42)

with Πr = Rr{Σ} (cf. Eq. (22)). In practice, adaptive STAP
filters are built with an estimate of the covariance matrix
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MDL: Results obtained with Eqs. (35) and (37) for the SCM,
Student’s M -estimator and Tyler’s M -estimator compared
to the theoretical GCWE; Student t-distributed data with
d = 2.1; p = 20, r = 4.
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(SNR-SCM) versus the theoretical result given by Eq. (45);
t-distributed data with p = 20, r = 5, d = 3.

Σ or of the projector Π⊥r computed with secondary data
zi ∼ CES(0,Σ,gz).

The SNR Loss ρ of an adaptive filter ŵ is given by

ρ =
SNRout
SNRmax

=
|ŵHp|2

(ŵHΣŵ) (pHΣp)
. (43)

For an adaptive low rank filter ŵr, this expression becomes

ρ = γ2

(
pHΠ̂⊥r p

)2
pHΠ̂⊥r ΣΠ̂⊥r p

(44)

with a given estimator Π̂r. In [41] it has been shown
that when the data are Gaussian-distributed and Π̂r =
Rr{Σ̂SCM} the expected SNR Loss is given by

E [ρ] = 1− r/n. (45)

This result can directly provide a good approximation of
the expected SNR Loss of adaptive low rank filters build
from M -estimators in the general context of CES-distributed
samples. Indeed, this approach is again motivated by the fact
the estimate Π̂M

r is close to Π̂GCWE
r , i.e., to the principal

subspace of the equivalent Wishart model (cf. Theorem
IV.2). To illustrate this point, Figure 5 draws a comparison
between the SNR Losses of various low rank filters built
from t-distributed data. The low rank covariance matrix is
build as in Section V. One can notice that the value of SNR-
ST is, as expected, very close to the one SNR-GCWE, which
supports the idea to approximate the behavior of SNR-ST
with the one of SNR-GCWE [41].

VII. CONCLUSION

This paper has analyzed the asymptotic distribution of
the EVD parameters of the M -estimators of the scatter
matrix. In the general context of CES-distributed sam-
ples, we derived these asymptotics for both the standard
asymptotic and GCWE [16] regime. Interestingly, we have
shown that the behavior of the EVD parameters is more
accurately characterized by an equivalent Wishart model
than by their standard asymptotic Gaussian distribution. This
result represents the main contribution, as it shows that one
can leverage results established for the EVD of Wishart-
distributed matrices for directly characterizing the EVD of
M -estimators. Some examples (intrinsic bias analysis, rank
estimation, and low-rank adaptive filtering) illustrated the
interest of this approach.
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APPENDICES

To prove all theorems we will use the basic results,
based on a Delta-method, obtained in the following theorem
[36][Proposition 6.2] (and e.g. [11] for the formulation in
the complex case) recalled in the following lemma:

Lemma .1 Let {ẑ} be a sequence of complex random
vectors ẑ and z a compatible fixed vector. Assume that√
n (ẑ− z)

d→ GCN (0,V,W). Let ξ (y) be a vector
function of a vector y with first and a second derivatives
existing in a neighbourhood of y = z. Then
√
n (ξ (ẑ)− ξ (z))

d→ GCN
(
0,DVDH ,DWDT

)
(46)



10

where

D =
∂ξ (y)

∂y

∣∣∣∣
y=z

(47)

is a matrix derivative.

For the sake of simplicity, we will write (47) as D =
∂ξ (z) /∂z from now on.

APPENDIX A
PROOF OF THEOREM III.1

Proof: To derive the derivatives of λ and uj with
respect to vec (Σ), we differentiate Σuj = λjuj

dΣuj + Σduj = dλjuj + λjduj . (48)

Multiplying each side of the last equation by uHj , one has

dλj = uHj (dΣ) uj

since uHj Σ = λju
H
j and uHj uj = 1. Thus,

∂λj
∂vec (Σ)

= uTj ⊗ uHj .

If λ = (λ1, . . . , λp), then one has

∂λ

∂vec (Σ)
= ET

(
UT ⊗UH

)
with E = (e1 ⊗ e1 . . . ep ⊗ ep) where ej , j = 1, . . . , p
are unit vectors. Further, combining the statement given in
Lemma .1 with Eq. (9), one obtains

ET
(
UT ⊗UH

) (
ϑ1
(
ΣT ⊗Σ

))
(U∗ ⊗U) E

+ET
(
UT ⊗UH

)
ϑ2vec (Σ) vec (Σ)

H
(U∗ ⊗U) E

= ϑ1E
T
(
ΛT ⊗Λ

)
E + ϑ2E

T
(

vec (Λ) vec (Λ)
H
)

E

= ϑ1Λ
2 + ϑ2λλ

T . (49)

Note that in this equality Σ figures instead Σσ , since we
analyze the distribution of σλ̂M instead of λ̂M . Note also
that, since the eigenvalues are real one obtains the same
result using the expression for the pseudo-covariance matrix.

In order to obtain the results for eigenvectors, we will
multiply Eq. (48) by uHk , k 6= j. Thus, one obtains

uHk (dΣ) uj = (λj − λk) uHk duj

as uHk uj = 0. Following the same steps as in [26] (done for
the real case), it is easy to show that

duj =
∑
j 6=k

(λj − λk)
−1

uku
H
k (dΣ) uj + uju

H
j duj .

In fact, the last element in the previous equality is omitted in
the real case since uTj duj = 0 (from uTj uj = 1). However,
in the complex case uHj duj 6= 0, as from uHj uj = 1
one has uHj duj + duHj uj = 0 and it is obvious that
uHj duj 6= duHj uj . In some works, the authors use the differ-
ent normalization for eigenvectors which imply uHj duj = 0
and in those circumstances the results correspond to the ones

in the real case. In the general (more common) case, one
obtains(

I− uju
H
j

)
duj =

(
uTj ⊗U (λjI−Λ)

+
UH

)
dΣ,

which actually gives the projection of the derivative onto
the subspace orthogonal to the one of the eigenvector. Now,
employing Eq. (46) with the previous derivatives and since(
uTj ⊗U (λjI−Λ)

+
UH

)
K = U (λjI−Λ)

+
UH ⊗ uTj ,

(λjI−Λ)
+

ej = 0,[
uTj ⊗U(λjI−Λ)+UH

]
vec (Σ) = 0,

one obtains the final results. Note that GCN becomes CN
since the pseudo-covariance matrix is equal to zero.

APPENDIX B
PROOF OF THEOREM III.2

Proof: Rewriting the left-hand side of Eq. (18), one
obtains
√
n
(
σλ̂

M
− λ̂

GCWE
)

=
√
n
(
σλ̂

M
− λ− λ̂

GCWE
+ λ

)
=

√
n
((
σλ̂

M
− λ

)
−
(
λ̂
GCWE

− λ
))

.

Then

varn
(
σλ̂

M
− λ̂

GCWE
)

=

E
[
n
(
σλ̂

M
− λ̂

GCWE
)(

σλ̂
M
− λ̂

GCWE
)T]

= varn
(
σλ̂

M
)
− 2covn

(
λ̂
M
, σλ̂

GCWE
)

+ varn
(
λ̂
GCWE

)
.

Since from Eq. (18) one has

varn
(
σλ̂

M
)
−−−−−→
n→+∞

ϑ1Λ
2 + ϑ2λλ

T and

varn
(
λ̂
GCWE

)
−−−−−→
n→+∞

Λ2,

it remains only to derive the expression for

covn
(
σλ̂

M
, λ̂

GCWE
)

= E
[
n
(
σλ̂

M
− λ

)(
λ̂
GCWE

− λ
)T]

.

Using the Delta method [36], one can show that

covn
(
σλ̂

M
, λ̂

GCWE
)
→ σ∂λ

∂vec (Σ)
Q

(
∂λ

∂vec (Σ)

)T
,

where Q is the asymptotic covariance matrix of σΣ̂. This
matrix is equal to

Q = γ1
(
ΣT ⊗Σ

)
+ γ2vec (Σ) vec (Σ)

H (50)

with γ1 and γ2 given in [16]. Repeating the same steps as
in Eqs. (49), one shows that the right-hand side of Eq. (50)
becomes

γ1Λ
2 + γ2λλ

T .

In [16] it has been shown that σ1 = ϑ1 − 2γ1 + 1 and
σ2 = ϑ2 − 2γ2, which leads to the final results.

The results for the eigenvectors can be obtained following
the same procedure as for the eigenvalues.
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APPENDIX C
PROOF OF THEOREM IV.1

Proof: If we define the pseudo-inverse of Σr as

Φ = UrΛ
−1
r UH

r , (51)

one has from [27] that

Π̂r = Πr + δΠr + . . .+ δiΠr + . . .

where

δΠr = Π⊥r ∆ΣΦ + Φ∆ΣΠ⊥r ,

δiΠr = −Π⊥r
(
δi−1Π

)
∆ΣΦ + Π⊥r

(
δi−1Π

)
∆ΣΦ,

with ∆Σ = Σ̂−Σ.
In the asymptotic regime, when n→∞, we can write

Π̂r = Πr + δΠr

since ∆Σ is close to zero. Hence, taking a vec of the Π̂r−
Πr = δΠr, one gets

vec
(
Π̂r −Πr

)
= Fvec

(
Σ̂−Σ

)
with

F =
(
ΦT ⊗Π⊥r +

(
Π⊥r
)T ⊗Φ

)
.

It is now obvious that the covariance (resp. pseudo-
covariance) matrix of

√
n
(
ΠM
r −Πr

)
is equal to FCFH

(resp. FPFT ) where C and P are given in Eqs. (9). Further

FC =
(
ΦT ⊗Π⊥r +

(
Π⊥r
)T ⊗Φ

) (
ΣT ⊗Σ

)
+
(
ΦT ⊗Π⊥r +

(
Π⊥r
)T ⊗Φ

)
vec (Σ) vec (Σ)

H

=
(
ΦTΣT ⊗Π⊥r Σ +

(
Π⊥r
)T

ΣT ⊗ΦΣ
)

as
(
ΦT ⊗Π⊥r +

(
Π⊥r
)T ⊗Φ

)
vec (Σ) = 0 using(

TT ⊗R
)

vec (S) = vec (RST) and Π⊥r ΣΦ = ΦΣΠ⊥r =
0. Finally, after the postmultiplication by FH and since

Σ = ΣH 6= ΣT

Φ = ΦH 6= ΦT

Π⊥r =
(
Π⊥r
)H 6= (Π⊥r )T

one obtains

FCFH =
(

(ΦΣΦ)
T ⊗Π⊥r ΣΠ⊥r +

(
Π⊥r ΣΠ⊥r

)T ⊗ΦΣΦ
)

which with Φ given by Eq. (51) and Σ = UrΛrU
H
r +γ2Ip

yields the final result.
Analogously, one can derive the results for the pseudo-

covariance using the equality K (A⊗B) = (B⊗A) K.

APPENDIX D
PROOF OF THEOREM IV.2

Following the steps from Appendix B and using the results
of Theorem IV.1 one gets the results of the theorem.
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