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Abstract

This paper provides an original asymptotic analysis of robust adaptive detec-

tors performance in the context of non-Gaussian observations. We focus on

a single-steering case in homogeneous environment and analyze the properties

of different adaptive detectors such as Adaptive (Normalized) Matched Filter

(AMF/ANMF), Kelly’s GLRT, and Rao test when an estimator of the co-

variance matrix is plugged in. When the noise distribution turns to be non-

Gaussian, the detectors relying on the Sample Covariance Matrix (SCM) can

perform poorly and an interesting alternative is the use of M -estimators. In this

context, we show that, from Complex Elliptically Symmetric (CES) samples, the

distribution of a detection statistic built with M -estimators can be accurately

approximated by the one of the same statistic built from the SCM of an equiva-

lent Gaussian setting. The loss due to this approximation is theoretically derived

and shown to be negligible in most cases. This explicit equivalent statistic is

especially interesting since it allows to tune robust plug-in detectors with well

established results from the Gaussian detection framework. Furthermore, this

approach provides new insights on the robust estimation tools behavior. Finally,

some simulations illustrate the interest of the proposed results.

Keywords: Robust detection, M -estimation, CES distributions, Wishart

Email addresses: gordana.draskovic@l2s.centralesupelec.fr (Gordana Drašković),
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distribution, performance analysis

1. Introduction

Adaptive detection of signals embedded in a disturbance is a ubiquitous

problem in statistical signal processing. Usually, the problem consists in decid-

ing if a signal of known steering vector is present in a tested sample (primary

data), while some signal-free samples (secondary data) are available to estimate5

the statistical parameters of the noise. This problem has been extensively stud-

ied in the context of Gaussian distributed noise [1, 2, 3, 4, 5]. Several decision

statistics have been proposed, such as the Generalized Likelihood Ratio Test

(GLRT) (Kelly’s detector) [2], the Adaptive Matched Filter (AMF or 2-step

GLRT) [6], its normalized counterpart (Adaptive Normalized Matched Filter-10

ANMF or Adaptive Cosine Estimator-ACE) [7, 8], and the Rao test [9]. The

associated detectors have been characterized in terms of probability of detec-

tion (Pd) and probability of false alarm (Pfa), as well as constant false alarm

rate (CFAR) properties (see e.g., [10] and references therein) and performance in

mismatched scenarios [11]. As core component, these statistics involve the Sam-15

ple Covariance Matrix (SCM) [12] in their construction. Since this estimator

of the noise covariance matrix is sensitive to heavy-tailed distributed samples,

this family of Gaussian detectors can exhibit poor performance in non-Gaussian

environments.

In order to account for non-Gaussian data, an interesting alternative is20

brought by the framework of complex elliptically symmetric (CES) distributions

[13]. This family of distributions generalizes the multivariate Gaussian one by re-

placing the exponential shape with an arbitrary function, called density genera-

tor. This added flexibility allows to encompass a large panel of well-known heavy

tailed distributions, such as Student-t, K-, Weibull, and Generalized Gaussian.25

An important subclass of CES distributions are the compound-Gaussian (CG)

distributions, also referred as to Spherically Invariant Random Vectors (SIRV),

that have been employed for radar clutter modeling [14, 15, 16]. Detection pro-
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cedures assuming CES/CG distributed samples have been proposed and widely

studied in the literature. First, detection procedures assuming known param-30

eters for the noise can found in [17, 18, 19] among others. Then, adaptive

detectors have been derived, generally based on a 2-step GLRT, for different

covariance matrix estimators [20, 21, 22]. More recently, various robust covari-

ance matrix estimators have been used for detection purposes [23, 24, 25, 26, 27].

An overview of recent advances in radar detection, including robust detection35

approaches, can be found in [28].

However, in practice, the density generator of the true underlying distribu-

tion is is unknown. In this case, a robust plug-in detector can be built as an

alternative to the classical Gaussian detector [10] where an M -estimator of the

scatter [29] is plugged-in instead of the SCM. M -estimators can be considered40

as a generalization of MLEs in CES, that do not necessary depend on the ac-

tual probability density function (PDF) of the distribution. The study of these

robust detection processes is not trivial since M -estimators are expressed as so-

lutions of fixed point equations and are not Wishart distributed (as the SCM).

Several asymptotical properties of M -estimators have been derived in [30, 31]45

and [32]. These works have permitted to analyze the asymptotic properties of

robust plug-in detectors [26, 27, 31]. The analysis in these last references is

conducted with the standard Gaussian asymptotic regime, i.e. a central limit

theorem applied on M -estimators around their expected value.

In this paper, we provide a new and more accurate performance analysis50

of the asymptotic distribution of robust plug-in detectors in a CES context.

This asymptotic analysis is obtained by comparing robust plug-in detectors to a

Gaussian-Core Equivalent Detector (GCED). The GCED is defined as the same

detection statistic, built using a theoretical Wishart equivalent of the used M -

estimator, referred to as Gaussian-Core Wishart Equivalent (GCWE). Following55

the idea from [32] the convergences towards the tests computed with the GCED

are derived. Finally, the results for particular cases of robust plug-in detectors

are presented with some simulations. The particular cases are obtained for two

widely used M -estimators:
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1. Tyler’s M -estimator: The Tyler’s M -estimator [33] is the MLE for CG60

distributions when the texture is assumed to be an unknown determin-

istic parameter and is an approximate MLE when is assumed to be a

positive random variable [34, 35, 36]. It has the rare property that it is

“distribution-free” with respect to the class of (continuous) CES [37].

2. Student’s M -estimator: We consider the MLE based on Student’s t-65

distribution. This estimator is widely used in signal processing commu-

nity, thanks to the degree of freedom (DoF) parameter. This estimator

represents a trade-off between the Tyler’s M -estimator (DoF=0) and the

SCM (DoF→ ∞). Consequently, for small values of DoF, this estimator

is robust to outliers.70

Practical interest of the results in this work is that one can plug-in M -estimators

in any detection statistic adapted to non-Gaussian environments and then, use

the distribution of an equivalent detector, namely the detector built with the cor-

responding GCWE to theoretically tune the parameters (such as the detection

threshold).75

The rest of this paper is organized as follows. Section 2 introduces adaptive

detection. Section 3 introduces CES distributions and M -estimators. Then,

Section 4 presents the main contribution of the paper. Section 5 validates the

theoretical results and explains their application with appropriate comments.

Finally, some conclusions are drawn in Section 6.80

Vectors (resp. matrices) are denoted by bold-faced lowercase letters (resp.

uppercase letters). T and H respectively represent the transpose and the Her-

mitian operator. N and CN denote the real and complex normal distributions.

∼ means “distributed as”,
d
= stands for “shares the same distribution as”,

d→

denotes convergence in distribution and ⊗ denotes the Kronecker product. vec85

is the operator which transforms a matrix m × n into a vector of length mn,

using column-wise concatenation. Moreover, I is the identity matrix and 0 the

matrix of zeros with appropriate dimension, while K is the commutation matrix

which transforms vec(A) into vec(AT ).
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2. Detection90

2.1. Problem setup

We consider the problem of detecting a known complex signal vector p,

called steering vector, from the received data z = αp + c, called primary data,

where c is the unobserved complex noise random vector and α ∈ C is a complex

amplitude modelled as an unknown deterministic parameter. The problem of

detecting the signal p can then be expressed as the following binary hypothesis

test H0 : z = c zi = ci, i = 1, . . . , n

H1 : z = αp + c zi = ci, i = 1, . . . , n

(1)

where the ci are n signal-free independent measurements, traditionally referred

to as the secondary data. In order to detect the signal, the value of a detection

statistic is compared to a pre-computed threshold that is obtained for a given

probability of false-alarm (Pfa).95

Note that in this paper n stands for the number of observations while p corre-

sponds to the vector dimension.

2.2. Adaptive detectors

2.2.1. Kelly’s GLR

Assuming that the primary and secondary data are Gaussian-distributed

with an unknown covariance matrix C, the GLRT has been proposed by Kelly

in [2]

DK
(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2(

pHĈ−1p
)(

1 + 1
nzHĈ−1z

) H0

≶
H1

nλ (2)

where

Ĉ =
1

n

n∑
i=1

ziz
H
i (3)

is the well-known SCM. Moreover Kelly showed that DK in [2] is a CFAR detec-100

tor with respect to the clutter covariance matrix, since the Pfa−λ relationship

depends only n and p. The PDF for the detector has been also derived, for both

signal-present and signal-absent cases, together with Pd.
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2.2.2. AMF

In [6], Robey proposed another GLRT under the same setup, but considering

that the CM C is known. The adaptive version of the detector is then obtained

with the SCM Ĉ (Eq. (3)) and given by

DW
(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2(

pHĈ−1p
) H0

≶
H1

λ. (4)

One can note that this statistic does not contain the factor in parentheses,105

found in the denominator of the Kelly’s GLRT given by Eq. (2). This term

is computationally demanding for real time systems. However, it can be noted

that this term tends to 1 when n is large. The Pfa − λ relationship and Pd for

this statistic are given in [6].

2.2.3. ANMF110

ANMF [7] has been derived for partially homogeneous Gaussian noise where

the CM is different between the primary and secondary data, i.e. c ∼ CN (0, αC)

and ci ∼ CN (0,C),

DH
(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2(

pHĈ−1p
)(

zHĈ−1z
) H0

≶
H1

λ. (5)

This statistic is scale-invariant and “distribution-free” when computed with the

true CM C. The resulting PDFs, Pfa − λ relationship and Pd for the detector

built with true CM C were derived in [7], while the corresponding quantities

for the adaptive version was proposed in [38].

2.2.4. Rao statistic115

In 2007, De Maio proposed a new detection statistic based on Rao test [9]

DR
(
Ĉ
)

=

∣∣∣pHĈ−1z
∣∣∣2 /(pHĈ−1p

)
(

1 + 1
nzHĈ−1z

)[
1 + 1

nzHĈ−1z + 1
n

|pHĈ−1z|2
pHĈ−1p

] H0

≶
H1

nλ. (6)

This test also ensures the CFAR property and it is invariant to the set of trans-

formation defined in [9]. Note that both terms in denominator tend to unity

when n is large.
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3. Non-Gaussian context

3.1. Complex Elliptically Symmetric distributions120

Let z be a zero-mean p-dimensional complex circular random vector. The

vector z has a complex elliptically symmetric (CES) distribution, denoted as

CES(0,Σ, gz), if its PDF can be written as

hz(z) = C|Σ|−1 gz
(
zHΣ−1z

)
(7)

where C is a constant and gz : [0,∞) → [0,∞) is any function such that Eq.

(7) defines a PDF and Σ is the Scatter Matrix (SM). The SM is equal to the

CM of z up to a scale factor1. Complex Normal distribution is a particular case

of CES distributions in which gz(x) = e−x and C = π−p.

Definition 3.1 (Gaussian cores of CES) As exploited in [32], each z ∼

CES(0,Σ, gz) has the following stochastic representation:

z
d
=

√
Q
‖g‖

Ag (8)

where g ∼ CN (0, I), Q is a non-negative real random variable, called the modu-125

lar variate, and Σ = AAH is a factorization of Σ. We refer to x = Ag as the

Gaussian core of z.

3.2. M -estimators

Let (z1, . . . , zn) be an n-sample of p-dimensional complex independent vec-

tors with zi ∼ CES(0,Σ, gz). An M -estimator, denoted by Σ̂, is defined by the

solution of the following M -estimating equation

Σ̂ =
1

n

n∑
i=1

u(zHi Σ̂
−1

zi)ziz
H
i (9)

where u is any real-valued weight function on [0,∞) that respects the Maronna’s

conditions given in [29]. An M -estimator given by Eq. (9) tends to the theo-

retical scatter matrix M -functional Σσ = σ−1Σ where the scalar factor σ > 0

1This is the case if the random vector has a finite second-order moment (see [13] for details)
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can be found by solving

E[ψ(σt)] = p (10)

where ψ(σt) = u(σt)σt and t = zHΣ−1
σ z. Note the SCM given by Eq. (3)

satisfies Eq. (9) for u(x) = 1, but does not satisfy Maronna’s conditions.130

Example 3.1 (Tyler’s M-estimator) Tyler’s M -estimator [33] is given as

the solution of the following equation

Σ̂T =
p

n

n∑
i=1

ziz
H
i

zHi Σ̂
−1

zi
. (11)

In order to provide a unique solution, the trace of this equation is usually nor-

malized giving the estimation of so-called shape matrix.

Example 3.2 (Student’s M-estimator) Student’s M -estimator is a MLE

for Student’s t-distribution. It is given as the solution of the following equa-

tion

Σ̂t =
p+ d

n

n∑
i=1

ziz
H
i

zHi Σ̂
−1

zi + d
, (12)

where d > 1 is number of degrees of freedom (DoF). When d→∞ the Student’s

t-distribution leads the Gaussian distribution and the Student’s M -estimator

tends to the SCM (u(t) → 1). On the other hand, for d = 0 Student’s M -135

estimator is equivalent to the Tyler’s one.

3.3. Asymptotic characterizations of the M -estimators

Theorem 3.1 (Standard asymptotic (SA) regime) Let Σ̂ be an M -

estimator as in (9) built from samples drawn as z ∼ CES(0,Σ, gz). The asymp-

totic distribution of Σ̂ is given by [31, 13] as

√
nvec

(
Σ̂−Σσ

)
d→ GCN (0,Γ,Ω)

where the asymptotic covariance and pseudo-covariance matrices are Γ = ϑ1Σ
T
σ ⊗Σσ + ϑ2vec (Σσ) vec (Σσ)

H
,

Ω = ϑ1

(
ΣT
σ ⊗Σσ

)
K + ϑ2vec (Σσ) vec (Σσ)

T
.

(13)
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The constants ϑ1 > 0 and ϑ2 > −ϑ1/p are given by

ϑ1 = c−2
M aMp(p+ 1)

ϑ2 = (cM − p2)−2(aM − p2)− c−2
M aM (p+ 1)

(14)

where aM = E[ψ2(σQ)] and cM = E[ψ′(σQ)σQ]+p2,with Q defined in Eq. (8).

Note that for the SCM ϑ1 = 1 and ϑ2 = 0 with σ = 1.

Definition 3.2 (Gaussian-Core Wishart Equivalent (GCWE)) Let

n measurements (z1, . . . , zn) be drawn as z ∼ CES (0,Σ, gz) and denote

(x1, . . . ,xn) their Gaussian cores as zi
d
=
√
Qi/‖gi‖xi (cf. Definition 3.1). Let

Σ̂ be an M -estimator built with (z1, . . . , zn) using Eq. (9). The SCM built

from the Gaussian cores, i.e.

Ĉ =
1

n

n∑
i=1

xix
H
i (15)

is referred to as Gaussian-Core Wishart Equivalent (GCWE) of Σ̂. It is impor-140

tant to notice that this matrix can not be computed in practice, but represents a

theoretical equivalent.

Theorem 3.2 (Convergence towards GCWE) Let Σ̂ be an M -estimator

as in (9) built from n samples drawn as z ∼ CES (0,Σ, gz), and Ĉ be its GCWE

from Definition 3.2. The asymptotic distribution of σΣ̂− Ĉ (with σ in (10)) is

given by [32]
√
nvec

(
σΣ̂− Ĉ

)
d→ GCN

(
0, Γ̃, Ω̃

)
(16)

where Γ̃ and Ω̃ are defined by

Γ̃ = σ1Σ
T ⊗Σ + σ2vec(Σ)vec(Σ)H ,

Ω̃ = σ1

(
ΣT ⊗Σ

)
K + σ2vec(Σ)vec(Σ)T (17)

with σ1 and σ2 given by

σ1 =
aMp(p+ 1) + cM (cM − 2b)

c2M

σ2 =
aM − p2

(cM − p2)2
− aM (p+ 1)

c2M
+ 2

p(cM − bM )

cM (cM − p2)
(18)

where bM = E[ψ(σQ)‖g‖2].145
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4. Robust detection with plug-in adaptive statistics

This section contains the main contribution of the paper. First, we define

robust plug-in detectors as the adaptive detectors (itemized in Section 2) with

M -estimators plugged-in instead of the classical SCM. Note that, in this case,

the notion of robustness refers to the clutter scatter matrix estimation and150

not to the classical robustness definition, meaning that the detection statistic

distribution is (asymptotically) independent of the data distribution under H0

[39, 40]. Indeed, the distribution of the detection statistic depends on both the

received data distribution and the distribution of the scatter matrix estimator.

Among analyzed detectors, only the ANMF has this “distribution-free” property155

over the class of CES distribution and consequently, is robust in both senses.

Let us now state two definition essential for our study.

Definition 4.1 (Robust plug-in detector) Consider a set of n+ 1 samples

{z, z1, . . . , zn} drawn as zi ∼ CES (0,Σ, gz) with the detection problem expressed

in (1). Let Σ̂ be an M -estimator as in (9) built from {z1, . . . , zn} and D be a160

decision statistic (either Kelly in (2), AMF in (4), ANMF in (5), or Rao in

(6)). The statistic D(Σ̂), that uses the M -estimator Σ̂ as plug-in instead of the

traditional SCM, is referred to as a robust plug-in detector.

Definition 4.2 (Gaussian-Core Equivalent Detector (GCED))

Consider a set of n + 1 samples {z, z1, . . . , zn} drawn as zi ∼ CES (0,Σ, gz)165

with the detection problem expressed in (1). Let D(Σ̂) be a robust plug-in

detector as in Definition 4.1. Let Ĉ be the GCWE of Σ̂ (cf. Definition

3.2). The quantity D(Ĉ) is referred to as Gaussian-Core Equivalent Detector

(GCED) of D(Σ̂).

In the following, we propose several theorems to characterize the distribution170

of robust plug-in detectors (as in Definition 4.1) conditionally to the tested

sample z. First, the results are obtained for the standard asymptotic, then the

convergence towards the GCED is derived. Note that, only the results provided

in Theorem 4.2 are not derived in this paper. To emphasize this, we provide
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the corresponding reference in the theorem title. The section is concluded by175

examples for specific M -estimators.

4.1. Standard asymptotic regime

In SA regime, the robust adaptive detector is compared to its non-adaptive

form, i.e. detector built using the true SM. For DK (Eq. (2)), DW (Eq. (4)), or

DR (Eq. (6)), one obtains the following results.180

Theorem 4.1 (SA of the robust AMF, Kelly and Rao) Let D(Σ̂) be a

robust plug-in detector as in Definition 4.1 with D ∈ {DK,DW ,DR}. Condi-

tionally to the distributions of z, the asymptotic distribution of D
(
Σ̂
)

is given

by

√
n
(
D
(
σΣ̂
)
−D (Σ)

)
z

d→ N
(
0, ϑ1σX + ϑ2D2 (Σ)

)
(19)

with σX = D (Σ)
(
2zHΣ−1z−D (Σ)

)
and ϑ1,ϑ2 in (14).185

Proof 4.1 See Appendix A.

Due to the specific scale invariance property, the variance of ANMF has a

particular form (depending only on the first scale factor) derived in [26].

Theorem 4.2 (SA of the robust ANMF [26]) Let DH(Σ̂) be the robust

ANMF detector as in (5) and Definition 4.1. Conditionally to the distributions190

of z, the asymptotic distribution of DH
(
Σ̂
)

is given by

√
n
(
DH

(
Σ̂
)
−DH (Σ)

)
z

d→ N (0, ϑ1σH) (20)

where σH = 2DH (Σ) (DH (Σ)− 1)2 and ϑ1, in (14).

Proof 4.2 This theorem has been proved in [26].
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4.2. Convergence towards GCED

Theorem 4.3 (GCED of the robust AMF, Kelly and Rao) Let D(Σ̂)195

be a robust plug-in detector as in Definition 4.1 with D ∈ {DK,DW ,DR}.

Conditionally to the distributions of z, the asymptotic GCED of D
(
Σ̂
)

is

given by

√
n
(
D
(
σΣ̂
)
−D

(
Ĉ
))

z

d→ N
(
0, σ1σX + σ2D2

W (Σ)
)

(21)

with σX = D (Σ)
(
2zHΣ−1z−D (Σ)

)
and σ1, σ2 in (18).

Proof 4.3 See Appendix A.200

Theorem 4.4 (GCED of the robust ANMF) Let DH(Σ̂) be the robust

ANMF detector as in (5) and Definition 4.1. Conditionally to the distributions

of z, the asymptotic distribution of DH
(
Σ̂
)

is given by

√
n
(
DH

(
Σ̂
)
−DH

(
Ĉ
))

z

d→ N (0, σ1σH) (22)

where σH = 2DH (Σ) (DH (Σ)− 1)2 and σ1 in (18).

Proof 4.4 The proof follows the same lines as the ones for Theorems 4.1 and205

4.3. This is detailed at the end of Appendix A.

Remark 4.1 Note that the results in the SA regime depend on the scale factors

ϑ1 and ϑ2 given by Eqs. (14). In the GCED regime, these are replaced by

the σ1 and σ2 (Eq. (18)). As shown in [32], and will be demonstrated in the

following examples, one has that σ1, σ2 are significantly smaller than ϑ1, ϑ2,210

meaning that the variances in the GCED regime are lower than the ones in the

SA regime. This directly implies a robust plug-in detector is better described by

the distribution of its GCED, than with its asymptotic properties.

4.3. Examples

Example 4.1 (Robust plug-in detectors with Tyler’s M-estimator)

Robust plug-in detectors built from Tyler’s M -estimator in (11) are charac-

terized by Theorems 4.1-4.2 (for SA) and Theorems 4.3-4.4 (for GCED) with

12



coefficients ϑ1 = (p+ 1)/p

ϑ2 = −(p+ 1)/p2
and

σ1 = 1/p

σ2 = (p− 1)/p2
(23)

independently from the underlying distribution of the secondary data.215

Remark 4.2 For the Tyler’s M -estimator the first scaling factors can be

obtained directly from Eqs. (14) and (18) using ψ(σQ) = p which leads to

aM = bM = cM = p2. This is in agreement with the results obtained in [41, 42].

However, since this estimator does not respect all Maronna’s conditions, the re-

sult for the second scale factors can not be obtained directly from Eqs.(14) and220

(18), but can be found in [31] and [32].

Example 4.2 (Robust plug-in detectors with Student’s M-estimator)

Robust plug-in detectors built from Student’s M -estimator in (11) are charac-

terized by Theorems 4.1-4.2 (for SA) and Theorems 4.3-4.4 (for GCED) with

coefficientsϑ1 = (p+ d+ 1)/(p+ d)

ϑ2 = (p+ 1 + d)/(d(p+ d))
and

σ1 = 1/(p+ d)

σ2 = (p+ 1 + d)/(d(p+ d))
(24)

in the matched case, i.e. when the samples follow a t-distribution [13] of degrees

of freedom d.

Remark 4.3 The results for Student’s M -estimator can be obtained directly

from Eqs. (14) and (18) computing plugging in the coefficients aM , bM and cM225

obtained for ψ(x) = (p+ d)x/(x+ d). It can be noted that when d→∞ one has

that variance between the robust plug-in detector and its GCWE goes to zero as

expected.

5. Simulations

5.1. Validation of theoretical results230

The simulations have been carried out with complex zero-mean t-distributed

secondary data. The scatter matrix Σ is Toeplitz, i.e. its elements are defined
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by Σj,k = ρ|j−k|, j, k = 1, . . . , p. The correlation coefficient ρ is set to 0.5.

The DoF parameter d is equal to 2. Empirical means are computed using Monte

Carlo runs.235

Figure A.1 illustrates the theoretical result of Theorems 4.1 and 4.3. The

empirical variances of robust plug-in detectors in SA, i.e. when centering around

the detectors obtained with the true SM, are plotted and compared to the

theoretical results. Moreover, the empirical variances of the difference between

the robust plug-in detectors and their GCEDs are also given together with the240

corresponding theoretical result. First, one can see that the simulations validate

theoretical results. Then, one can note that the variances when comparing to

the GCEDs are significantly lower than the ones in the SA, which justifies

the proposed approximation of the behavior of robust plug-in detectors with

the one of their GCEDs. One observes that the error decreases very fast as245

the number n of samples increases. Furthermore, simulations show that the

approximation is also valid for small n. Indeed, as derived for both Tyler’s M -

estimator and Student M -estimator (σ1 respectively in Eqs. (23) and (24)), the

asymptotic variance given by Theorem 4.4 is of order 1/p (compared to order 1

for the classical SA regime). Roughly speaking, this implies that the asymptotic250

regime is achieved at the speed
√
np (compared to order

√
n for the classical

SA regime). Hence, when p = 10, as it is the case for results displayed on figure

A.1, the case n = 20 basically corresponds to an equivalent case with n′ = 200

samples. This explains why the results are accurate even for small values of n.

On Figure A.2 the corresponding results for the ANMF built with the Tyler’s255

estimator (TyE-ANMF) for p = 10 and p = 100 are plotted. Once again, one

can note that the empirical variance of TyE-ANMF when compared to the

GCED is remarkably smaller than the one in SA. In addition, one can notice

that this difference is even smaller for higher dimension, which is in agreement

with theoretical results.260
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5.2. Application

In order to demonstrate the application of the results, we will first analyze

the robust ANMF. We recall that when the scatter matrix Σ is known, DH (Σ)

(called NMF) follows a beta distribution β1,p−1(u) under H0 [7]

fβ(u) = (p− 1)(1− u)p−21[0,u](u) (25)

where 1[0,u](·) is the indicator function on [0, 1]. This results in the following

Pfa − λ relationship

Pfa = P (DH (Σ) > λ|H0) = (1− λ)p−1 (26)

and the probability of detection Pd for a given SNR δ and for a fixed value of

the detection threshold λ is given by

Pd = P (DH (Σ) > λ|H1) = 1−
∫ λ

0

β1,p−1(u)eδ(u−1)
1F1(p, 1;uδ)du (27)

where 1F1(·) is the complex confluent hypergeometric function. Assuming that

instead of Σ, the SCM computed with Gaussian-distributed data is plugged in,

the PDF of DH
(
Ĉ
)

is given by [38]

fDH(Ĉ)(u) = K(1− u)a−2
2F1(a, a; b;u)1[0,u](u) (28)

with

Pfa = P
(
DH

(
Ĉ
)
> λ|H0

)
= (1− λ)a−1

2F1(a, a− 1; b− 1;λ), (29)

where K = (a−1)(p−1)
n+1 , a = n−p+2, b = n+2 and 2F1(·) is the hypergeometric

function [43]. The Pd for a given SNR δ is

Pd = P
(
DH

(
Ĉ
)
> λ|H1

)
= 1−

∫ 1

0

e−δu

N

∫ λ

0

ua−1 (1− u)p−1(1− x)n−p

(1− ux)a
1F1

(
a, 1;

δux(1− u)

1− ux

)
dxdu

(30)

where N = Γ(a−1)Γ(p−1)
Γ(n+1) .
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Since the variance between a robust plug-in detector and its GCED is close265

to zero, one can conclude that the distribution of the robust plug-in detector

can be well-approximated with the one of GCED. Figure A.3 illustrates this

point. The histogram on Figure A.3 represents the empirical distribution of

t-ANMF that is compared to the theoretical distribution of NMF given by Eq.

(25) (red curve) and theoretical distribution of GCWE given by Eq. (28) (green270

curve). One can note that the red curve mismatches the empirical distribution

of t-ANMF, while the green one borders the plot area of the histogram showing

that Eq. (28) gives a good approximation of the t-ANMF’s behaviour.

Having this in mind, one can analyze the Pfa − λ relationship for the ro-

bust ANMF. On Figure A.4 we observe this relationship for different number275

of secondary data, n = 20 and n = 100. The empirical results for t-ANMF and

TyE-ANMF have been plotted and compared to the theoretical ones given by

Eqs. (26) and (29). The empirical results for the corresponding GCWE-ANMF

(that is not available in practice) and the SCM-ANMF built with observed data

are also provided. First, one can notice a good match of the empirical dis-280

tributions of both t-ANMF and TyE-ANMF with the theoretical and empirical

distribution of the GCWE-ANMF. This shows that the behavior of robust plug-

in detectors is better approximated with the one of the GCWE-ANMF (green

curve) than with the corresponding NMF (black curve). Secondly, one can see

that this claim is even more obvious for small n since all curves approach when285

n increases. Finally, one can note that the SCM built with secondary data does

not satisfy the relationship Eq. (29) anymore. This is expected since the SCM

is calculated with a non-Gaussian data and its performances are remarkably

degraded, which highly supports the use of M -estimators in this context.

For a constant Pfa we can study the Pd of the robust ANMF for a given290

SNR δ. Figure A.5 shows the empirical Pd for TyE-ANMF where the detec-

tion threshold is computed empirically for Pfa = 0.001 (TyE-ANMFemp) to-

gether with the empirical Pd obtained with the threshold computed using Eq.

(29) (TyE-ANMFthe). The empirical results have been compared to the cor-

responding theoretical results for GCED given by Eq. (30) (green curves) for295
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n = 20, 50, 200. Finally, the theoretical results for NMF (Eq. (27)) have been

plotted. The figure is revealing in several ways. First, the results for TyE-

ANMFemp match perfectly the ones for TyE-ANMFthe, meaning that we ob-

tain the same Pd for empirically and theoretically computed threshold which

can significantly reduce the computational cost of the method. In addition,300

both empirical results coincide with the theoretical one for GCED as stated.

Finally, the approximation is valid even for small n approaching the results for

NMF when n increases. Taken together, these results suggest that one can use

M -estimators to compute the value of detection statistic and pre-compute the

detection threshold using the theoretical results for GCED.305

Finally, we illustrate that the general results of Theorem 4.3 can also be

applied identically: we now consider Kelly’s GLR [2] computed with a plug-in

Student’s M -estimator. Following the same approach as previously, the proba-

bility of detection of this detector has been set either by Monte-Carlo simulation,

or using the one of its theoretical Gaussian equivalent, given by

Pfa = P
(
DK

(
Ĉ
)
> λ|H0

)
= (1− λ)

n−p+1
. (31)

The detection probability of these two detectors detector has then been com-

pared to the one expected in the Gaussian context, given by

Pd = P
(
DK

(
Ĉ
)
> λ|H1

)
= 1−

∫ 1

0

e−δu

N

∫ λ

0

un−p+1(1− u)p−2(1− x)n−p1F1 (n− p+ 2, 1; δux) dxdu.

(32)

Figure A.6 displays the obtained results, and the same general conclusions can

be drawn.

6. Conclusion310

This paper has shed new light on the statistical properties for the detectors

built with M -estimators in CES framework, called robust plug-in detectors.
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The robust plug-in detectors have been compared with their GCEDs, i.e. corre-

sponding detectors built with the SCM in the Gaussian context, and it has been

shown that the variance of the difference between them is considerably smaller315

than the variance of the robust plug-in detectors in standard asymptotic regime.

This result led us to conclude that we can use M -estimators to compute the

value of the detection statistic and then use the theoretical results for GCED

for theoretical derivation of the detection threshold.
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Appendix A. Proof of theorems

In order to prove all theorems, we first provide common steps for all detec-

tors, where the detection test is noted as D. Starting with

√
n
(
D
(
σΣ̂
)
−D

(
Ĉ
))

=
√
n
(
D
(
σΣ̂
)
−D (Σ)−D

(
Ĉ
)

+D (Σ)
)

=
[
1,−1

]√n(D (σΣ̂
)
−D (Σ)

)
√
n
(
D
(
Ĉ
)
−D (Σ)

)


one obtains

σ
(n)
D = nE

[(
D
(
σΣ̂
)
−D

(
Ĉ
))(
D
(
σΣ̂
)
−D

(
Ĉ
))H]

=
[
1,−1

]
E

√n(D (σΣ̂
)
−D (Σ)

)
√
n
(
D
(
Ĉ
)
−D (Σ)

)


×

√n(D (σΣ̂
)
−D (Σ)

)
√
n
(
D
(
Ĉ
)
−D (Σ)

)
H

 1

−1


= σ

(n)
D1 − 2σ

(n)
D2 + σ

(n)
D3
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with325

σ
(n)
D1 = nE

[(
D
(
σΣ̂
)
−D (Σ)

)(
D
(
σΣ̂
)
−D (Σ)

)H]
σ

(n)
D2 = nE

[(
D
(
σΣ̂
)
−D (Σ)

)(
D
(
Ĉ
)
−D (Σ)

)H]
σ

(n)
D3 = nE

[(
D
(
Ĉ
)
−D (Σ)

)(
D
(
Ĉ
)
−D (Σ)

)H]
.

A first approximation of D(σΣ̂) yields

D
(
σΣ̂
)
' D (Σ) +D′ (Σ) vec

(
σΣ̂−Σ

)
,

where D′ (Σ) = ∂D(Σ)
∂vec(Σ) , giving the well-known result

√
n
(
D
(
σΣ̂
)
−D (Σ)

)
d→ N

(
0,D′ (Σ) ΓD′ (Σ)

H
)

(A.1)

where Γ is given by (13). Analogously, one has

σ
(n)
D2 → D

′ (Σ) ΠD′ (Σ)
H

(A.2)

where nE

[
vec
(
σΣ̂−Σ

)
vec
(
Ĉ−Σ

)H]
→ Π and finally, it can be easily

shown that (see [32] for details)

√
n
(
D
(
σΣ̂
)
−D

(
Ĉ
))

d→ N
(
0,D′ (Σ) Γ̃D′ (Σ)

H
)

(A.3)

with Γ̃ given by (17).

Using Eqs. (A.1) and (A.3) and deriving the derivatives D′ (Σ) one can

obtain the final results for all detectors.

In order to obtain derivatives we will start with Rao statistic D′R(Σ) since

the derivatives for other detectors can be easily obtained from this one.330

Let us first rewrite DR as

DR =
a

(1 + 1
nb)(1 + 1

nb+ 1
na)

with a =
∣∣pHΣ−1z

∣∣2 / (pHΣ−1p
)

and b = zHΣ−1z. Then, one has

∂DR =
∂a(1 + 1

nb)(1 + 1
nb+ 1

na)− a( 1
n∂b)(1 + 1

nb+ 1
na)− a(1 + 1

nb)(
1
n∂b+ 1

n∂a)

(1 + 1
nb)

2(1 + 1
nb+ 1

na)2

= DR
(
∂a

a
−

1
n∂b

1 + 1
nb
−

1
n∂b+ 1

n∂a

1 + 1
nb+ 1

na

)
.
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Now

∂a =
∂
(
pHΣ−1z

) (
zHΣ−1p

) (
pHΣ−1p

)(
pHΣ−1p

)2
−

(
pHΣ−1z

)
∂
(
zHΣ−1p

) (
pHΣ−1p

)(
pHΣ−1p

)2
−

(
pHΣ−1z

) (
zHΣ−1p

)
∂
(
pHΣ−1p

)(
pHΣ−1p

)2 .

Using

∂A−1 = −A−1∂AA−1, (A.4)

Tr
(
AHB

)
= vecH (A) vec (B) , (A.5)

vec
(
A−1BC−1

)
=

(
CT ⊗A

)−1
vec (B) , (A.6)

one can show that

∂
(
pHΣ−1z

)
= −∂

(
vecH (Σ)

) (
ΣT ⊗Σ

)−1

vec
(
zpH

)
and thus

∂a = −∂
(
vecH (Σ)

) (
ΣT ⊗Σ

)−1

a

(
zpH

pHΣ−1z
+

pzH

zHΣ−1p
− ppH

pHΣ−1p

)
and

∂b = −∂
(
vecH (Σ)

) (
ΣT ⊗Σ

)−1

vec
(
zzH

)
.

Analogously,335

∂DK = DK
(
∂a

a
+

1
n∂b

1 + 1
nb

)
,

∂DW = DW
∂a

a
.

One can note that

1
n∂b

1 + 1
nb
−−−−−→
n→+∞

0,

1
n∂b+ 1

n∂a

1 + 1
nb+ 1

na
−−−−−→
n→+∞

0
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and

DR −−−−−→
n→+∞

DW ,

DK −−−−−→
n→+∞

DW .

Therefore

D′R −−−−−→
n→+∞

D′W ,

D′K −−−−−→
n→+∞

D′W .

and

D′R,K,W = −DW

(
vecH

(
zpH

)
zHΣ−1p

+
vecH

(
pzH

)
pHΣ−1z

−
vecH

(
ppH

)
pHΣ−1p

)(
ΣT ⊗Σ

)−1

(A.7)

Finally, the variance in Eq. (A.1) becomes

D′W (Σ) ΓD′W (Σ) = D2
W

(
vecH

(
zpH

)
zHΣ−1p

+
vecH

(
pzH

)
pHΣ−1z

−
vecH

(
ppH

)
pHΣ−1p

)

×
(
ϑ1

(
ΣT ⊗Σ

)−1

+ ϑ2vec
(
Σ−1

)
vec
(
Σ−1

)H)
×

(
vec
(
zpH

)
pHΣ−1z

+
vec
(
pzH

)
zHΣ−1p

−
vec
(
ppH

)
pHΣ−1p

)
. (A.8)

Using Eqs. (A.5) and (A.6) one can easily show that340

vecH(abH)

aHΣ−1b
(ΣT ⊗Σ)−1 vec(cdH)

dHΣ−1c
=

aHΣ−1c dHΣ−1b

aHΣ−1b dHΣ−1c

and

vecH(abH)

aHΣ−1b
vec
(
Σ−1

)
vec
(
Σ−1

)H vec(cdH)

dHΣ−1c
= 1.

After some mathematical manipulations one can obtain the final results from

Eq. (19), proving Theorem 4.1. Applying Γ̃ instead of Γ in Eq. (A.8), one

obtains the results from Eq. (21), proving Theorem 4.3.

Analogously, starting with

D′H = DH
(
∂a

a
− ∂b

b

)
(A.9)

one obtains the results from Theorem 4.4 which concludes the proof.
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Figure A.1: Empirical variances of the robust detectors in standard asymptotic regime and

when centered around their GCEDs, compared to the corresponding theoretical results (Ex-

amples 4.1 and 4.2); p = 10.
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Figure A.2: Empirical variances of the robust TyE-ANMF in standard asymptotic regime

and when centered around its GCED, compared to the theoretical results (Example 4.1).
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Figure A.3: Empirical distribution of the t-ANMF versus the theoretical distribution of NMF

(Eq. (25)) in red (dashed curve) and theoretical approximative distribution (Eq. (28)) in green

(solid curve); p = 10.

0 1 2 3 4
−4

−3

−2

−1

0

Eq.(26)

Eq. (29)

t-ANMF

TyE-ANMF

GCWE-ANMF

SCM-ANMF

n = 20

n =
100

Figure A.4: Comparison between Pfa − λ relationships for the t-ANMF, TyE-ANMF and

SCM-ANMF with the empirical and theoretical results for the GCWE-ANMF (Eq. (29)) and

the NMF(Eq. (26)); Student t-distributed data with d = 2, p = 10 .
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Figure A.5: TyE-ANMF Probability of Detection for Pfa = 0.001: Comparison of the em-

pirical results for TyE-ANMF obtained for empirically computed threshold (TyE-ANMFemp)

and theoretically computed threshold (TyE-ANMFthe) using Eq. (29), with the theoretical

results for GCED (Eq. (30)) and NMF (Eq. (27)); Student t-distributed data with d = 2,

p = 10 .
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Figure A.6: Probability of Detection of t-Kelly for Pfa = 0.001: Comparison of the empirical

results obtained for empirically computed threshold (t-Kellyemp) and with the theoretically

computed threshold using Eq. (31) (t-Kellythe), with the theoretical result for GCED given

in Eq. (32); Student t-distributed data with d = 2, p = 10.
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