

Combined PIXE/PIGE with the high-energy beams of the ARRONAX cyclotron

Vincent Métivier, Arnaud Guertin, Ferid Haddad, Mostafa Hazim, Charbel Koumeir, Nathalie Michel, Diana Ragheb, Ahmed Rahmani, Noël Servagent, Alexandre Subercaze

▶ To cite this version:

Vincent Métivier, Arnaud Guertin, Ferid Haddad, Mostafa Hazim, Charbel Koumeir, et al.. Combined PIXE/PIGE with the high-energy beams of the ARRONAX cyclotron. 14th International Conference on Particle Induced X-Ray Emission (PIXE 2015), Feb 2015, Somerset West, South Africa. hal-02399580

HAL Id: hal-02399580

https://hal.science/hal-02399580

Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Combined PIXE/PIGE with the high-energy beams of the ARRONAX cyclotron

authors

METIVIER Vincent ¹ GUERTIN Arnaud¹ HADDAD Ferid ^{1,2} HAZIM Mostafa 1,2 KOUMEIR Charbel 1,2 MICHEL Nathalie 1,2 RAGHEB Diana 1 RAHMANI Ahmed ¹ SERVAGENT Noël 1 SUBERCAZE Alexandre 1

¹ SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes, France

² GIP ARRONAX, 1 rue Aronnax, 44817 Saint-Herblain, France

acknowledgments

This work has been in part supported by a grant from the French National Agency for Research called "Investissements d'Avenir", Equipex ArronaxPlus no ANR-11-EQPX-0004 and by the CPER 2007-2013, including European Union funding (FEDER).

The authors wish to thank Pr. E. Fritsch (IMN Jean Rouxel) for providing us the sodalites and for fruitful discussions and C. Neel (CEREMA) and L. Jean-Soro (IFSTTAR) for providing us the sands and the work to come.

A high energy PIXE platform

is now available at ARRONAX.

Its is well suited for in-air multi-

elemental analysis (at the ppm

level for medium and heavy

elements) and bulk analysis

(stoichiometry, density, etc.)

of thick and multilayer samples.

number elements, an additional

to the samples and a large LaBr

develop the complementary

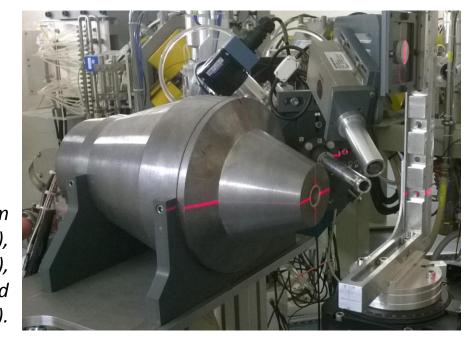
PIGE method.

detector will be soon installed to

Silicon Detector can be used closer

For the analysis of low atomic

Ion Beam Analysis with the ARRONAX cyclotron beams


ARRONAX (Nantes, France) is a multi-particle cyclotron (Cyclone®70): protons can be accelerated from 30 MeV up to 70 MeV, deuterons from 15 MeV up to 35 MeV and alpha particles at fixed 68 MeV.

For ion beam analysis, protons are selected for their higher range in the matter, alpha for their higher PIXE sensitivity (K X-ray production cross section) and low energy deuterons essentially for PIGE.

Main features:

- multi-elemental analysis (ppm) thanks to K X-ray detection
- fast, non-destructive, in normal air
- thick/multilayer samples
- density and stoichiometry measurement

Fig. 1 – high energy PIXE set-up with the beam extraction window and collimators (center), the shielded X-ray LEGe detector (left), the X-ray silicon drift detector (top) and the automated sample holder (right).

Multi elemental analysis

D.Ragheb et al., J Radioanal Nucl Chem (2014) 302:895-901

X-rays are detected in normal air with a LEGe detector (Canberra GL005P, Be window) at an angle of detection θ = 135° (see Fig. 1). The distance between sample and detector varies from 5 to 25 cm (dependent on experimental requirements). The number of incident particles is measured either with a 2 μm monitor copper foil or the argon (in air) peak (previously calibrated). The beam diameter is few mm and the intensity is <1nA.

The limit of detection (LoD) reaches the ppm for medium and heavy elements in light matrix.

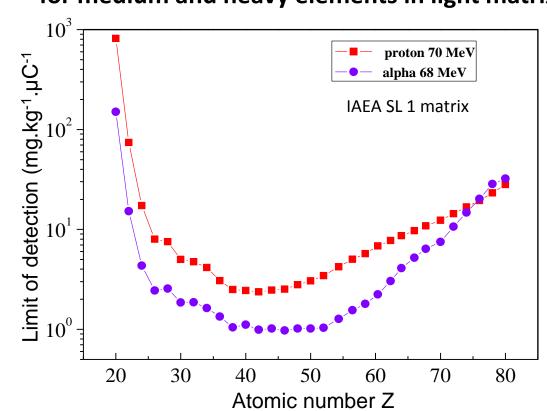


Fig. 2 – limit of detection in lake sediment IAEA RM SL-1 matrix (500μm thick pellet; detector at 16 cm away).

Ex: composition of natural and synthetic sodalite (photochromic material)

• 68 MeV alpha particle beam

• Relative quantification (ref. IAEA RM SL-1):

$$N_{i} = N_{P}C_{i} \omega_{K_{i}} b_{ij} T_{abs_{i}} \varepsilon_{i} \frac{\Omega}{4\pi} \int_{E_{in}}^{E_{out}} \frac{\sigma_{i}(E) T_{target}(E)}{S(E)} dE$$

Sample	Natural	Synthetic	IAEA RM
	sodalite	sodalite	SL-1
Form	Pellet	Pellet	Pellet
Mass	216.9 mg	94.2 mg	400 mg
Thickness	1200.74 μm	521.74 μm	552 μm
Diameter	1 cm	1 cm	2.2 cm
Density	2.3 g.cm ⁻³	2.3 g.cm ⁻³	2.1 g.cm ⁻³

Table 1 – characteristics of the sodalite samples and the reference one (IAEA RM SL-1).

Element	K X-ray energy (keV)	natural sodalite (mg.kg ⁻¹)	synthetic sodalite (mg.kg ⁻¹)
Ca	3.7	9193 ± 1747	4655 ± 1303
Mn	5.9	373 ± 104	667 ± 113
Fe	6.4	8128 ± 1138	943 ±132
Cu	8.0	3498 ± 514	1709 ± 290
Zn	8.6	247 ± 44	492 ± 83
Ga	9.2	18 ± 5	
Br	11.9	123 ± 20	
Ag	22.1	39 ± 15	
Sn	25.2		53 ± 14
I	28.6	97 ± 25	

Table 2 – quantification of the detected elements in both samples of sodalites by high energy PIXE.

Fig. 3 – electrodeposited

NI/Ga alloy on

gold substrate

Bulk analysis (density and stoichiometry)

Determination of the thickness, the density and the mass fraction of a Ni/Ga alloy deposited on a gold substrate (to be used as target at ARRONAX for production of a 68 Ge/ 68 Ga generator for medical imaging).

T. Sounalet et al., Nuclear Data Sheets, Vol. 119(2014)261-266

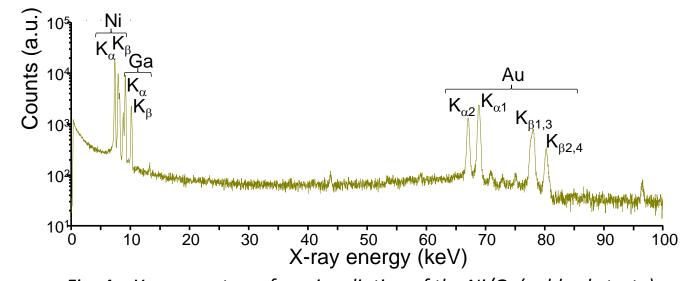
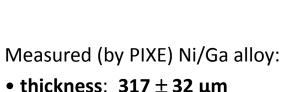
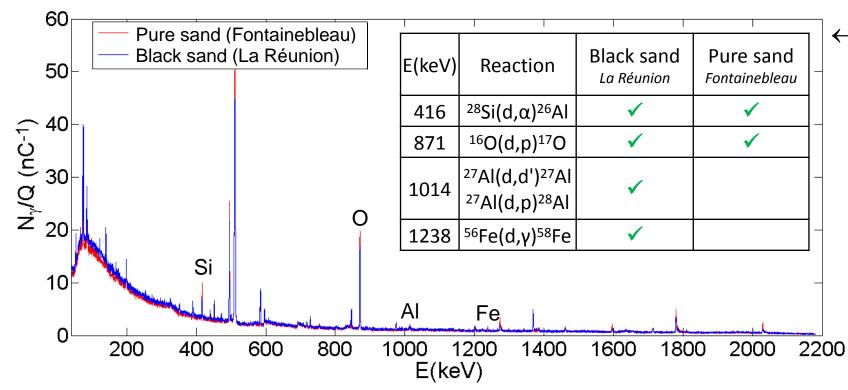
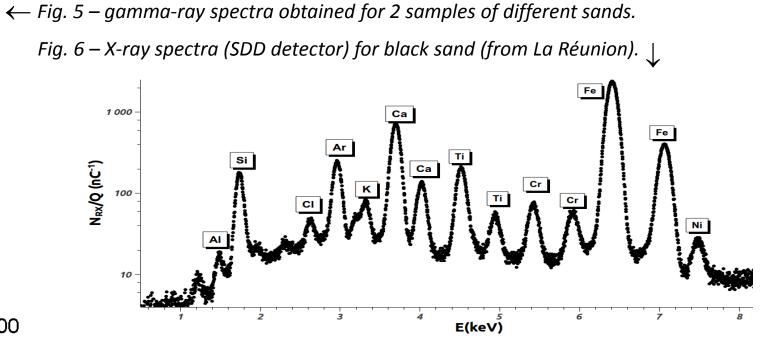



Fig. 4 – X-ray spectrum from irradiation of the Ni/Ga(gold substrate) target with a **70 MeV proton** beam (LEGe detector at 25 cm).

- the mass fraction and the density of the Ni/Ga alloy are calculated trough an iterative process based on the K X-ray intensities of Ni and Ga.
- the thickness of the alloy is then determined thanks to the attenuation of the K X-ray coming from the gold carrier.

Element	HE PIXE wt%	ICP-AES wt%	SEM/EDX wt%
Ni	34,18 ± 0,7 %	34,15 ± 0,4 %	$34,04 \pm 0,3 \%$
Ga	65,19 ± 0,8 %	65,85 ± 1,6 %	65,96 ±1,3 %


Table 3 – mass fraction (in percent by mass, wt%) of the NI/Ga alloy measured by high energy PIXE and two comparative destructive methods.



• thickness: $317 \pm 32 \mu m$ • density: 6.9 g.cm⁻³

summary and outlook Light element detection: complementary PIGE and SDD X-ray detector

As part of improving the detection of light elements, two additional detectors have been used: a HPGe detector (from Canberra, 50 mm diameter and 57 mm depth) gamma-rays and a Silicon Drift Detector (SDD from Ketek) for low energy X-rays. Two different types of sand have been irradiated with a 16 MeV deuteron beam; the HPGe gamma detector was located at 100 cm from the target and the SDD for low energy X-rays at 2.3 cm (see Fig. 1).

- the limit of detection with X-rays is improved for light elements (down to Al, Z=13, at least) with the additional detector (compact SDD);
- lighter elements (such as Oxygen in this case) can be analyzed thanks to gamma rays (PIGE);
- a method to determine the water content of soil samples using gamma rays is being developed (from this study with sands).