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We introduce a type system for the π -calculus which is designed to guarantee that typable processes are

well-behaved, namely they never produce a run-time error and, even if they may diverge, there is always a

chance for them to łfinish their workž, i.e., to reduce to an idle process. The introduced type system is based

on non-idempotent intersections, and is thus very powerful as for the class of processes it can capture. Indeed,

despite the fact that the underlying property is Π0
2-complete, there is a way to show that the system is complete,

i.e., that any well-behaved process is typable, although for obvious reasons infinitely many derivations need

to be considered.
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1 INTRODUCTION

The concept of a type system has been a useful abstraction in the theory and practice of programming
languages, since the very early days [Backus et al. 1962]. Types are assigned to code fragments
including variables, subroutines, and dynamic allocated objects, and their purpose is to guarantee
a form of safety, i.e., that łwell-typed programs cannot go wrongž [Milner 1978], or even more
complex properties, e.g., that well-typed program terminate without going wrong [Hughes et al.
1996]. Noticeably, the converse is not necessarily true: there can well be programs satisfying the
prescribed property which are not typable. But the guarantee provided by types is anyway very
valuable, particularly when the behavior of subprograms within programs turns out to be complex,
like for so-called higher-order functions: in those scenarios, keeping track of who does what is
even more crucial to prevent run-time errors.

Indeed, type systems for higher-order programming languages are among the best studied topics
in the programming language and logic in computer science communities. A host of different type
systems exist, and forms of polymorphic [Girard 1971; Reynolds 1974], refinement [Freeman and
Pfenning 1991], sized [Hughes et al. 1996], or dependent types (to mention only a few) have been
applied to a variety of programming languages. There is always a tension between expressiveness
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and tractability here: the more expressive the type system is, the more computationally expensive
type checking and type inference are bound to be, because the underlying program properties are
invariably undecidable. From simple types, where type inference has polytime complexity, one can
go all the way to System F, for which the same problem is well-known to be undecidable [Wells
1994], throughML-style type systems, in which inference is EXPTIME-complete [Kanellakis et al.
1994].

Logic and programming language semantics can help in studying the intrinsic limits of the
type-based approach, by providing some guidelines as for how to design elegant type systems,
or by exploring the intrinsic limits of the approach. A particularly relevant example is given by
intersection types [Coppo and Dezani-Ciancaglini 1978], in which various normalization properties
of λ-terms can be precisely characterized by typability (see for instance [Krivine 1993] for the
standard examples: head normalization, weak normalization, strong normalization).
But what happens if one switches to concurrent calculi and process algebras? Type systems

guaranteeing safety properties of processes have been studied for a long time now, with remarkable
results coming out in the last twenty years. For example, quite robust and expressive type systems
guaranteeing deadlock freedom of π -processes can be given [Suenaga and Kobayashi 2007]. As
another example, session types [Honda et al. 1998] have had quite an impact in the way concurrent
programs and processes can be structured. Finally, termination of processes is another area in
which much progress can be observed in the last fifteen years [Demangeon et al. 2010a,b; Yoshida
et al. 2004]. More information on related work can be found in Section 1.1.

Despite the very strong expressive power of the obtained type methodologies, not much is known
about the limits of the type-based approach in a concurrency scenario, contrarily to what one
observes in the realm of sequential languages. Is there any type system able not only to guarantee

but also to characterize some relevant property of concurrent processes, like deadlock-freedom,
liveness, or termination? In the literature, some attempts in this direction can be found, but none
of them gives a definite answer. Giving a satisfactory answer to the question above is, we believe, a
key step in understanding the deep nature of the aforementioned properties, which are universally
accepted to be desirable in concurrent systems.

In this paper, we show that, indeed, an intersection type discipline may be given for a fragment of
the π -calculus, and proved sound and complete for checking, in essence, a form of deadlock-freedom
and termination for processes, which we dub good behavior. This is the first such result, as far as
the authors know.

The route to the result is full of caveats, however. First of all, one needs to clarify that the intrinsic
non-determinism of π -calculus processes prevents us from hoping to have such a type system, at
least if one sticks to the usual scheme in which one type derivation is sufficient as a certificate for
the given property. Indeed, the class of well-behaved processes turns out to be a Π0

2-complete set,
which by definition cannot be characterized by a finitary, recursively checkable, type system. This
admittedly not surprising result will be proved formally in Sect. 2.4 below.

1.1 Related Work

Intersection types have been introduced by Coppo and Dezani [Coppo and Dezani-Ciancaglini
1978] as a generalization of simple types for ordinary λ-terms inspired by semantics. After their
introduction, it became clear quite soon that intersection types could be used to characterize notions
like that of a weakly normalizing [Coppo et al. 1981] or that of strongly normalizing λ-terms [Coppo
and Dezani-Ciancaglini 1980]. By changing the properties satisfied by the intersection type operator,
one can also turn intersection types into a way to read the complexity of normalization of a λ-term
(i.e. the number of β-steps to normal form along a strategy) from one of its type derivations [Accattoli
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et al. 2018; de Carvalho 2018]. The same paradigm has been recently shown to be applicable to
other kinds of λ-calculi, like probabilistic λ-calculi [Breuvart and Lago 2018].

Intersection type systems for π -calculus processes have already been proposed in the literature,
e.g., by Castagna et al. [Castagna et al. 2006] and by Piccolo [Piccolo 2012]. In both of the cited
papers, intersections are mixed with unions. But neither in one nor in the other, one can hope to
have any completeness result. Moreover, intersection is used in an unusual way, namely for typing
non-deterministic choices. In our work, intersections deal with the exponentials rather than the
additives.

As already mentioned, many type systems for process algebras have been introduced in the last
two decades. A cornerstone in the normalization theory for π -calculus is the work by Berger, Honda
and Yoshida [Yoshida et al. 2004], in which a combination of logical and process-theoretical ideas
led to a robust approach, capable of guaranteeing strong normalization for all typable processes.
Another rather prolific research line is centered around linearity in the sense of Girard’s lin-

ear logic [Girard 1987], and has been initiated by the seminal work of Kobayashi, Pierce and
Turner [Kobayashi et al. 1999]. This has been followed by many type systems, based or not on
linearity, guaranteeing forms of deadlock-freedom [Kobayashi 2006; Padovani 2014], livelock-
freedom [Kobayashi 2000], termination [Demangeon et al. 2010b; Deng and Sangiorgi 2004], or
combinations thereof. Again, none of them aim at the kind of completeness property we are
interested at here.
A very successful typing paradigm for concurrent processes is certainly the one of session

types [Honda et al. 1998]. There, the inherently chaotic nature of concurrent interaction is tamed by
way of the notion of a session, which is a tree-like description of the possible interactions happening
between the (possibly multiple [Honda et al. 2008]) involved parties. Here, even more than in other
type disciplines for processes, communication is constrained to follow a prescribed protocol, and
so there is even less hope to get a completeness result. This is particularly visible in certainly
formulations of session types (e.g. [Caires and Pfenning 2010]), in which the only way to type
a parallel composition is to find one and only one channel that the two components share, and
restrict it immediately after forming the parallel composition.

Summing up, our work lies more or less at the meeting point of a broad spectrum of type-based
techniques: the hope of ensuring properties of processes by looking at just one derivation is traded
for completeness which, as we prove in this work, makes the set of łwell-typedž processes not
recursively enumerable. It is thus hard to precisely contextualize this work, at least in the realm of
concurrency theory. The comparison, e.g., with the work on termination [Demangeon et al. 2010b;
Deng and Sangiorgi 2004] is a good example: their typability implies strong normalization, while
we characterize a weak form of normalization (plus error-freedom), but guaranteeing completeness,
which in their work is by construction impossible.

1.2 Contributions

This paper’s contributions can be summarized as follows:

• We introduce a notion of asynchronous hyperlocalized π -process, study its expressive power
by way of some examples, and define some basic behavioral properties for them. This is in
Sect. 2. łHyperlocalizedž means that our π -calculus is in fact a fragment of the localized
calculus, i.e., we have further constraints on the presence of input names under input prefixes.
These constraints do not hinder in a significant way the expressiveness of the calculus, as we
show in Sect. 2.3.
• We prove that verifying the good behavior of an AHL π -term is a very hard problem, namely
it is Π0

2-complete. This is proved by reducing the universal termination problem for Turing
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machines to it. Although not surprising, this is the first result of this kind in the literature,
and shows that good behavior of π -processes is fundamentally different from termination in
purely sequential languages like the λ-calculus, in which the property of being terminating
(in any reasonable sense) can be proved by finitary, recursively checkable, certificates.
• We introduce our intersection type system and prove its main property: a novel notion of
complete typability characterizes good behavior (Sect. 3). Furthermore, we provide examples
to show how our type system works with some familiar concepts (Sect. 3.4).

We conclude by discussing our work and its perspectives (Sect. 4).

2 THE CALCULUS

In this section, we present the process calculus at the center of our paper. We give its syntax
and reduction semantics (Section 2.1) and define well-behaved processes (Section 2.2), a class of
processes that we will then characterize in the next section. The calculus we consider is based
on the polyadic asynchronous localized π -calculus [Sangiorgi and Walker 2001], on which we
impose a further, non-standard constraint that we call hyperlocalization. Despite being a non-trivial
restriction, hyperlocalization does not significantly hinder the expressiveness of the calculus, as we
show in Section 2.3. As announced, the property of being well-behaved is of an essentially different
nature with respect to, say, termination in sequential programming languages like the λ-calculus:
the latter is typically Σ0

1-complete, while here we are strictly higher in the arithmetical hierarchy,
as shown in Section 2.4.

2.1 Processes and Reduction

We fix a countably infinite set of names, ranged over by x ,y, z,w . We write x̃ for an arbitrary finite
sequence of names, the length of which is denoted by |x̃ |. Later, the notation ·̃ will also be used for
sequences of other objects (types, etc.).
We start by considering the following variant of the polyadic asynchronous π -calculus:

P ,Q ::= 0
�
�
�
�
P | Q

�
�
�
�
νxP terminated process, parallel composition, name restriction

�
�
�
�
x⟨ỹ⟩

�
�
�
�
x (ỹ).P

�
�
�
�
!x (ỹ).P output particle, input prefix, replicated input prefix (server)

In an output particle x⟨ỹ⟩ or input prefix x (ỹ) or !x (ỹ), the name x is said to occur as subject; in the
case of the output particle, the names ỹ are said to occur as objects. The set fn(P ) of free names of P
is defined as usual: the names ỹ are bound in x (ỹ).P and !x (ỹ).P , and x is bound in νxP ; free names
are those that are not bound. We write out(P ) for the subset of fn(P ) of those names appearing as
subjects of output prefixes. As usual, we write x , x .P and !x .P as short-hands for x⟨⟩, x ().P and
!x ().P , respectively.

Structural congruence is the contextual, symmetric-transitive closure of the following equations:

(P | Q ) | R ≡ P | (Q | R) 0 | P ≡ P P | Q ≡ Q | P νxνyP ≡ νyνxP

νxP | Q ≡ νx (P | Q ) provided that x < fn(Q ).

As usual, we write ν (x1, . . . ,xn )P for an arbitrary sequence of restrictions, the order of which is
irrelevant by the fourth equation. As customary in process algebras, structural congruence has no
computational value and is meant to capture the fact that some processes, although syntactically
different, should in fact be considered as identical.
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Reduction between processes is defined as follows. First, we have the basic rules

x⟨ỹ⟩ | x (z̃).P −→ P {ỹ/̃z} provided that |ỹ | = |z̃ |,

x⟨ỹ⟩ | !x (z̃).P −→ P {ỹ/̃z} | !x (z̃).P provided that |ỹ | = |z̃ |,

νx (!x (z̃1).P1 | · · · | !x (z̃n ).Pn ) −→ 0.

The first rule is standard: it corresponds to the basic intuition that R := x (z̃).P is a process waiting
to receive a number of names via channel x , and that x⟨ỹ⟩ represents a message consisting of a
number of names ỹ sent on x ; when such an output particle meets R, the names ỹ are received by
R and the process continues as P {ỹ/̃z}, which denotes the substitution of each name in ỹ to the
corresponding formal parameter in z̃. For such a substitution to be well-defined, the sequences ỹ
and z̃ must have equal length, which explains the side condition.
The second rule is derivable from the first rule and the standard equation !P ≡ P | !P , which

we prefer to avoid in order to keep structural congruence simpler. This rule corresponds to the
intuition that !x (z̃).P acts as a server capable of behaving like x (z̃).P an indefinite number of times,
i.e., capable of accepting an indefinite number of requests.
The third rule is not strictly necessary but makes the presentation of our results cleaner. It is

sensible under the server intuition described above: once it becomes clear that no-one will ever
make any request on x , a łserver poolž on x may be shut down. Note that the case n = 0 is νx0 −→ 0,
whose equational form is usually one of the axioms of structural congruence.

The first two steps are called communication steps, the third clean-up step. The reduction relation

between processes, denoted by −→, is the closure of the above basic rules under evaluation contexts

C ::= {·}
�
�
�
�
C | P

�
�
�
�
νxC

and under structural congruence:

S ≡ P −→ Q ≡ R implies S −→ R.

We write −→∗ for the reflexive-transitive closure of −→.

Definition 2.1 (hyperlocalized process). A process of the above calculus is hyperlocalized if, in
any subprocess of the form x (ỹ).P or !x (ỹ).P , no z ∈ fn(P ) occurs as the subject of an input prefix.
The set of hyperlocalized processes forms the polyadic asynchronous hyperlocalized π -calculus, or
AHLπ for short.

In the more standard localized π -calculus [Sangiorgi and Walker 2001]), the restriction to x (ỹ).P
and !x (ỹ).P is that only the names in ỹ are forbidden to appear as subjects of input prefixes, so our
constraint is strictly stronger, hence the terminology. Let us give a few simple examples:

x (y).(y | y.0 | w⟨y⟩) not localized;

x (y).(y | z.0 | w⟨y⟩) localized, not hyperlocalized;

x (y).νz (y | z.0 | w⟨y⟩) hyperlocalized.

The main property of the localized π -calculus is that, in a process of the form νxP , every possible
input via x is statically determined by the syntax of P . As [Sangiorgi and Walker 2001] put it,
łevery process that receives via a name is local to the process that created that namež. This locality
property is useful in several applications, such as distributed programming (where processes run
at different sites) and object-oriented programming (where names represent object names). Our
additional restriction is of logical nature; we defer a discussion to Sect. 4.

The following lemma, which shows that AHLπ is a well-defined subcalculus of the asynchronous
π -calculus, is straightforward:
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Lemma 2.2. Let P be a hyperlocalized process.

(1) If P ≡ Q , then Q is hyperlocalized.

(2) If P −→ Q , then Q is hyperlocalized.

2.2 Behavioral Properties of Processes

We now define the properties of processes that we will be interested in. The first concept we need
is the one of runtime error, which arguably encompasses those situations which we would like to
avoid in the execution of a process.

Definition 2.3 (Runtime Error). A runtime error is one of the following configurations:

Arity Mismatch: a process of the form x⟨ỹ⟩ | x (z̃).P or x⟨ỹ⟩ | !x (z̃).P such that |ỹ | , |z̃ |; such
configurations are stuck because two processes are trying to communicate but the number
of actual parameters sent does not match the number of formal parameters expected on the
receiving side.

Failed Send: a process of the form νx (x⟨ỹ⟩ | R), where R contains no input prefix whose
subject is x ; this is a process in which data has been sent on channel x but will never be
consumed.

Endless Wait: a process of the form νx (x (z̃).Q | R), where x < out(R), i.e., R contains no
output particle whose subject is x ; dual to a Failed Send, this is a situation in which a process
waits for an input on channel x which will never arrive.

Dependency Cycle: an i/o cycle on x1, . . . ,xn , with n ≥ 1, is a process of the form

†x1 (ỹ1).Q1 | · · · | †xn (ỹn ).Qn ,

where †x (ỹ).Q stands for either x (ỹ).Q or !x (ỹ).Q , such that xi+1 ∈ out(Qi ) for all 1 ≤ i < n

and x1 ∈ out(Qn ) (remember that out(P ) is the set of free names of P occurring as subjects
of output particles). A dependency cycle is a process of the form

ν (x1, . . . ,xn ) (C | R)

where C is an i/o cycle on x1, . . . ,xn and R is arbitrary; this is a classic form of deadlock, in
which the dependency graph between processes is indeed cyclic.

Dependency cycles are perhaps the hardest to grasp, so let us give an example:

ν (x ,y) (x .y | y.x | x ),

which fits the above definition once we take x1 = x , x2 = y, C = x .y | y.x and R = x . There is
obviously a sort of a vicious circle here: the first subprocess ofC waits for the second subprocess to
send over x , but the second subprocess cannot proceed because it is waiting for the first subprocess
to send over y. Of course, a configuration containing a łself-cyclež such as νx (x .x | x ) is also a
dependency cycle (here, adding x in parallel makes the example more conspicuous because νx x .x
is an endless wait as well as a dependency cycle).

The reader may object here that the vicious circles of our dependency cycles are not so łviciousž
because that may be broken: for instance, in the first example above, the particle x may be used to
łunblockž the first subprocess, yielding

ν (x ,y) (x .y | y.x | x ) −→ ν (x ,y) (y | y.x ) −→∗ νx x .

Note, however, that the resulting process is a failed send, i.e., a runtime error. This is not a coinci-
dence; we will come back to this point momentarily.
Now that the notion of a runtime error has been precisely formalized, defining well-behaved

processes is relatively easy: we only need to remember that for a process to be error-free it is
necessary that it does not produce a runtime error at top-level.
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Definition 2.4 (Well-Behaved Process). A process P contains a top-level runtime error if

P ≡ νz̃ (E | Q )

where E is a runtime error. It is error-free if it contains no top-level runtime error. A process is idle
if it is error-free and cannot reduce (i.e., it is in normal form with respect to the rewriting rules of
Sect. 2.1). A process P is well-behaved if, whenever P −→∗ Q :

(1) Q is error-free;
(2) there exists an idle process I such that Q −→∗ I .

Note that the only closed idle process is 0. Therefore, in the closed case, a well-behaved process
is one that never generates top-level runtime errors and always has a way of evolving to 0. This is
a typical property that one would ask of an operating system: it may run forever, but it must never
produce errors and may always be shut down.

Of course, our notion of good behavior is only as convincing as the notion of runtime error it is
based upon. For what concerns arity mismatches, failed sends and endless waits, we hope that the
reader will not have trouble recognizing these as unwanted configurations. Dependency cycles
are a bit more subtle because, as observed above, we allow them to be broken. A less controversial
notion would be the following:

Definition 2.5 (Deadlock). A dependency cycle ν (x1, . . . ,xn ) (C | R) is breakable if R −→
∗ xi ⟨ỹ⟩ |

R′ for some 1 ≤ i ≤ n. A deadlock is an unbreakable dependency cycle.

The simplest examples of deadlocks are dependency cycles in which R = 0, e.g. ν (x ,y) (x .y | y.x ),
but of course more complex examples may be imagined, such as ν (x ,y) (x .y | y.x | z.x ). These are
clearly łbadž configurations because not only are they vicious circles but they are also persistent,
i.e., their presence cannot be removed by reduction. We therefore hope that the reader will be fully
convinced by the following notion of łbadž behavior:

Definition 2.6 (Ill-Behaved Process). A process P is ill-behaved if there existsQ such that P −→∗ Q
and one of the following holds:

(1) Q contains a top-level arity mismatch, failed send, endless wait or deadlock;
(2) Q cannot reduce to an idle process.

It turns out that, in AHLπ , the ill-behaved processes are exactly those that are not well-behaved.
That is, for behavioral purposes, our looser notion of dependency cycle is equivalent to the less
controversial notion of deadlock. More precisely, assuming hyperlocality, one may show (as we
do below) that the presence of a dependency cycle, even breakable, implies the possibility of the
appearance of an łuncontroversially badž configuration (namely, a deadlock, a failed send or a
process with no idle form). Since dependency cycles admit a simpler definition than deadlocks, this
explains why we chose to ground our łofficialž definition of good behavior on the former rather
than the latter.
In the following, we call a process that cannot reduce to an idle form restless.

Lemma 2.7. Let P := ν (x , w̃ ) (†x (z̃).Q | x⟨ỹ⟩ | R) be hyperlocalized, with †x (z̃).Q standing for

either x (z̃).Q or !x (z̃).Q . Then:

• if Q {ỹ/̃z} is restless, then P reduces to a restless process;

• if, on the contrary, Q {ỹ/̃z} reduces to an idle form, then

P −→∗ ν (x , w̃ ′) (s1⟨̃r1⟩ | · · · | sm ⟨̃rm⟩ | R)

and, for all p ∈ out(Q ), there exists i such that si = p.
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Proof. Assume that Q ′ := Q {ỹ/̃z} is restless. We have

P −→ ν (x , w̃ ) (Q ′ | R′) =: S,

where R′ = R or R′ = !x (z̃).Q | R depending on the form of †x (z̃).Q . By hyperlocality, no free
name of Q ′ is the subject of an input prefix in Q ′, which means that every communication that

Q ′ may perform with R′ concerns an output particle a⟨b̃⟩ produced by Q ′ and consumed by R′.
Furthermore, such an output particle cannot interact within Q ′, for otherwise there would be an
input on a in Q ′, contradicting locality. Therefore, neither these output particles nor R′ itself may
bear any impact on the reductions causing Q ′ to be restless, so the process S is restless.
On the contrary, if Q ′ −→∗ I with I idle, then a straightforward case analysis shows that

I = νr̃ (s1⟨̃r1⟩ | · · · | sm ⟨̃rm⟩) (there may be no inputs because of hyperlocality). Furthermore, if
p ∈ out(Q ), i.e., p is free in Q and there is an output particle p⟨q̃⟩ in Q , then there must be some
si ⟨̃ri ⟩ which is equal to p⟨q̃⟩, because by hyperlocality there cannot be any input on p in Q ′ and so
no reduction of Q ′ may consume p⟨q̃⟩. □

Proposition 2.8. A hyperlocalized process is ill-behaved iff it is not well-behaved.

Proof. Ill-behaved processes are obviously not well-behaved, so let us turn to the converse.
For this, it is enough to show that if a hyperlocalized process P contains a top-level breakable
dependency cycle, then P is ill-behaved. So let

C := †x1 (z̃1).Q1 | · · · | †xn (z̃n ).Qn

be an i/o cycle on x̃ = x1, . . . ,xn and suppose that

P = ν (x̃ , w̃ ) (C | R)

such that R −→∗ xi ⟨ỹ⟩ | R
′. We may assume without loss of generality that i = 1 (a cycle being

perfectly symmetric). Let

P ′ := ν (x̃ , w̃ ) (C | x1⟨ỹ⟩ | R
′).

We have two possibilities:

• eitherQ1{ỹ/̃z1} is restless, in which case, by Lemma 2.7, P ′ (and hence P ) reduces to a restless
process and is therefore ill-behaved by definition;
• or Q1{ỹ/̃z1} is not restless, i.e., it reduces to an idle form which, again by Lemma 2.7, is of the
form νr̃1 (x2⟨ỹ2⟩ | I1) with I1 consisting only of output particles (remember that x2 ∈ out(Q1)

by hypothesis), and therefore

P −→ P ′ −→∗ ν (x̃ , w̃, r̃1) (Q
′
1 | †x2 (z̃2).Q2 | · · · | †xn (z̃n ).Qn | x2⟨ỹ2⟩ | R

′ | I1),

where Q ′1 is !x1 (ỹ1).Q1 or 0, depending on whether the input †x1 (ỹ1).Q1 in C is replicated or
not.

In the second case, we are in position of iterating the same reasoning, which leads us (by induction
on n, if we want to be fully formal) to the conclusion that either P reduces to a restless process or

P −→∗ ν (x̃ , w̃ ′) (C ′ | x1⟨ỹ1⟩ | R
′ | I ),

where C ′ consists of the replicated inputs from the original cycle C and I consists of a number of
output particles deriving from the idle forms of the various Qi {ỹi /̃zi }.

Now, if the process on the right hand side has no input on x1, we have a failed send and we may
conclude. Otherwise, observe that, by hyperlocality, such an input must be at top-level in either
C ′ or R′. Let us start by supposing that it is in R′. In that case, the output particle x1⟨ỹ⟩ in P ′ may
interact directly with R′, preventing the cycle to break. We have two possibilities:
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• R is able to produce only finitely many output particles interacting with C: in this case, we
have shown that these lead either to a restless process, or they may actually be consumed
łinternallyž to R itself; therefore, either we find a restless process or, after finitely many steps,
the dependency cycle loses every chance of being broken and becomes a true deadlock;
• R produces infinitely many output particles interacting with C: in this case, the reasoning
may be iterated again and again, showing that P is restless.

Suppose now that the input on x1 is in C
′, which means that it is equal to !x1 (z̃1).Q1. We have

two subcases:

• every input of the cycle C is replicated, i.e., C ′ = C . Then, P ′ is restless: indeed, we have
arrived here from P ′ by avoiding reductions to restless processes, i.e., all other possibilities
lead to restless processes; in spite of this, we still obtained a process essentially identical to
P ′, so we are bound to loop forever.
• There is at least one input ofC which is not replicated. Let us suppose for simplicity that this
is x2 (ỹ2).Q2 (the other possibilities are not different in an essential way). In this case, we let
the output x1⟨ỹ1⟩ be consumed by !x1 (z̃1).Q1 in C

′, we apply the same reasoning as above
and obtain ν (x̃ , w̃ ′) (C ′ | x2⟨ỹ

′
2⟩ | R

′ | I ′), except that now in C ′ there is no input on x2, so we
are brought to the case already considered above in which an input on x2, if present at all, is
in R′, and we conclude.

□

2.3 Expressiveness

The aim of this section is to give some convincing arguments on the expressiveness of AHLπ . More
specifically, we show that three different forms of processes, the first one sequential and the other
two truly concurrent, can all be written as AHLπ processes.

2.3.1 Functional Programming. We will start by considering a parallel and non-deterministic λ-
calculus, denoted by Λ[·], | . This is a nontrivial extension of the pure, untyped λ-calculus endowed
with a form of parallel composition, and in which a function can be applied to more than one term
at the same time. Terms of Λ[·], | are the expressions generated by the following grammar:

M,N ::= x
�
�
�
�
λx .M

�
�
�
�
M[N1, . . . ,Nk ]

�
�
�
�
0
�
�
�
�
M | N

As usual, the parallel operator is assumed to be associative, commutative and with neutral element

0. Reduction is defined from the following rules (we write N⃗ for [N1, . . . ,Nk ])

(λx .M )N⃗ −→ M {Ni/x }, 0N⃗ −→ 0, (M | N )P⃗ −→ MP⃗ | NP⃗ ,

closed under weak head evaluation contexts E ::= {·}
�
�
�
�
EM

�
�
�
�
E | M . Observe how the first rule

non-deterministically picks one Ni and substitutes it to x . Because of this rule, the calculus is not
confluent. This extension of the λ-calculus may be encoded in our fragment of ALπ as follows:

JxKu := x⟨u⟩

Jλx .MKu := νa(u⟨a⟩ | a(x ,v ).JMKv )

JM[N1, . . . ,Nk ]Ku := νv (JMKv | v (a).νz (a⟨z,u⟩ | !z (w ).JN1Kw )

| · · · | v (a).νz (a⟨z,u⟩ | !z (w ).JNk Kw ))

J0Ku := 0

JM | N Ku := JMKu | JN Ku
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where u is a fresh name. The fact that the encoding lands in AHLπ is immediate once we observe
the following invariant, easily proved by induction: fn(JMKu) = fv(M ) ∪ {u} (where fv(M ) denotes
the set of free variables of M) and, moreover, every name in fn(JMKu) occurs in JMKu itself in
output position (as subject or object).

The above encoding is very similar to (the asynchronous variant of) Sangiorgi’s encoding of the
call-by-name λ-calculus given in [Sangiorgi and Walker 2001] (Milner’s original encoding [Milner
1992] is slightly more succinct but is not localized). Indeed, one may look at the above calculus as a
łreverse engineeringž of a parallel liberalization of Sangiorgi’s encoding: one takes the image of
that encoding, closes it under parallel composition and adds the possibility of having an arbitrary
number of concurrent arguments in the encoding of an application (which is quite natural from the
π -calculus point of view). From this, one may łread backž a λ-calculus (the one presented above)
which maps to such processes, treating parallel composition homomorphically.

The main property of the encoding, which follows from the corresponding property of Sangiorgi’s
encoding via the above discussion, is the following (we use ≃c to denote barbed congruence on
AHLπ , which is defined as customary [Sangiorgi and Walker 2001]):

Proposition 2.9. LetM be a term of Λ[·], | .

(1) M −→ M ′ implies JMKu −→∗≃c JM ′Ku;
(2) JMKu −→∗ P implies thatM −→ M ′ for someM ′ such that P −→∗≃c JM ′Ku.

Although we will never use them here, it is straightforward to endow Λ[·], | with control operators
(like those corresponding to classical logic proofs in the sense of the Curry-Howard correspondence),
obtaining a non-deterministic and parallel extension of the λµ-calculus:

• one adds the construct µa.[b]M to the grammar, where a,b range over continuation variables;
• one adds the rule

(µa.[b]C{[a]M1, . . . , [a]Mn })N⃗ −→ µa.[b]C{[a]M1Ni1 , . . . , [a]MnNin },

where C is a n-hole context and i1, . . . , in ∈ {1, . . . ,k } are arbitrary and not necessarily
distinct, i.e., the rule picks n terms among N1, . . . ,Nk , possibly using the same term more
than once and discarding some terms;
• the encoding J·K is extended by setting Jµa.[b]MKu := JMKb{u/a}.

2.3.2 Locks. A lock is one of the most basic concurrent primitives, being a way to model the safe
access to resources which can only be accessed sequentially, like critical regions. A particularly
economic way of implementing a lock in the π -calculus is to see it as a buffer containing at most

one value: in νl (P1 | · · · | Pn | l ), each Pi competes to read from l , and puts back a value once it has
done. Unfortunately, this simple solution is not acceptable from our point of view: Pi will typically

be of the form l .Qi {l }, i.e., Qi contains l , inducing a dependency cycle. Consider instead

L := !a(z).νv (p⟨v⟩ | v .z⟨z⟩)

Lock := νa(a⟨a⟩ | L).

A process using the above lock will be of the form Pi := p (v ).Qi with Qi −→
∗ Ri | v , i.e., Pi waits

for the signal from the lock, then performs some operations, upon completion of which sends a
release signal via the channel received from the lock process. The process

P1 | · · · | Pi | · · · | Pn | Lock

reduces to

νv (P1 | · · · | Qi | · · · | Pn | νa(v .a⟨a⟩ | L))

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 7. Publication date: January 2019.



Intersection Types and Runtime Errors in the Pi-Calculus 7:11

in which a non-deterministically chosen process is ready to execute, while the others are waiting for
it to release the lock. We will later analyze the behavior of this process via types. For the moment, it
suffices to observe that this is an AHLπ process which does not exhibit a top-level run-time error.

2.3.3 A Toy Operating System. Consider the following definitions:

Servi := !ri (a).a

OpSys := Serv1 | · · · | Servn

Ri (z) := νa(ri ⟨a⟩ | a.z⟨z⟩)

U (z) := νs (s | !s .R1 (z) | · · · | !s .Rn (z) | !s .0)

User := νu (u⟨u⟩ | !u (z).U (z))

OpSys is the abstraction of a multi-user, concurrent operating system offering services Servi for
1 ≤ i ≤ n. Each subprocess Servi is the abstraction of a system call, which is invoked by sending
a request on channel ri , together with a channel where the answer has to be sent. User is the
abstraction of a user who is logged into the system. The real definition is inU , the rest is needed to
encode recursion: the user requests an indefinite number of services, in random order, and may
eventually decide to logout (this is represented by the subprocess !s .0).

The operating system with an arbitrary number of logged-in users may then be modeled by the
process

User | · · · | User | OpSys.

Again, below we will perform a behavioral analysis via types also for this process.

2.4 Hardness of Checking Good Behavior

By resorting to some computable encoding of processes as integers (i.e., Gödelization), the problem
of checking whether a process is well-behaved may be formalized as a subset of N. More precisely,
let us define

W := {n ∈ N | n is the code of a well-behaved AHLπ process}.

We will now show thatW is Π0
2-complete. For simplicity, we will use the Gödelization transparently,

i.e., we will say ła process Pž instead of łthe code n of a process Pž.
That W is a Π0

2 set is fairly clear: runtime errors are finite configurations, so there is a ∆0
0

formula (i.e., using only bounded quantifiers) ErrorFree(P ) which holds iff P is an error-free process;
moreover, there is a ∆0

0 formula Red(P ,Q, r ) (similar to Kleene’s T predicate) holding iff r is the

code of a reduction P −→∗ Q ; finally, there is a ∆0
0 formula Idle(P ) holding iff P is idle. SoW is

defined by the formula

∀r .∀Q .∃q.∃I .Red(P ,Q, r ) ⇒ ErrorFree(Q ) ∧ Red(Q, I ,q) ∧ Idle(I ),

which contains P as only free variable and is Π0
2 by definition.

For what concerns the completeness ofW , we decompose the reduction from a Π0
2-complete

problem in two steps. Call a termM of Λ[·], | safe if, wheneverM −→∗ M ′, there exists N normal
such thatM ′ −→∗ N . Let S be the set of (codes of) safe terms. Now, one may check that:

• thanks to the functional nature of the λ-calculus, the encoding JMKu of a λ-term M never
produces runtime errors, i.e., for all JMKu −→∗ Q , Q is error-free;
• if N is normal, then JN Ku is idle.

Therefore, by the correctness of the encoding (Proposition 2.9),M is safe iff JMKu is well-behaved.
Since J·K is clearly computable, we just proved that S reduces toW . It is thus enough to show that
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S is Π0
2-hard, which we will do by reducing to S the archetypal Π0

2-complete set, namely

H := {n ∈ N | n is the code of a Turing machine halting on all inputs}.

It is of course enough to restrict to Turing machines working on the binary alphabet {0, 1}. The
following are completely standard results [Barendregt 1984]:

• a binary stringw ∈ {0, 1}∗ may be encoded as a λ-termw such that there are λ-terms consi ,
with i ∈ {0, 1}, satisfying consiw −→

∗ iw by means of head reduction;
• for every Turing machine M one may explicitly construct a λ-term M such that, for every
w ∈ {0, 1}∗, the head reduction of Mw terminates on I (the identity λ-term I = λx .x) iff M

terminates on inputw .

By applying terms to a suitable number of identities, the above results transfer to weak call-by-name
(remember that our λ-calculus of Sect. 2.3.1 does not reduce under abstraction).

Consider now the following terms of the λ-calculus of Sect. 2.3.1:

proji := λz1.λz2.λz3.zi , i ∈ {1, 2, 3},

X := λx .λw .λm.(λp.p (mw ) (xx (cons0w )m) (xx (cons1w )m))[proj1, proj2, proj3],

Gm := XXεm,

wherem is a variable. The intuition behind Gm is that it is a (recursively-defined) łrandomž string
generator: we start from the empty string and, at each step, firing the redex involving multiapplica-
tion in X non-deterministically chooses whether we add a 0, a 1 or whether we stop and applym
to the string generated so far. One may easily check that:

(1) for allw1 · · ·wn ∈ {0, 1}
n , we have Gm −→

∗ m(consw1 (. . . conswn
ε . . .));

(2) for all Gm −→
∗ N , there existsw1 · · ·wn ∈ {0, 1}

n s.t. N −→∗ m(consw1 (. . . conswn
ε . . .)).

We now contend that a Turing machineM terminates on all inputs iffGM is safe, which is enough
to prove that H reduces to S . Suppose thatM terminates on all inputs, and let GM −→

∗ M ′. Now,
there are two cases: either M reached the head position at some point during the reduction, in
which case by property (2) above we have GM −→

∗ M (consw1 (. . . conswn
ε . . .)) −→∗ M ′ for some

w1 · · ·wn ∈ {0, 1}
n ; or M has not reached the head yet, in which case M ′ is like the term N of

property (2) above, and we haveM ′ −→∗ M (consw1 (. . . conswn
ε . . .)) for somew1 · · ·wn ∈ {0, 1}

n .
In both cases, we are essentially computingMw for somew ∈ {0, 1}∗, which head-normalizes by
hypothesis, so GM is safe.
Suppose now that there exists w = w1 · · ·wn ∈ {0, 1}

n on which M does not terminate. Then
by property (1) aboveGM −→

∗ M (consw1 (. . . conswn
ε . . .)), which behaves likeMw , whose head

reduction does not terminate by hypothesis, showing that GM is not safe.

3 INTERSECTION TYPES

This section is devoted to presenting our type discipline for processes, also proving that it captures
good behavior as we defined it in Section 2.2 above. We will also instantiate our type discipline to
some example processes (Section 3.4). From here on, all processes are tacitly taken to be in AHLπ .

3.1 Types and Derivations

Types cannot be defined directly here, and will be introduced as those pre-types satisfying a
coherence condition. Pre-types are defined by mutual induction with type sequences:

A,B,C ::= Θ1 ∧ · · · ∧ Θk pre-types

Θ,Ξ ::= ∗
�
�
�
�
(A1, . . . ,An ) type sequences
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The nullary case (i.e., k = 0) of intersection is written ⊤. Pre-types are considered up to commuta-
tivity of intersection, e.g. () ∧ (∗) = (∗) ∧ (). Note that the constant ∗ is not the same as the empty
sequence, denoted by (). Also observe that intersection is not idempotent: Θ ∧ Θ ∧ Ξ is not the
same as Θ ∧ Ξ. If A = Θ1 ∧ · · · ∧ Θk and B = Ξ1 ∧ · · · ∧ Ξp are pre-types, then A ∧ B is naturally
defined as

Θ1 ∧ · · · ∧ Θk ∧ Ξ1 ∧ · · · ∧ Ξp .

In particular, A ∧ ⊤ = ⊤ ∧A = A. There are no base types (except ∗, which however is not really a
base type but a constant); including them would change nothing to our results.

We define the binary relation⌢ on pre-types and type sequences, called coherence, as the smallest
symmetric relation satisfying

∀Θ
∗⌢ Θ

Ai ⌢ Bi ∀i ∈ {1, . . . ,n}

(A1, . . . ,An ) ⌢ (B1, . . . ,Bn )

Θi ⌢ Ξj ∀i ∈ {1, . . . ,k }, ∀j ∈ {1, . . . ,p}

Θ1 ∧ · · · ∧ Θk ⌢ Ξ1 ∧ · · · ∧ Ξp

A type is a pre-typeA such thatA⌢ A. An obvious example of type is ∗. By applying the rightmost
rule when k = 0, we see that ⊤ ⌢ A for any A, so ⊤ is also a type. A more complex example is
given by the family A0 := ⊤, Ai+1 := (Ai ) ∧ Ai . Checking that An is a type for all n ∈ N may be
done by proving, by induction onm + n, the stronger statement that Am ⌢ An and (Am ) ⌢ An for
allm,n ∈ N.
The idea behind the definition of pre-type is the following. Type sequences are needed to type

input/output prefixes/particles: intuitively (and approximately), in x (y1, . . . ,yn ).P or x⟨y1, . . . ,yn⟩,
if each yi has type Ai , then x will be typed with (A1, . . . ,An ). Since a name may appear more than
once as subject of an input/output prefix/particle, intersection is used to collect all the corresponding
type sequences: for instance, if a process contains two output particles x⟨ỹ⟩ and x ⟨̃z⟩, and if the

types of ỹ and z̃ are Ã and B̃, respectively, then x will receive the type (Ã) ∧ (B̃). This also explains
why intersection is non-idempotent. If x is never used, then it will get type ⊤. Of course, this means
that we may read back usage information from types: for instance, if x : (()) ∧ (⊤) types x as input,
we know that there is a reduction sequence in which x will be used twice, once receiving a name
which will in turn be used once for a nullary output (the type ()) and once receiving a name which
will not be used at all (the type ⊤).

There is a subtlety concerning inputs: when an input is never used, we must distinguish the
replicated and non-replicated case. Indeed, while !x (z̃).P and x (z̃).P are both innocuous processes
whichmust be typable, we have thatνx !x (ỹ).P −→ 0, whichmust still be typable, whereasνx x (ỹ).P
is a runtime error (an endless wait, Definition 2.3) and must not be typable. This is the reason
behind the presence of the constant ∗: it is used to type the subject of an unused non-replicated
input prefix, whereas for unused replicated inputs we use ⊤.
While the input/output distinction does not appear at the level of types (they are, in a sense,

łself-dualž), it will appear in the type system: a type on the left (resp. right) of a judgment will be
an input (resp. output) type. A key property then will be for a name to appear with identical types
on both sides of a typing judgment: indeed, x : A on the left means łchannel x is used by input
prefixes expecting specification Až, so x : A on the right means that such a specification is met by
the outputs on x . This information is crucial for typing name restrictions (res rule, Fig. 1).
We have thus far explained the shape of pre-types but said nothing as to why these have to be

restricted. The reason is that we want our type system to ensure at least absence of arity mismatches
(the first kind of runtime error in Definition 2.3): recall that these arise when an output particle
sending n names on a channel meets an input prefix on the same channel expectingm names, with
m , n. The obvious solution is to force intersections to be łuniformž: if Θ1∧ · · · ∧Θk is the pre-type
of a channel, we want the length of each Θi to be equal. But of course this is too naive: the length
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must be the same łhereditarilyž, i.e., the pre-types in each Θi must also be uniform, and so on. This
łhereditary uniformityž is captured by the above coherence relation.

Let us now get to the type system. We consider typing judgments of the form

Γ ⊢ P :: ∆

where

• P is a process of AHLπ ;
• ∆ is a finite sequence (permutable at will) of declarations of the form

y : B

where B is a type and y is a name. Such a declaration corresponds to the possible presence in
P of free occurrences of y as subjects or objects of an output particle.
• Γ is a finite sequence (permutable at will) of declarations of the form

(x ;X ) : A

whereA is a type, x a name and X a finite set of names. Such a declaration corresponds to the
possible presence in P of free occurrences of x as subjects of input prefixes and X contains all
those names, declared in ∆, which may depend on x , in the sense that, if y ∈ X , then there
may be an output particle mentioning y whose emission ultimately depends on a reception
on x (a trivial example would be x .y). We write (x ;y1, . . . ,yk ) for (x ; {y1, . . . ,yk }).

Please observe once again how ∆ provides type information for channels involved in output actions,
while Γ does the same for input actions. A name x may be declared both in Γ and in ∆, meaning
that x is possibly used both as input and output in P .
The typing rules are given in Fig. 1. Let us explain the notations used therein:

• the notation x̃ : Ã stands for x1 : A1, . . . ,xn : An , with n arbitrary (including null).
• The notation z̃ : ⊤ on the right is short for an arbitrary sequence z1 : ⊤, . . . , zn : ⊤; on the
left, w̃ : ⊤ is short for (w1; ) : ⊤, . . . , (wn ; ) : ⊤; in both cases, the names declared do not
appear free in the subject process.
• In the !in rule, k ∈ N is arbitrary and is said to be the arity of the instance of the rule. The

intersections
∧k

j=1 C̃
j are defined pointwise. For instance, the unary case is identical to the in

rule (except for the subject process), whereas a typical binary instance may look like

⊢ P :: y : A1, z : C1 ⊢ P :: y : A2, z : C2

(x ; z) : (A1) ∧ (A2) ⊢ !x (y).P :: z : C1 ∧C2
!in

(we assumed that fn(P ) = {y, z}). The nullary case has the following general shape, which is
very similar to that of the in∗ rule, the difference being that here x gets type ⊤ instead of ∗:

w̃ : ⊤, (x ; fn(P ) \ ỹ) : ⊤ ⊢ !x (ỹ).P :: z̃ : ⊤
!in

and of course we demand that z̃ contains at least fn(P ) \ ỹ.
• in the par rule, the operation ∧ on sequences of type declarations is pointwise. For instance,
the following is an instance of the rule:

(x ;v, z) : A, (y; ) : C ⊢ P :: v : D1,w : E1, z : F1
(x ;w, z) : B, (y;v ) : ⊤ ⊢ Q :: v : D2,w : E2, z : F2

(x ;v,w, z) : A ∧ B, (y;v ) : C ⊢ P | Q :: v : D1 ∧ D2,w : E1 ∧ E2, z : F1 ∧ F2
par

The pre-condition of the out rule looks a bit complicated, so let us explain it. If we are typing
an output particle x⟨z1, . . . , zn⟩, then the output context must declare at least x , z1, . . . , zn . The
complication comes from the fact that some of the zj may be equal to each other and, furthermore,
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w̃ : ⊤ ⊢ 0 :: z̃ : ⊤
zero

A1, . . . ,An types f : {1, . . . ,n} → {x , ỹ} Ci =
∧

j ∈f −1 (yi ) Aj , 1 ≤ i ≤ |ỹ |

w̃ : ⊤ ⊢ x⟨f (1), . . . , f (n)⟩ :: x : (A1, . . . ,An ) ∧
∧

j ∈f −1 (x ) Aj , ỹ : C̃
out

⊢ P :: ỹ : Ã, z̃ : C̃

w̃ : ⊤, (x ; out(P ) \ ỹ) : (Ã) ⊢ x (ỹ).P :: z̃ : C̃
in

z̃ contains at least fn(P ) \ ỹ

w̃ : ⊤, (x ; out(P ) \ ỹ) : ∗ ⊢ x (ỹ).P :: z̃ : ⊤
in∗

⊢ P :: ỹ : Ã1, z̃ : C̃1 . . . ⊢ P :: ỹ : Ãk , z̃ : C̃k

w̃ : ⊤, (x ; out(P ) \ ỹ) : (Ã1) ∧ · · · ∧ (Ãk ) ⊢ !x (ỹ).P :: z̃ :
∧k

j=1 C̃
j

!in

J(x ,X ) : Ã ⊢ P :: ỹ : C̃ I(x ,Y ) : B̃ ⊢ Q :: ỹ : D̃

K(x ;X ∪ Y ) : Ã ∧ B̃ ⊢ P | Q :: ỹ : C̃ ∧ D̃
par

Γ, (x ;X ) : A, (w1;Y1,x ) : B1, . . . , (wn ;Yn ,x ) : Bn ⊢ P :: ∆,x : A x < X , Γ

Γ, (w1;Y1 ∪ X ) : B1, . . . , (wn ;Yn ∪ X ) : Bn ⊢ νxP :: ∆
res

Fig. 1. Typing rules.

equal to x itself. In other words, the various zj are not names but occurrences of names. So we
consider the names declared to be x , ỹ, with ỹ a sequence of names (without repetitions and
pairwise distinct from x) such that there is a function f : {1, . . . ,n} → {x , ỹ} such that, for all
1 ≤ j ≤ n, f (j ) = zj . The types A1, . . . ,An mentioned in the rule are the types of the occurrences
z1, . . . , zn ; then, if e.g. z3 = z7 = y2 (i.e., f

−1 (y2) = {3, 7}), the context will contain the declaration
y2 : A3 ∧ A7. If no zj equals yi (i.e., f

−1 (yi ) = ∅), then yi gets type ⊤ (the empty intersection).
This is where the seemingly complicated shape of the types of x , ỹ comes from. The type of x
further reflects the fact that it is the subject of the output, so it must contain at least the type
sequence (A1, . . . ,An ). To give a couple of concrete examples, we have that x⟨y, z, z⟩ may be typed
in context x : (A1,A2,A3),y : A1, z : A2 ∧ A3,w : ⊤, whereas x⟨x , z, z⟩ may be typed in context
x : (A1,A2,A3) ∧A1, z : A2 ∧A3,w : ⊤.

We have not yet commented on input declarations, and why they are of the form (x ;X ) : A rather
than just x : A. The reason is that we want to avoid dependency cycles: the pair (x ;X ) indicates, as
mentioned above, that there are outputs whose subjects are in X which are guarded by an input
prefix whose subject is x . The idea then is to maintain such information so that x ∈ X implies that
we have an i/o cycle, which explains the side condition of the res rule. At the same time, the res
rule updates the dependency information by stating that, if in P the names X depend on x and x
depends onw , then in νxP the names X depend onw . The par rule also updates the information
by joining dependencies.
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3.2 Typability and Complete Typability

As stressed in the Introduction, a process P being typable in our type system does not imply that P
cannot exhibit any bad behavior, i.e., that P is well-behaved. This section is devoted to introducing
the notion of complete typability, which will be the one characterizing good behavior. As such,
because of the result of Sect. 2.4, it cannot be turned into a recursively enumerable predicate on
processes, but relies instead on the existence of (potentially) infinitely many type derivations for
the process under consideration, say P . Each of these derivations is a łwitnessž of the good behavior
of a possible execution of P . If all possible executions have a witness, we say that P is completely

typable. In order to formalize this idea, we need to say what it means for a type derivation to match

a reduction sequence, which in turn requires us to recall a few standard concepts of rewriting
theory (essentially, the notion of ancestor).

Definition 3.1 (Typability). A process P is typable if there exists a derivation of Γ ⊢ P :: ∆ using
the rules of Fig. 1, such that, for all x : A in ∆ and (x ;X ) : B in Γ, it holds that B = A∧C for someC .

It is not hard to show that typability is stable under structural congruence: P typable and P ≡ Q
implies Q typable, in the same context. This fact will be tacitly used in the sequel.

We will now define the concept of ancestor, a standard notion in rewriting theory. In what follows,

we will use σ , ρ to range over reduction sequences, and we will write ρ : P −→∗ Q , or P
ρ

−→∗ Q to
mean that ρ is a reduction sequence from P to Q .

Definition 3.2 (Prefix Occurrence). An output prefix, denoted by o, is of the form x⟨ỹ⟩; an input

prefix, denoted by ι, is of the form x (ỹ) or !x (ỹ). Input and output prefixes are generically denoted
by π . A prefix context is defined as follows:

C ::= {·}
�
�
�
�
{·}.P

�
�
�
�
x (ỹ).C

�
�
�
�
!x (ỹ).C

�
�
�
�
C | P

�
�
�
�
P | C

�
�
�
�
νxC.

Note that a prefix context C contains exactly one occurrence of {·}, the hole; we say that C is an
input context if the hole occurs as {·}.P inside C, otherwise it is an output context. A prefix occurrence

is a pair (π ,C) such that π is an input (resp. output) prefix and C an input (resp. output) prefix
context. We denote by C{π } the process obtained by substituting π for the hole {·} in C. Given a
process P , the set of prefix occurrences of P is

pref (P ) := {(π ,C) | C{π } = P }.

Note that P ≡ Q implies pref (P ) � pref (Q ), i.e., the sets of prefix occurrences of the two processes
are in bijection and such a bijection is uniquely determined. In what follows, for simplicity we will
identify a prefix occurrence (π ,C) with the prefix π , unless this generates confusion.
Consider now the basic reduction rules of AHLπ :

x⟨ỹ⟩ | x (z̃).P −→ P {ỹ/̃z},

x⟨ỹ⟩ | !x (z̃).P −→ P {ỹ/̃z} | !x (z̃).P ,

νx (!x (z̃1).P1 | · · · | !x (z̃n ).Pn ) −→ 0.

Call L and R the left and right hand sides of the rules, respectively. It is clear that every prefix
appearing in R is a renaming of a unique prefix appearing in L. More formally, we may define a
function Anc : pref (R) → pref (L) such that: if π ∈ pref (P {ỹ/̃z}), then Anc(π ) = σ where σ is the
unique prefix in pref (P ) (as a subprocess of L) such that π = σ {ỹ/̃z}; if π ∈ pref (!x (z̃).P ), then
Anc(π ) = π as a prefix of L, i.e., π is mapped to łitselfž.

The function Anc above may be extended to a function Ancρ : pref (Q ) → pref (P ) for every
one-step reduction ρ : P −→ Q , by simply setting it to be the łidentityž on prefixes not directly
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involved in the communication. (This is well-defined because, as observed above, pref (·) is stable
under structural equivalence, modulo a unique bijection). Furthermore, if we have a reduction
sequence of length n

ρ : P
ρ1
−→ · · ·

ρn
−→ Q,

we may define Ancρ : pref (Q ) → pref (P ) by setting Ancρ := Ancρ1 ◦ · · · ◦ Ancρn . Note that, if we
denote composition of reductions ρ : P −→∗ Q , σ : Q −→∗ R by ρ;σ , then Ancρ ;σ = Ancρ ◦ Ancσ .

Definition 3.3 (Ancestor). Let ρ : P −→∗ Q be a reduction sequence, and let π ∈ pref (Q ). The
prefix Ancρ (π ) ∈ pref (P ) is called the ancestor of π along ρ.

Note that, because of duplication, the ancestor function need not be injective: for instance, in

ρ : νx (x⟨a⟩ | x⟨b⟩ | !x (z).z) −→∗ a | b,

the output particles a and b on the right have the same ancestor z. It is interesting to observe that
our type system has a very precise way of accounting for such duplications. For instance, the left
hand side above may be typed with the following derivation, which we call δ :

(x ; ) : ⊤ ⊢ x⟨a⟩ :: a : (),b : ⊤,x : (())
out

(x ; ) : ⊤ ⊢ x⟨b⟩ :: a : ⊤,b : (),x : (())
out

δ ′

(x ; z) : (()) ∧ (()) ⊢ x⟨a⟩ | x⟨b⟩ | !x (z).z :: a : (),b : (),x : (()) ∧ (())
par

⊢ νx (x⟨a⟩ | x⟨b⟩ | !x (z).z) :: a : (),b : ()
res

where the double bar indicates several applications of the par rule and δ ′ is the following derivation:

⊢ z :: z : (),a : ⊤,b : ⊤,x : ⊤
out

⊢ z :: z : (),a : ⊤,b : ⊤,x : ⊤
out

(x ; z) : (()) ∧ (()) ⊢ !x (z).z :: a : ⊤,b : ⊤,x : ⊤
!in

Observe that the output particle z (the common ancestor of a and b) is typed twice in δ , once for
each branch of the binary !in rule in δ ′. This is because δ is somehow anticipating on the fact that
z will be used twice during the reduction of the process it types.

Another very important remark is that δ contains precise information about the reduction ρ

itself. This is composed of two communication steps, one concerning x⟨a⟩ and the other x⟨b⟩, plus a
clean-up step. Disregarding the latter (which has no computational value), the two communication
steps of ρ are visible in δ by the fact that x receives twice the type (()) as output, once as the subject
of x⟨a⟩ and once as the subject of x⟨b⟩, and it receives the type (()) ∧ (()) as input, as the subject of
!x (z). The fact that output types and input types match is not a chance but is a crucial phenomenon
which is at the heart of our type system, and which we now proceed to make formal.

In what follows, we write δ :: P to mean that δ is a type derivation concluding with a judgment
typing P .

Definition 3.4 (Matching). Let ρ : P −→∗ Q and let σ : Q −→ Q ′ be a communication step
concerning an output prefix o and an input prefix ι. Let δ :: P . We say that δ matches σ if there
exists a type A such that:

(1) if x is the subject of o′ := Ancρ ;σ (o), δ contains a rule outwhose conclusion is Γ ⊢ o
′ :: ∆,x : A;

(2) if y is the subject of ι′ := Ancρ ;σ (ι), δ contains a rule in or !in whose conclusion is Γ, (y;Y ) :
A ∧ B ⊢ ι′.Q :: ∆ for some type B (which may be ⊤).

Let δ :: P and ρ : P −→∗ Q . We say that δ matches ρ, and we write δ ▷◁ ρ, if δ matches every
communication step fired along ρ.

Note that any derivation for P matches the identity reduction on P . Also observe that if δ ▷◁ (ρ;σ )
then δ ▷◁ ρ. We are now ready to give the most important definition of the whole paper:
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Definition 3.5 (Complete Typability). A process P is completely typable if, for all ρ : P −→∗ Q ,
there exists δ :: P such that δ ▷◁ ρ.

Note that complete typability implies typability: simply let ρ be the identity reduction on P .

3.3 Complete Typability Captures Good Behavior

This Section is technically the most relevant of the present paper, proving that complete typability
is a necessary and sufficient condition for well-behaved processes. The first step towards our goal
is to prove four key properties of our type systems. On the one hand, idle are typable, while typable
processes are necessarily error-free. On the other hand, typability is preserved by anti-reduction,
and (only existentially) by reduction. In what follows, we write |δ | for the size of a derivation
(number of rules in it).

Proposition 3.6. The type system enjoys the following properties:

Idle Typability: idle processes are typable;

Error-Freedom: a typable process is error-free;

Subject Expansion: if P is typable and Q −→ P , then Q is also typable;

Quantitative, Existential Subject Reduction: givenδ :: P with P reducible, there exists ρ : P −→
Q with δ ▷◁ ρ and there exists a derivation ε :: Q such that |ε | < |δ |.

Proof. We prove each of the four properties separately:

Idle Typability. Let P ≡ !x1 (ỹ1).Q1 | . . . | !xl (ỹl .Ql ) | z1 (w̃1).R1 | . . . | zm (w̃m .Rm ) | u1⟨ṽ1⟩ |

. . . | un⟨ṽn⟩ be an arbitrary idle process (l ,m,n may be 0). It suffices to give one derivation
for P ; we always have the following derivation.

γ1 . . . γl δ1 . . . δm ε1 . . . εn

K(x ; out(Q ) \ ỹ) : ⊤, K(z; out(R) \ w̃ ) : ∗ ⊢ P :: ã : ⊤, b̃ : ⊤, s̃ : C̃
par∗

where par∗ is a repeated application of par rule, each γi is

(xi ; out(Qi ) \ ỹi ) : ⊤ ⊢ !xi (ỹi ).Qi :: ãi : ⊤
!in

,

each δi is

(zi ; out(Ri ) \ w̃i ) : ∗ ⊢ !zi (w̃i ).Ri :: b̃i : ⊤
in∗

,

each εi is

⊢ ui ⟨ṽi ⟩ :: ui : A
i , si1 : C

i
1, . . . , s

i
k
: Ci

k

out
,

and contexts in εi ’s are as in the explanation after Fig. 1.
Error-Freedom. It suffices to show that any process with a runtime error (arity mismatch,

dependency cycle, failed send, or endless wait) is untypable. Arity mismatch is untypable
by the definition of types: the rules out, in, in∗, and !in necessarily introduce pre-types with
one or more tuples with the same arity as the input/output prefix. If arity mismatch is in
a process, then a name in the context must be typed by a pre-type A that does not satisfy
A⌢ A since some sub-pre-types of A have different arity.
A dependency cycle at the top level is not typable. Because any such process contains a
subprocess in the form

ν (x1, . . . ,xn ) (†x1 (ỹ1).Q1 | · · · | †xn (ỹn ).Qn | R)

where †xi (ỹi ) denotes either xi (ỹi ).Qi or !xi (ỹi ).Qi , each xi satisfies xi ∈ fn(Qi+1) for
1 ≤ i < n and xn ∈ out(Q1), the rules in (or in∗) and !in that derive those input particles neces-
sarily introduces (x1;xn , p̃1) and (xi ;xi−1, p̃i ) for 1 < i ≤ n. It is easy to show that res rule on

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 7. Publication date: January 2019.



Intersection Types and Runtime Errors in the Pi-Calculus 7:19

all x1, . . . ,xn over such a subprocess †x1 (ỹ1).Q1 | · · · | †xn (ỹn ).Qn | R is impossible (by induc-
tion onn): restricting x1 with (x1;x1, p̃1) is directly prohibited by the side-condition of res rule;
when we have (x1;xn , p̃1) : A1, (x2;x1, p̃2) : A2, . . . , (xn ;xn−1, p̃n ) : An in a context, applying
res rule on (without loss of generality) xn , we will obtain (x1;xn−1, p̃n , p̃1) : A1, (x2;x1, p̃2) : A2,

. . . , (xn−1;xn−2, p̃n−1) : An−1 that is impossible to apply res rule over x1, . . . ,xn−1 by I.H.
Failed send cannot be typed because a typing derivation for a failed-send process must contain

a subderivation that types a processQ ≡ x⟨ỹ1⟩ | · · · | x⟨ỹn⟩. The processQ can only be typed

as w̃ : ⊤ ⊢ x⟨ỹ1⟩ | · · · | x⟨ỹn⟩ :: Σ where x cannot be typed by ⊤ in Σ; since w̃ : ⊤ cannot
contain any type other than ⊤, the rule res cannot be applied to the derived judgment.

Endless wait is untypable by a similar reason: to type νx (x (ỹ1).Q1 | · · · | x (ỹn ).Qn ), due to

syntax-directedness of the type system x (ỹ1).Q1 | · · · | x (ỹn ).Qn must first be typed, say

Γ ⊢ x (ỹ1).Q1 | · · · | x (ỹn ).Qn :: Σ, with the name x contained in the two contexts Γ and Σ.
Each application of in rule for x (ỹi ).Qi necessarily types x by a non-⊤ type in the context Γ;
however x in the context Σ can only be typed by ⊤, hence the types of x in Γ and that in Σ

never match and res rule cannot be applied.
Subject Expansion. Suppose Q is typable and ρ : P −→ Q .
• If the reduction is by the rule x⟨ỹ⟩ | x (z̃).R −→ R{ỹ/̃z}, by the syntax-directedness the
derivation (call it δ ) for Q must contain a subderivation δ ′ in the following form:

δ ′....

Γ ⊢ R{ỹ/̃z} :: Σ.

Since R is inside an input particle in the redex, R does not have a free occurrence of input
particle and thus Γ can only contain ⊤ types. Since the redex and the reduct are given by
the reduction, we know every output prefixes vi ⟨w̃i ⟩ that is renamed under the reduction
ρ, and thus we can spot all the sub-derivations

Γi ⊢ vi ⟨w̃i ⟩ :: vi : A
i ,ui1 : C

i
1, . . . ,u

i
m : Ci

m

out

in δ ′ where Γi only contains ⊤ types and the subderivation is associated with a sequence

of types B̃i and a function f : {1, . . . , |wi |} → {ui1, . . . ,u
i
m } that designates the types

Ai ,Ci
1, . . . ,C

i
m . Some of the names vi ,u

i
1, . . . ,u

i
m have been renamed under ρ; consider the

set X = {u ′i1 , . . . ,u
′i
l
} that is defined by

u ′i1 ∈ X if u ′i1 ∈ {vi ,u
i
1, . . . ,u

i
m } and u

′i
1 is not renamed under ρ;

zj ∈ X if ui1 = yj ∈ ỹ and the occurrence of zj is renamed by yj in vi ⟨w̃i ⟩ under ρ

and define f ′ : {1, . . . , |wi |} → {u
′i
1 , . . . ,u

′i
l
} by

f ′(j ) = f (j ) if the j-th occurrence of name in ỹ is not renamed under ρ;

f ′(j ) = zj if the j-th occurrence of name in z̃ is renamed by yj under ρ .

Using f ′ and erasing Γi , we obtain the following subderivation:

⊢ Anc(vi ⟨w̃i ⟩) :: u
′i
1 : C ′1, . . . ,u

′i
l
: C ′

l

out

where C ′j ’s are as specified by B̃ and f ′. Here Γi must be erased because we later apply a in

rule; it can be safely erased since all the types in Γi are ⊤, which means that Γi is introduced
by (co)weakening. Let γ ′ be a derivation obtained by replacing every such subderivation in
δ ′. Note that such a replacement makes zi ’s appear in the contexts. Then we have
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⊢ x ⟨̃z⟩ :: x : (D̃), s̃ : D̃
out

γ ′
....

⊢ R :: Σ′, z̃ : D̃

(x ; out(R) \ z̃) : (D̃) ⊢ x (z̃).R :: Σ′
in

(x ; out(R) \ z̃) : E ⊢ x⟨ỹ⟩.R | x (z̃).R :: Σ′,x : (D̃), s̃ : D̃
par

By replacing δ ′ in the original derivation δ by the derivation above, we obtain a derivation
for P . Note that this derivation, say ε , satisfies ε ▷◁ P .
• Similarly, if the reduction is by the rule x⟨ỹ⟩ | !x (z̃).P −→ P {ỹ/̃z} | !x (z̃).P , we can replace
the subderivation for P {ỹ/̃z} | !x (z̃).P by the one for x⟨ỹ⟩ | !x (z̃).P : the only difference is
that now we do not newly put !in rule to the subderivation, but add one premise to the
existing application of !in rule.
• If the reduction is by the ruleνx (!x (z̃1).P1 | · · · | !x (z̃n ).Pn ) −→ 0, the processνx (!x (z̃1).P1 |
· · · | !x (z̃n ).Pn ) can be typed by the following derivation and it can be inserted by par rule
to the place where the redex is in P :

(x ; out(P1) \ z̃1) : ⊤ ⊢ !x (z̃1).P1 :: x : ⊤
!in
· · · (x ; out(Pn ) \ z̃n ) : ⊤ ⊢ !x (z̃n ).Pn ::

!in

(x ;
⋃

i out(Pi ) \
⋃

i z̃i ) : ⊤ ⊢ !x (z̃1).P1 | · · · | !x (z̃n ).Pn :: x : ⊤
par∗

⊢ νx (!x (z̃1).P1 | · · · | !x (z̃n ).Pn ) ::
res

.

Since this derivation has empty contexts, inserting it in the original derivation does not
have any effect on validity of the derivation.

Quantitative, Existential Subject Reduction. First we need a sub-lemma (proof is by struc-
tural induction).

Lemma 3.7. Let δ :: P . Then δ {x̃/ỹ} :: P {x̃/ỹ}, where δ {x̃/ỹ} is defined by renaming ỹ by x̃ in

each processes and contexts in the derivation (if both z and v are renamed byw and z : A,v : B
in a context, replace them byw : A ∧ B).

Existence of ρ : P −→ Q matching δ is a consequence of the typability condition (Defi-
nition 3.1) and the side condition on the res rule, which ensure that every output type is
matched by an input type. Consider then such a ρ.
• Suppose that the reduction is by the rule x⟨ỹ⟩ | x (z̃).R −→ R{ỹ/̃z}. Since δ ▷◁ ρ, the
derivation δ must contain a subderivation δ ′ in the following shape:

⊢ x⟨ỹ⟩ :: x : (Ã), w̃ : Ã′
out

γ
....

⊢ R :: z̃ : Ã, Σ

(x ; out(R) \ z̃) : (Ã) ⊢ x (z̃).R :: Σ
in

(x ; out(R) \ z̃) : (Ã) ⊢ x⟨ỹ⟩ | x (z̃).R :: x : (Ã), w̃ : Ã′, Σ
par

where w̃ is the set of names obtained by removing duplicates in ỹ, the type (Ã) of x is
shared in the two contexts because δ ▷◁ ρ. By replacing δ ′ in the whole derivation δ by
the derivation γ {ỹ/̃z}, we obtain a valid derivation with two less applications of rules. The
derivation γ {ỹ/̃z}, and the derivation obtained by replacing δ ′ in δ by γ {ỹ/̃z} satisfies that:
every contexts below γ {ỹ/̃z} except x are the same as δ , and the type of x (if any) is B

where x is typed by (Ã) ∧ B in δ . Especially, when applying res rule, the condition that the
types of the same name match is satisfied as long as it is in the original derivation δ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 7. Publication date: January 2019.



Intersection Types and Runtime Errors in the Pi-Calculus 7:21

• Similarly, if the reduction ρ : P −→ Q is by the rule x⟨ỹ⟩ | !x (z̃).R −→ R{ỹ/̃z} | !x (z̃).R, the
derivation δ must contain

⊢ x⟨ỹ⟩ :: x : (Ãj ), w̃ : Ã′j
out

γ1....

⊢ R :: z̃ : Ã1, Σ1 · · ·

γn....
⊢ R :: z̃ : Ãn , Σn

(x ; p̃) :
∧

i (Ã
i ) ⊢ !x (z̃).R ::

∧
i Σi

!in

(x ; p̃) :
∧

i (Ã
i ) ⊢ x⟨ỹ⟩ | !x (z̃).R :: x : (Ãj ), w̃ : Ã′j ,

∧
i Σi

par

and replacing it in δ by the following derivation γ ′ yields a valid derivation for Q with
exactly one less applications of rules. As in the former case, contexts are preserved except
the name x loses one intersection in its type, hence all the other applications of rules
present in δ remain valid.

⊢ R{ỹ/̃z} :: w̃ : Ã′j
out

ε

(x ; p̃) :
∧

i,j (Ã
i ) ⊢ R{ỹ/̃z} | !x (z̃).R :: x : (Ãj ), w̃ : Ã′j ,

∧
i,j Σi

par

where ε is
γ1....

⊢ R :: z̃ : Ã1, Σ1 · · ·

γj−1....

⊢ R :: z̃ : Ãj−1, Σj−1

γj+1....

⊢ R :: z̃ : Ãj+1, Σj+1 · · ·

γn....
⊢ R :: z̃ : Ãn , Σn

(x ; p̃) :
∧

i,j (Ã
i ) ⊢ !x (z̃).R ::

∧
i,j Σi

!in

□

Corollary 3.8. A process P is typable iff there exists an idle process I such that P −→∗ I .

Proof. (if) Suppose there exists an idle process I such that P −→∗ I . Then, since I is typable
by Proposition 3.6, P is itself typable by subject expansion in Proposition 3.6.

(only if) Suppose P is typable by a derivation δ . By quantitative, existential subject reduction
in Proposition 3.6, there exists a reduction sequence P −→ Q1 −→ · · ·Qk where each Qi is
typable for 1 ≤ k , the last process Qk does not reduce, and k ≤ |δ |. Since a typable process is
error-free by Proposition 3.6, Qk is a error-free irreducible process, i.e., idle.

□

Lemma 3.9. Let P be completely typable and let P −→ Q . Then, Q is completely typable.

Proof. Let ρ : P −→ Q and σ : Q −→∗ R. Then we have a sequence of reductions ρ;σ starting
from P . Since P is completely typable, there exists a derivation δ that satisfies δ :: P and δ ▷◁ ρ. As
in the proof of the existential subject reduction in Proposition 3.6, we can modify the derivation
δ to another derivation δ ′ for Q . Since the modification only renames the rest of derivation, the
prefixes appearing in redexes in σ still satisfy the condition in Definition 3.4, and hence δ ′ ▷◁ σ for
any σ : Q −→∗ R. □

Note that subject expansion of Proposition 3.6 is constructive: given ρ : P −→∗ Q , every
derivation ε :: Q induces a derivation ρ∗ (ε ) :: P , which we call the pullback of ε along ρ.

Lemma 3.10 (pullback). Let ρ : P −→∗ Q . Then, for all ε :: Q , ρ∗ (ε ) ▷◁ ρ.

Proof. Let ρ = σ ;σ ′ where σ : P −→∗ Q ′ and σ ′ : Q ′ −→ Q , and let ε :: Q . The derivation for Q ′

we constructed from ε in the proof of subject expansion indeed matches σ ′; by induction on the
length of ρ we obtain a derivation that matches the whole ρ that we take as ρ∗ (ε ). □
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Theorem 3.11. A process is completely typable iff it is well-behaved.

Proof. (if) Let P be a well-behaved process and ρ : P −→∗ Q be an arbitrary sequence of
reductions. Since P is well-behaved, there must be an idle process I satisfying σ : Q −→∗ I .
By Proposition 3.6, I is typable by some derivation δ ; by Lemma 3.10, there exists a derivation
σ ∗ (δ ) that matches σ . By repeatedly applying Lemma 3.10 we obtain ρ∗ (σ ∗ (δ )) that matches
ρ;σ , and hence ρ.

(only if) Let P be completely typable. Then for any sequence of reductions ρ : P −→∗ Q , Q is
also completely typable by Lemma 3.9, and thusQ is typable. By Proposition 3.6Q is error-free,
and there exists another sequence of reductions σ : Q −→∗ R where R is irreducible; since
σ ; ρ is also a sequence of reductions starting from P , R is also typable and hence error-free,
i.e., idle.

□

3.4 Examples

We now go back to the examples from Sect. 2.3 and look at them from the point of view of typing.

3.4.1 Functional Programming. In the case of functional programming, there is not much to be
said: the encoding of a non-deterministic λ-term (or λµ-term) is such that no runtime error may
ever arise, so good behavior reduces to termination of weak head reduction. Let us say that a term
M may converge ifM −→∗ N for some (weak head) normal form N ; let us say that it may diverge if
M −→∗ Ω for some term Ω having no normal form. Our type system gives us the standard result
expected from intersection types: a functional process is typable (resp. completely typable) iff its
evaluation under weak head reduction may converge (resp. may not diverge, i.e., it is safe, in the
terminology of Sect. 2.4).

3.4.2 Locks. Consider the final process of Sect. 2.3.2, i.e., the lock together with the processes
competing for it. We will now give a complete analysis of its possible type derivations.

Let A0 := ⊤, Ai+1 := (Ai ) ∧Ai . We saw above (just after the definition of type) that these are all
types. We start by observing that we have

⊢ a⟨a⟩ :: a : An
out

for all n > 0. Let now Q := νv (p⟨v⟩ | v .z⟨z⟩), so that L = !a(z).Q . We have, for all n > 0

(v ; ) : ⊤ ⊢ p⟨v⟩ :: z : ⊤,p : (()),v : ()
out

⊢ z⟨z⟩ :: z : An ,p : ⊤,v : ⊤
out

(v ; z) : () ⊢ v .z⟨z⟩ :: z : An ,p : ⊤,v : ⊤
in

(v ; z) : () ⊢ p⟨v⟩ | v .z⟨z⟩ :: z : An ,p : (()),v : ()
par

⊢ Q :: z : An ,p : (())
res

and we also have

(v ; ) : ⊤ ⊢ p⟨v⟩ :: z : ⊤,p : (∗),v : ∗
out

(v ; z) : ∗ ⊢ v .z⟨z⟩ :: z : ⊤,p : ⊤,v : ⊤
in∗

(v ; z) : ∗ ⊢ p⟨v⟩ | v .z⟨z⟩ :: z : ⊤,p : (∗),v : ∗
par

⊢ Q :: z : ⊤,p : (∗)
res

Now, note that, for allm ∈ N, Am+1 = (Am ) ∧ · · · ∧ (A1) ∧ (A0), and recall that A0 = ⊤. Thanks to
this observation, we have

⊢ Q :: z : Am ,p : (()) . . . ⊢ Q :: z : A1,p : (()) ⊢ Q :: z : A0,p : (∗)

(a;p) : Am+1 ⊢ L :: p : (())m ∧ (∗)
!in
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for allm ∈ N, where (())m is short for (()) ∧ · · · ∧ (())m times. Combining the above, we get

⊢ Lock :: p : (())m ∧ (∗)

for allm ∈ N.
Suppose now that we have, for all 1 ≤ i ≤ n,

⊢ Qi :: v : (),p : ⊤

that is, v is used as the subject of a nullary output in Qi (the lock release signal), p is not used in Qi

and, for simplicity, we assume that Qi has no other free name (for instance, we may simply take
Qi := v , i.e., Qi releases the lock as soon as it obtains it). We then have

⊢ Qi :: v : (),p : ⊤

(p; ) : (()) ⊢ Pi :: p : ⊤
in

so we finally obtain

(p; ) : (()) ⊢ P1 :: p : ⊤ . . . (p; ) : (()) ⊢ Pn :: p : ⊤ (p; ) : ⊤ ⊢ Lock :: p : (())m ∧ (∗)

(p; ) : (())n ⊢ P1 | · · · | Pn | Lock :: p : (())m ∧ (∗)
par

Note that, by syntax directedness and the type constraints on rules, these are all the type
derivations for the lock with n processes. The derivations in whichm = n are the most interesting:
they match a full reduction to idle form, in which every Pi has acquired the lock at some point and
released it. The order in which the lock is acquired is given by the types An , . . . ,A1,A0. Indeed,
channel p (the lock channel) has input type (()) in each Pi (this is visible in the last derivation);
note that, in the derivation typing L, there are n + 1 copies of Q in which p gets output type (()),
and each of these copies ofQ has some z : Aj in its context, 0 ≤ j ≤ n. The possible lock-acquisition
orderings correspond to the possible matchings of the i-th input type (()) typing Pi with the j-th
output type (()) typing the j-th copy of Q . The 0-th copy of Q , in which p : (∗), corresponds to the
last reduction Lock −→ νv (p⟨v⟩ | v .z⟨z⟩ | L) leading to the idle form after all Pi ’s have terminated.

3.4.3 Toy Operating System. Let us give another example of how very precise information about
the behavior of processes may be extracted from typing derivations. To make things more un-
derstandable, we first consider a (drastically) simplified version of the toy operating system of
Sect. 2.3.3:

SimpOpSys := !r .0

V (z) := νs (s | !s .(r | z⟨z⟩) | !s .0)

SimpUser := νu (u⟨u⟩ | !u (z).V (z))

SimpOpSys offers just one service: receiving a łpingž on channel r . SimpUser pings the operating
system indefinitely, and may decide at any time to log out. As we did for the lock process, we will
now give a complete analysis of the behavior of the SimpOpSys/SimpUser system by means of a
complete analysis of its type derivations.
First, for allm ∈ N, we have

⊢ 0 ::
zero

(r ; ) : ()m ⊢ SimpOpSys ::
!in

where, as in the previous section, ()m stands for ()∧ · · · ∧ ()m times. In fact, by syntax directedness,
these are all the possible type derivations for SimpOpSys.
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Before analyzing the simplified user, let us make a notational simplification: in par rules, we will
discard unnecessary declarations of the form (x ; ) : ⊤ or x : ⊤, writing

(x ;X ) : A ⊢ P :: z : C ⊢ Q :: y : B, z : D

(x ;X ) : A ⊢ P | Q :: y : B, z : C ∧ D
par

instead of
(x ;X ) : A ⊢ P :: y : ⊤, z : C (x ; ) : ⊤ ⊢ Q :: y : B, z : D

(x ;X ) : A ⊢ P | Q :: y : B, z : C ∧ D
par

which is the łofficialž version of the rule given in Fig. 1. The łcompactž version of the rule is of
course admissible because declarations of the form (x ; ) : ⊤ or x : ⊤ may be added at will to
derivable judgments, preserving derivability (this is a standard property provable by induction).
So, for the simplified user, we have

⊢ s :: s : ()
out

⊢ r :: r : ()
out

⊢ z⟨z⟩ :: z : An+1
out

⊢ r | z⟨s⟩ :: z : An+1, r : ()
par

(s; z,u) : () ⊢ !s .(r | z⟨s⟩) :: z : An+1, r : ()
!in

(s; ) : ⊤ ⊢ !s .0 ::
!in

(s; z, r ) : () ⊢ s | !s .(r | z⟨z⟩) | !s .0 :: z : An+1, r : (), s : ()
par

⊢ V (z) :: z : An+1, r : ()
res

and we also have

⊢ s :: s : ()
out

(s; z,u) : ⊤ ⊢ !s .(r | z⟨s⟩) :: z : A0, r : ⊤
!in

⊢ 0 ::
zero

(s; ) : () ⊢ !s .0 ::
!in

(s; z, r ) : () ⊢ s | !s .(r | z⟨z⟩) | !s .0 :: z : A0, r : ⊤, s : ()
par

⊢ V (z) :: z : A0, r : ⊤
res

which exhausts all possibilities forV (z). Besides syntax-directedness, the key point here is the final
res rule, which forces the input and output type of s to match. Because of the presence of a single
output particle s , the output type cannot be but (), hence the total arity of the two !in rules for
!s .(r | z⟨z⟩) and !s .0 must add up to 1. This corresponds to the fact that the output s is matched to
exactly one of the two inputs, and the other input is discarded (which is possible because it is a
server).
For SimpUser, we get

⊢ u⟨u⟩ :: u : An+1
out

....
⊢ V (z) :: z : An , r : () . . .

....
⊢ V (z) :: z : A1, r : ()

....
⊢ V (z) :: z : A0, r : ⊤

(u; r ) : An+1 ⊢ !u (z).V (z) :: r : ()n
!in

(u; r ) : An+1 ⊢ u⟨u⟩ | !u (z).V (z) :: r : ()n ,u : An+1

par

⊢ SimpUser :: r : ()n
res

which exhausts all possibilities because of the above discussion and because, again due to the last
res rule, the input and output type ofu must match and the only ways to typeu⟨u⟩ are withu : An+1

for n ∈ N, where An is the same family of types considered in the above section, defined by A0 = ⊤,
Ai+1 = (Ai ) ∧Ai and thus satisfying An+1 = (An ) ∧ · · · ∧ (A1) ∧ (A0).

Let us consider the simple case in which there is only one user. Thanks to the above, we have

(r ; ) : ()m ⊢ SimpUser | SimpOpSys :: r : ()n

for allm,n ∈ N. Each of these derivations describes a possible behavior of the user/system process.
The integerm corresponds to the number of times the user pings the system. The casesm < n

match reductions in which the user has not yet logged out; whenm ≥ n, the user has logged out
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and the idle form SimpOpSys has been reached. Similarly to the lock example, each typing of V (z)

in a derivation of SimpUser is labelled by an integer 0 ≤ i ≤ n. The positive i’s correspond to pings
by the user: i = n is the first, i = n − 1 the second and so on. The case i = 0 corresponds to the log
out. Therefore, each derivation of the user/system process corresponds to an evolution in which
eventually the user logs out; however, whenm < n, such a log out operation is still in the future
and the derivation only matches the firstm pings.

A similar analysis may be performed for the toy operating system of Sect. 2.3.3. Without giving
the details, we get

(r1; ) : (())
k1 , . . . , (rn ; ) : (())

kn ⊢ OpSys ::

and

⊢ User :: r1 : B1, . . . , rn : Bn

where each Bi is of the form (())li and at most one of them may have the form (())li ∧ (∗). If there

arem users, ranged over by j, we may write B
j
i for the above types. In analogy with the simplified

case, we have:

• the number ki corresponds to the number of times the i-th service is invoked;

• for a given user j, the number l
j
i corresponds to the number of times the user invokes the

i-th service;
• the presence of the type (∗) in one of the B

j
i ’s corresponds to the fact that user j has not yet

logged out and that the user’s last request was for the i-th service;
• as in the lock example, the order in which requests from the different users are met by the
operating system may be inferred by the presence of types of the form Ai in the derivation.

The details are slightly more complex (the derivations are bigger) but the essence is identical,
which is why we do not give them as they would not add much to the understanding of the type
system. The point is that, in certain cases, it is possible to perform a complete analysis of the type
derivations of a process, a task which is facilitated by the syntax-directedness of the type system.
From such an analysis, a complete description of the behavior of a process may be inferred.

4 DISCUSSION

Where does our type system come from? The type system presented here was not łpulled out of a
hatž but obtained from a recently introduced construction [Mazza et al. 2018], which is based on the
idea that intersection types come from approximations in linear logic. In a nutshell, one of the main
consequences of the construction is that a programming language has an łintersection-flavoredž
type discipline as soon as it may be meaningfully translated in linear logic. For instance, Mazza et
al. show how every major system of intersection types for the λ-calculus arises from applying their
construction to Girard’s translation of intuitionistic logic (and hence the λ-calculus) in linear logic.
It is known that the π -calculus may be translated in linear logic: several encodings and cor-

respondences were proposed in the past decade or so [Caires and Pfenning 2010; Ehrhard and
Laurent 2010; Honda and Laurent 2010; Wadler 2014]. For our work, we turned to Honda and
Laurent’s correspondence, but amended it in the light of Ehrhard and Laurent’s encoding, which
is more liberal (for instance, Honda and Laurent consider the private π -calculus and restrict to
replicated input only, while no such restrictions are present in our case). The resulting encoding of
the π -calculus in linear logic (using proof nets) is described in [de Visme and Mazza 2017]. Our
type system results by applying, in a nearly automatic way, the construction of [Mazza et al. 2018]
to this latter encoding. Albeit that work also contains a general theorem for inferring dynamic
properties from the type systems built by the construction, the assumptions of the theorem do not
cover concurrent languages like the π -calculus, so we had to prove our results łby handž (in light
of Sect. 2.4, it was impossible to be otherwise). Nevertheless, we think that this is a nice application
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of the methodology brought forth by that work: we would not have been capable of coming up
with our type system without the help of the above-mentioned construction.

Why asynchronous hyperlocalized? The choice of π -calculus fragment in our work is dictated by
its connection with polarized linear logic [Honda and Laurent 2010]. Let us try and give as much
intuition as possible about the two restrictions (asynchrony and hyperlocalization), knowing that a
fully technical explanation is impossible without introducing proof nets.

When encoding the π -calculus in linear logic, π -calculus reduction is simulated by shallow proof
net reduction (also known as surface reduction in linear λ-calculi [Simpson 2005]). The concept of
łshallownessž comes from the syntax of proof nets, which includes certain constructs called łboxesž,
associated with the exponential modality !(−) and marking sub-proof nets that may be duplicated
or erased. Shallow reduction never reduces inside a box. This is reminiscent of weak reduction in
the λ-calculus, which does not reduce under an abstraction. Boxes are therefore a natural way of
encoding the blocking behavior of prefixes in the π -calculus, i.e., the fact that π .P does not reduce
even if P may reduce. Recall however that a box is associated with the modality !(−); so, if one
kind of prefix (input or output) is associated with the presence of a box, then it will be associated
with !(−), which implies that the dual kind of prefix will be associated with ?(−), which does not

come with a box. Therefore, matching input/output duality with linear logical duality forces one
prefix to be blocking and the other to be non-blocking; since it makes little sense for input to be
non-blocking, this leads straight to the asynchronous π -calculus.
Locality is a consequence of polarization. Like [Honda and Laurent 2010], we are using an

encoding of the π -calculus in the polarized fragment of linear logic. This forces all names of ỹ in a
prefix like x (ỹ) to be of the same polarity, opposite to that of x . Since polarities coincide with the
input/output distinction, we have that ỹ must be composed of output names.

Hyperlocalization is a bit more technical and is a sort of łcollateral damagež of the use of boxes
in the encoding of input prefixes. Indeed, in the encoding of x (ỹ).P (or !x (ỹ).P ), the encoding of P
must be put łinside a boxž; however, not every proof net may be put łinside a boxž: its conclusions
(corresponding to the free names of P ) must all be of negative polarity, and this happens to be the
output polarity, hence the restriction.
It is natural to ask whether these restrictions may be overcome, typically by changing the

encoding of the π -calculus in proof nets. This is trickier than what it seems. For what concerns
hyperlocalization, there appears to be no alternative to the use of a box in encoding !x (ỹ).P ; for
the reasons mentioned above, this inevitably leads to the restriction that no free name of P be used
as subject of an input. The case of non-replicated input prefixes looks simpler to amend, but the
fact that such prefixes are blocking still strongly suggests the use of boxes, leading to the same
obstruction.
About lifting the asynchronous restriction, an obvious solution to encode synchronous com-

munication would be to associate a combination of modalities with each prefix, something like
!?(−) (and its dual ?!(−)), in such a way that a box is always present, so that both prefixes are
blocking. Although possible in principle, this has the disadvantage of propagating the hyperlocality
restriction to output prefixes, i.e., in x⟨ỹ⟩.P , the free names of P would be limited to output use only.
Also, it is likely that, in such an encoding, the sequence ỹ above would be forced to contain names
used only as subjects of input prefixes. That this is not the case at present is precisely thanks to
asynchrony. All these induced restrictions make it unclear whether we may meaningfully deal with
a synchronous setting.

What have we achieved and where to go from here? To the best of our knowledge, this is the first
application of intersection types to concurrency which is comparable, in terms of results, to the
traditional applications of intersection types to functional programming, in the sense the we get a
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system which is both sound and complete for a given behavioral property. In particular, our type
system characterizes łmay terminationž. Granted, this is not a very useful property in a concurrent
setting, but no other type system that we are aware of achieves this (i.e., completeness).

The interesting property, good behavior, is hopelessly out of reach for a type system to capture,
at least if we consider the usual meaning of łcapturingž (i.e., by means of existence of a type). In
this respect, our type system is the best we can get: although no single, finite type derivation may
ever capture good behavior, it does capture a fraction of it, and our type system is complete in the
sense that it misses none of these fractions.
The theoretical limitation of Sect. 2.4 (Π0

2-completeness) and Theorem 3.11 together make our
type system unsuitable for practical usage, which of course is not a problem in the present context
since we are interested in a theoretical exploration of the limits of intersection types for concurrent
programming. However, it is important to observe that this does not prevent our work from having
a potential impact on more practical investigations. Indeed, as Sect. 3.4 has hopefully shown,
there are non-trivial cases in which it is possible to completely describe the type derivations for a
process, which amounts to completely describing its behavior. Such a description could be a form
of parametric derivation: in the examples of Sect. 3.4, the parameters were integers, but one may
imagine more complex structures. This leads us towards a type discipline in the style of bounded
linear logic [Girard et al. 1992], which is known to be related to intersection types (via the notion of
approximation considered in [Mazza et al. 2018]). More precisely, it seems that a similar application
of (linear) dependent types as that given by [Dal Lago and Gaboardi 2011] is possible here, which
would yield more practical type systems, necessarily sacrificing completeness but hopefully still of
remarkable expressiveness.

Another, perhaps more technical contribution of our work is that it clarifies the meaningfulness
of encodings of π -calculi in linear logic. Indeed, it was shown that, for abstract reasons due to the
absence of so-called confusion in differential proof nets (the target of both encodings of [Ehrhard
and Laurent 2010; Honda and Laurent 2010]), no encoding fully respecting the parallelism of the
π -calculus could possibly be sound. Accordingly, the encoding at the basis of our work [de Visme
and Mazza 2017] is syntactically unsound: if J·K denotes the encoding, there are processes P such
that JPK may exhibit reductions having no match in P . However, thanks to the hyperlocalization
restriction, it turns out that these łfaultyž reductions may only happen when P is already łfaultyž
on its own, i.e., when it has no idle form. By Corollary 3.8, P is not typable, so the encoding is
morally correct. This property is similar to that expressed by Proposition 2.8 and may be proved
along the same lines.
One more thing worth noting is that the construction of [Mazza et al. 2018], which is based on

approximations, is in fact also related to the Taylor expansion of differential linear logic and its
relational semantics. This is visible in our types, which are essentially the elements of the relational
semantics of proof nets. From this perspective, another way of stating that the lack of correctness of
the proof net encoding is harmless is that łfaultyž reductions only happen in proof nets/processes
whose semantics is empty. More generally, the connection with denotational semantics, especially
that with (linear) approximations, is another topic worth investigating further. Finally, connections
between our type system and Girard’s Geometry of Interaction [Girard 1989] are worth being
investigated, especially in view of some recent developments [Dal Lago et al. 2017].
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