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Summary 

 

Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins 

to specific subcellular locations in the cell and sustaining a polarized state. The Golgi 

apparatus, the master organizer of membrane trafficking, can be subdivided into three 

layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi 

matrix and the Golgi membranes. First, the outer regions of the Golgi apparatus interact 

with cytoskeletal elements, mainly actin and microtubules, which shape, position and 

orient the organelle. Closer to the Golgi membranes, a matrix of long coiled-coiled 

proteins not only selectively captures transport intermediates but also participates in 

signaling events during polarization of membrane trafficking. Finally, the Golgi 

membranes themselves serve as active signaling platforms during cell polarity events. 

We review here the recent findings that link the Golgi apparatus to cell polarity, focusing 

on the roles of the cytoskeleton, the Golgi matrix and the Golgi membranes. 
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Introduction  

 

The Golgi apparatus is the transformation and sorting factory of most proteins and plays 

a pivotal role in membrane trafficking. In the secretory pathway, the Golgi apparatus 

receives de novo synthesized molecules from the endoplasmic reticulum (ER), post-

translationally processes lipids and proteins, and sorts cargoes to their ultimate 

destination [1,2]. Cell polarity, the process by which a cell defines an oriented axis for 

instance to migrate, divide or differentiate, strongly depends on membrane trafficking 

[3]. Over the past three decades, evidence has accumulated showing that the structure, 

organization and positioning of the Golgi apparatus are implicated in maintaining a 

polarized cell state [2,4–6]. In polarized cells, cellular materials are transported along 

the polarity axis. This requires polarization of membrane trafficking from the Golgi 

apparatus. Conversely, the position of the Golgi inside the cell can dictate the 

directionality of membrane trafficking and the proper localization of polarity cues. This 

‘chicken-and-egg’ problem is typical of feedback loops involved in symmetry breaking 

during establishment of cell polarity. In the case of Golgi-dependent membrane 

trafficking, the orientation of the Golgi apparatus in the direction of the polarity axis 

targets transport towards a given region of the cell, for example, towards the leading 

edge plasma membrane during cell migration (front-rear polarity), in the apical process 

of neural stem cells (radial polarity), towards the apical compartment of epithelial cells 

or towards the immunological synapse (Fig. 1). In all these examples and despite 

intensive research, it is still not clear whether and how external polarity cues are 

transduced inside the cell to polarize transport from the Golgi apparatus, and 

conversely, whether and how the Golgi apparatus could be driving cell polarization. One 

historical example is given by the small G protein CDC42. CDC42 was identified as an 

evolutionary conserved polarity protein in several organisms, from yeast to humans [7]. 

In mammalian cells, beside its functions in cell protrusion formation and cell migration 

as a plasma membrane-associated protein, CDC42 also operates in intracellular vesicle 

trafficking [8,9]. Consistently, CDC42 not only localizes at the plasma membrane but 

also at the Golgi apparatus where it interacts with the Golgi matrix [8], coat proteins 

[10–12], microtubule motors and the actin polymerization machinery [11]. However the 

precise role of CDC42 at the Golgi apparatus, how the Golgi associated pool of CDC42 

interacts with the plasma membrane-associated pool and whether these interactions 

impact on cell polarity remains to be determined [8]. 

 We focus here on the machineries localized at the Golgi apparatus which have 

been shown or hypothesized to participate in establishing directional membrane 

trafficking during cell polarization in mammalian cells. The Golgi apparatus can be 

viewed structurally as a three-layered organelle constituted of membrane-enclosed 

Golgi cisternae, the so-called Golgi matrix and cytoskeletal elements. Because of its 
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organization in cis, median and trans compartments, the Golgi apparatus possesses an 

intrinsic polarity. Intra-Golgi trafficking is in itself a polarized process, whether it is 

described in terms of a vesicular transport or a cisternal maturation model [13]. In 

mammalian cells, Golgi stacks are tethered laterally to form a Golgi ribbon typically 

found in tight association with the centrosome. Current models suggest that the 

assembly of the Golgi ribbon is an actin and microtubule (MT) dependent process. 

Maintenance of the Golgi architecture depends on the cytoskeleton and is coordinated 

at least in part by Rho and Rab GTPases [14,15]. In the following, we review recent 

work on the molecular players acting at the Golgi apparatus and relevant for the 

mechanical aspects of cell polarization, such as the generation of forces involved in 

Golgi positioning. For clarity, we have separated the description of the molecular 

mechanisms in three parts each corresponding to one structural component of the Golgi 

apparatus – the Golgi matrix, the Golgi-associated cytoskeleton and Golgi membranes 

– even if these three components are linked and interact with one another. 

 

 

Golgi matrix proteins and cell polarity 

 

In mammalian cells, Golgi membranes are organized as an interconnected ribbon 

typically positioned adjacent to the centrosome in the perinuclear region.  This proximity 

is usually disrupted by conditions that perturb Golgi organization. The functional 

significance of the proximity between the Golgi apparatus and the centrosome is not 

fully understood. Several studies have linked the spatial connection between the 

centrosome and the Golgi apparatus with directed protein transport or directional 

migration [16–18]. In front-rear cell polarity models, such as directed cell migration, 

centrosomal reorientation towards the leading edge is known to align the Golgi 

apparatus towards the leading edge (Fig. 1A).  

 Strikingly a number of proteins belonging to the Golgi matrix [19,20] are not only 

critical for maintaining the typical Golgi architecture and its positioning close to the 

centrosome, but also for cell polarity. For instance, Golgi reassembly and stack proteins 

(GRASPs) link Golgi stacks together. Depletion of GRASP55 or GRASP65 perturbs 

Golgi organization and function [21] and the phosphorylation of GRASP65 is required 

for both Golgi and centrosome reorientation during directed cell migration [22]. 

Depletion of GRASP65 and GRASP55 also reduces the level of 51 integrin and 

consequently decreases adhesion, migration and invasion of HeLa cells and of the 

breast cancer cell line MDA-MB-231 [23]•.  

 Similarly, the Golgi matrix protein GM130, a GRASP65 binding partner, has been 

implicated in cell polarity. GM130 recruits and activates the kinase YSK1 which 

phosphorylates downstream cell polarity targets [24]. Consistently, expressing inactive 

YSK1 blocks both Golgi and centrosome reorientation during cell migration [24]. In 



5 

 

addition, GM130 may also control cell migration through the activation of both YSK1 

and CDC42 [24–26]. More recently, deletion of GM130 in Purkinje neurons has been 

shown to induce Golgi fragmentation and defects in Golgi positioning [27]••. In 

contrast, a study carried out in GM130 knock out (KO) retinal pigment epithelial (RPE-1) 

cells shows that the physical proximity between the centrosome and the Golgi 

apparatus is not necessary for protein transport, cell migration, or ciliogenesis [28]•. 

While these results further strengthen the proposed role of GM130 in Golgi ribbon 

formation and in associating the Golgi apparatus to the centrosome by recruiting 

AKAP450 (A-kinase anchoring protein of 450 kDa, also known as AKAP350, AKAP9, or 

CG-NAP) [29], they question whether a connection between the Golgi apparatus and 

the centrosome is required for cell polarity during directed migration (Fig.1A) [16]. 

 

Golgi-associated cytoskeletal elements 

 

The actin and microtubule network and their associated molecular motors play a key 

role in maintaining Golgi architecture and positioning during cell polarization by 

generating forces and mechanical tension [30–32]. In particular, the microtubule minus-

end directed motor dynein has been shown both to anchor microtubule plus-ends at the 

plasma membrane and to concentrate at the Golgi apparatus. During directed cell 

migration activation of CDC42 at the leading edge plasma membrane recruits and 

anchors dynein at the cell cortex via the Par polarity complex [33,34]. Dynein in turn 

pulls on astral microtubules to reorient the centrosome towards the leading edge 

[33,35–37]. The Golgi apparatus probably reorients via the same mechanism through its 

mechanical link with the centrosome. Dynein is also found at the cis-Golgi where it 

associates with the actin cytoskeleton and coat proteins [11]. Together with results 

showing the role of the CDC42/COPI interaction in directed intra-Golgi trafficking [10], 

these observations suggest that Golgi-localized dynein could also participate in 

redirecting membrane trafficking during establishment of cell polarity. In addition to this 

physical link between the dynein motor and the Golgi apparatus, recent studies have 

mostly focused on the role of Golgi-nucleated microtubules and on actin-generated 

tension to link the Golgi apparatus with cell polarity. 

 

The Golgi apparatus as a polarized non-centrosomal microtubule organizing center  

 

The Golgi apparatus is a site that can nucleate and stabilize non-centrosomal 

microtubules [5,31,38,39]. Microtubule nucleating and/or stabilizing factors accumulate 

at Golgi membranes and act as molecular scaffolds. Golgi-derived microtubule arrays 

are polarized and can therefore induce cell asymmetry facilitating polarized transport of 

post-Golgi cargoes in a specific direction [16,40,41] during cell migration and 
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differentiation [42–45]. Recently better characterization of the molecular machineries 

associated both at the plus and minus-ends of Golgi-derived microtubules involved in 

their nucleation, dynamics, stabilization and regulation has led to a model clarifying the 

role of these microtubules in the polarization of membrane trafficking (Fig. 2). 

 First, the identification of the cis-Golgi localized protein AKAP450 as a key player 

in Golgi-derived microtubule nucleation transformed the field of Golgi-derived 

microtubules [46,47]. AKAP450 recruits two γ-TuRC-binding homologous proteins 

namely CEP215 and myomegalin (MMG) which in turn recruit γ-TuRC (Fig. 2A) [48–51]. 

Simultaneously several studies showed that recruitment of cytoplasmic linker-

associated proteins (CLASPs) to the trans-Golgi by the golgin GCC185 was also 

essential for the nucleation and organization of Golgi-derived microtubules [52,53]. 

CLASPs are microtubule plus-end tracking proteins (+TIPs) that stabilize microtubules 

[54] (Fig. 2B). Both AKAP450 and CLASPs associate with the microtubule lattice-

binding protein MTCL1, which promotes microtubule association with the Golgi 

apparatus [55]. Therefore, the initial models of Golgi-derived microtubules involved 

tethering of microtubules regulatory proteins at both cis- and trans-Golgi compartments. 

How these differently localized groups of proteins could collaborate in the same 

pathway to generate polarized microtubule arrays was unclear, especially in the 

absence of microtubule stabilizing proteins essential for anchoring microtubule minus-

ends to Golgi membranes. 

 Depletion of the calmodulin-regulated spectrin-associated protein CAMSAP2 in 

mammalian RPE-1 cells leads to the loss of most non-centrosomal microtubules [56], 

suggesting that CAMSAP2 participates in microtubule stabilization at Golgi membranes. 

Subsequently, CAMSAP2 was shown to be essential for tethering, but not for 

nucleation, of non-centrosomal microtubules at the Golgi apparatus  [57]••. AKAP450 

is thought to play a dual function by organizing Golgi microtubules at the cis-Golgi, 

initially by anchoring CAMSAP2-bound microtubule minus-ends, and then by enhancing 

microtubule nucleation through -TURC recruitment (Fig. 2B, C). Through their roles in 

organizing Golgi-anchored microtubules, AKAP450 and CAMSAP2 contribute to Golgi 

reorientation during cell polarization and migration. Interestingly, Golgi-anchored 

microtubules also appear to participate in Golgi fragmentation during Golgi 

reorientation, probably by exerting pulling forces on Golgi membranes [57]••.  

 Similar mechanisms may be at play in other polarity models. For instance, non-

centrosomal microtubules control cell polarity in endothelial cells migrating in 2D and 3D 

models and  during vessel development in Zebrafish [58]•. Interestingly, another 

CAMSAP family member, CAMSAP3, has been involved in apico-basal polarity in 

epithelial cells (Fig. 1B) [59]. Here CAMSAP3 tethers microtubule minus-ends to the 

apical cortex, resulting in pulling forces which may orient the microtubule array in the 
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apico-basal direction and lead to the polarized intracellular organization and positioning 

organelles typical of epithelial cells. 

 Associated with CAMSAP2, the end binding proteins (EBs) EB1, EB2 and EB3 

which form the core components of microtubule plus-end tracking protein (+TIPs) 

complexes, have been implicated in tethering microtubules to the Golgi apparatus, in 

Golgi morphology and reorientation during directed cell migration. The current model for 

EB-dependent polarized organization of microtubules at the Golgi apparatus involves 

the interaction between AKAP450 and MMG. MMG recruits EBs along microtubules to 

induce dispersion of Golgi stacks via plus-end tracking. MMG also recruits CAMSAP2 in 

an EB-dependent manner at microtubule minus-ends to favor Golgi compaction 

probably via dynein-mediated transport [60]• (Fig. 2C).  

 

Linking actin and the Golgi apparatus 

 

The Golgi apparatus is a hub for a wide array of actin regulatory proteins. CDC42, 

WHAMM, WAVE, Arp2/3 complex, cortactin, cofilin, profilin II and several myosins (II, 

VI, 18, 1b) localize at the Golgi apparatus and the trans-Golgi network (TGN) [30]. In 

addition to the evident role of microtubules, the actin cytoskeleton is also emerging as a 

key factor in the assembly and maintenance of the Golgi architecture, in Golgi 

mechanics and in Golgi-dependent membrane trafficking [30,61,62]. Golgi reorientation 

during cell migration depends on Rho-associated protein kinase (ROCK), a main 

regulator of acto-myosin contractility [63]. Aside from the Arp2/3 complex which 

generates branched actin networks, three actin nucleators belonging to the formin 

family have been linked to the Golgi apparatus, mDia1, INF2 and FMNL1 isoform γ 

[6,64]. In addition, recent work shows that the formin family members FMNL2 and -3, 

CDC42 effectors known to regulate cell edge protrusion during migration and invasion, 

localize and function at the Golgi apparatus [65]••. Consistent with the role of CDC42 in 

regulating anterograde transport through the Golgi apparatus via cargo sorting and 

carrier formation [66], FMNL2/3 depletion also affects anterograde trafficking from the 

Golgi apparatus to the plasma membrane [65]••. Such a link between FMNL2/3 and 

the actin-dependent functions of CDC42 could be of particular importance during 

polarization of membrane trafficking (Fig. 3A). 

 Deciphering the link between actin driven migration and Golgi apparatus 

reorientation is key to understanding how both processes are coupled in space and time 

during cell polarization. Golgi phosphoprotein 3 (GOLPH3) is one such pivotal link 

required for Golgi to plasma membrane trafficking that bridges the Golgi apparatus to 

the actin cytoskeleton [67–70]. GOLPH3 is known to bind to phosphatidylinositol-4-

phosphate (PtdIns(4)P), a lipid enriched in trans-Golgi membranes. Most importantly, 
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GOLPH3 binds the unconventional myosin, myosin 18A (MYO18A), which links the 

Golgi apparatus to F-actin. The GOLPH3/MYO18A/F-actin pathway is thought to exert a 

tensile force on Golgi cisternae and to participate in Golgi reorientation during cell 

polarization [71]• [72,73] (Fig. 3B). However the role of GOLPH3 as one of the main 

Golgi-associated actor driving polarization of membrane trafficking has been recently 

questioned by the finding that MYO18A does not display any motor activity [74]••. 

 

Interactions between actin and Golgi-derived microtubules 

 

The actin and microtubule cytoskeletons interactions occur at several subcellular 

locations, for instance at focal adhesions at the plasma membrane (see [75,76] for a 

recent review) or at the nuclear envelope [77]. Not surprisingly, these interactions are 

also observed at the Golgi apparatus. A distinct connection between Golgi membranes, 

actin filaments and Golgi-derived microtubules has been recently proposed. The formin 

protein FHDC1/IFN1 is thought to coordinate actin and microtubule dynamics during 

Golgi ribbon formation, and to establish intrinsic Golgi polarity [78]•. 

 

Golgi membranes  

 

Golgi membranes are located at the crossroads between the anterograde secretory 

route and the retrograde route. Golgi lipids and membrane proteins are thus ideally 

situated to be involved in a large number of signaling pathways, among which is 

signaling involved in cell polarity. Polarity proteins such as CDC42 localize at the Golgi 

apparatus, although their function there is still not clear. Other Golgi-localized GTPases 

have been recently shown to mediate trafficking events potentially involved in cell 

polarization, such as Arf1 in response to cell-matrix adhesion cues [79], Arl5 during 

amino acids-stimulated retrograde trafficking [80] or Rab6 in targeting secretion to focal 

adhesions [81]. We focus below on the less studied role of Golgi lipids and lipid 

metabolism in polarization processes. 

 

Golgi lipids: new roles for PtdIns(4)P 

 

PtdIns(4)P initiates the recruitment of the GOLPH3/MYO18A/F-actin machinery at Golgi 

membranes to shape the Golgi ribbon during cell polarization. Recently, two studies 

point to new roles for PtdIns(4)P and GOLPH3 in membrane trafficking and cell polarity. 

First, elegant in vitro experiments with liposomes and purified proteins confirm that 

PtdIns(4)P is required for GOLPH3 binding to membranes and demonstrate that 

GOLPH3 binding to PtdIns(4)P-containing membranes induces membrane curvature 
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and tubulation in a PtdIns(4)P-dependent manner [82]•. Second, a developmental 

biology study has demonstrated a new role for PtdIns(4)P during neurogenesis [83]••. 

A lipid signaling pathway involving Phosphatidylinositol transfer proteins (PITPs), 

PtdIns(4)P, GOLPH3 and ceramide transfer protein (CERT) at the Golgi apparatus 

appears to regulate apically directed membrane trafficking in neural stem cells during 

neocortex development in mice. CERT also plays an important role in Golgi positioning 

in these cells via a PtdIns(4)P-dependent mechanism [83]•• (Fig. 3B). 

  

Lipid metabolism and mechanosensitivity 

 

Cell polarity is often triggered by mechanical cues induced by cell-cell or cell-matrix 

adhesion. Such mechanical cues have recently been shown to impact on the 

organization and mechanical properties of the Golgi apparatus [79],[84]•. 

Mechanotransduction events at the Golgi apparatus may influence cell polarity. For 

instance, contractile forces induced by adhesion to the extracellular matrix were shown 

to modulate lipid metabolism through a pathway involving the sterol regulatory element 

binding protein (SREBP), a regulator of lipogenesis, and the Lipin-1 phosphatidate 

phosphatase that converts phosphatidic acid (PA) to diacylglycerol (DAG) [84]•. Since 

the rigidity of the Golgi apparatus also correlates with the level of acto-myosin 

contractility [61],[84]•, the physical properties of the Golgi apparatus may regulate the 

binding and/or activity of some of the components of this metabolic pathway. For 

instance, the level of DAG could influence membrane curvature [85] and in turn the 

binding of Arf1 or the activity of Lipin-1. Although not demonstrated yet, 

mechanosensitive pathways such as the Lipin-1/DAG/Arf1/SREBP pathway may be 

involved in polarity events activated by cell-matrix adhesion cues. 

Concluding remarks and open questions 

  

The Golgi apparatus plays a pivotal role in polarized cell functions. For instance, Golgi 

positioning and orientation control polarized membrane transport during cell migration or 

T-cell immunological synapse formation (Fig.1A,C). We have described here the main 

molecular pathways controlling Golgi-driven polarity, according to which element of the 

Golgi is involved, Golgi-associated cytoskeleton and motors, the Golgi matrix or Golgi 

membranes. As these pathways are likely to interact, understanding how the actors 

identified so far work in concert and mechanically couple the different constituents of the 

Golgi apparatus is the main challenge for the coming years. Accordingly, a physical link 
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between the Golgi matrix and the actin cytoskeleton implicating the golgin GCC88 and 

the CDC42 guanine exchange factor (GEF) ITSN-1 has recently been identified [86]• 
(Fig. 3A). Interesting novel targets could also emerge. For instance, as part of the 

cytoskeleton, spectrins [87], septins [88],[89]•• and intermediate filaments [90] may fill 

some missing links in current models. While they are known to interact with the Golgi 

apparatus and participate in Golgi organization and membrane trafficking [87,90], it is 

not known whether their interaction with the Golgi apparatus is directly involved in cell 

polarity. Technical developments such as optogenetics, FRET-based probes or laser 

ablation, should be instrumental to better decipher how forces are generated at the 

Golgi apparatus during cell polarization. It is also tempting to speculate that 

mechanosensitive properties of the Golgi apparatus are key during establishment of cell 

polarity. 

 Finally, since cell polarity is deregulated in cancer, not surprisingly several 

polarity regulators associated with the Golgi apparatus have been implicated in cancer 

and invasion. The epithelial-to-mesenchymal transition (EMT) was recently shown to 

increase rearward positioning of the Golgi apparatus at the back of the nucleus in 

migrating breast cancer cells [91]. However, the increased migration of the cells 

correlates more with a stable positioning of the Golgi apparatus than with its position at 

the back or at the front of the nucleus [91]. GOLPH3 has been identified as an 

oncogene [68,92]. By driving Golgi reorientation and polarized trafficking, GOLPH3 

enhances cell migration and cellular transformation [71]. Another protein implicated in 

cancer progression is Intraflagellar transport 20 (IFT20), which affects the nucleation of 

Golgi-derived microtubules and promotes intra-Golgi transport to induce invadopodia 

and tumor invasion [93]. On the contrary, perturbing Golgi-derived microtubules by 

depleting CAMSAP2-AKAP450 in highly invasive fibrosarcoma cells diminishes their 

ability to migrate [57]••. These findings point to polarity pathways associated with the 

Golgi apparatus as potential targets in cancer therapy. 
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Figure legends 

 

Figure 1 – Positioning of the Golgi apparatus in different contexts of cell polarity  

A. In most (but not all) migrating cell types, the Golgi apparatus is positioned with the 

centrosome in front of the nucleus in the direction of migration. Leucocytes are a 

notable exception. B. Epithelial cells exhibit baso-lateral polarity which relies on 

polarized membrane trafficking. In these cells, the Golgi apparatus is located between 

the nucleus and the apical surface. C. During the formation of an immunological 

synapse between a T-cell and a target antigen-presenting cell, the T-cell polarizes and 

its Golgi apparatus reorients towards the synapse to maintain polarized membrane 

trafficking towards establishing a target cell-T-cell contact. D. Transport in the axon from 

the cell body to the growth cone is crucial to maintain the polarized organization of 

neuronal cells. In pyramidal neurons, the position of the Golgi apparatus in the cell body 

correlates with the position of the main axon. E. Radial glial cells display a non-

pericentrosomal Golgi positioning. The centrosome localizes close to the ventral side, 

while the Golgi apparatus is shifted towards the basal lamina close to the nucleus. 

Vesicular trafficking is mostly oriented perpendicular to the polarity axis in these cells. 

 

Figure 2 – Golgi-associated microtubules 

A. The Golgi matrix protein GM130 bound to AKAP450 recruits the -TuRC binding 

proteins CEP215 and myomegalin (MMG). TuRC subsequent binding to CEP215 and 

MMG induces microtubule nucleation at the surface of the Golgi apparatus. B. The 

elongation of microtubules is associated with several microtubule-stabilizing proteins 

such as CLASPs. C. CAMSAP2 and end-binding proteins EB1/3 tether microtubules to 

the Golgi apparatus therefore regulating Golgi positioning and reorientation during 

directed cell migration. Abbreviation: MT, microtubule. 

 
Figure 3 – Golgi-associated actin 

A. A number of actin regulators have been identified to localize at the Golgi apparatus. 

Among them, the formin family members FMLNL2/3 are regulated by CDC42, nucleate 

actin polymerization at the surface of the Golgi apparatus and participate in cell polarity. 

B. A main pathway involving Golgi-associated actin in Golgi architecture and in the 

polarization of membrane trafficking is the GOLPH3/MYO18A/F-actin pathway. 

Phosphatidylinositol-4-phosphate (PtdIns(4)P) and upstream lipid transfer proteins 

(PITPs and CERT) regulate this pathway. 

 

 

  



22 

 

Acknowledgements  

 
Y.Ravichandran is funded by the Polarnet ITN (Innovative Training Network) part of the 

European Commission and the Fondation pour la Recherche Médicale (FRM). We apologize to 

colleagues whose work we could not cite due to space limitations. The authors declare no 

conflict of interest. 

 

Conflict of interest  
 
The authors declare no conflict of interest. 



A
 Front-rear polarity - migrating cells

B  Apico-basal polarity - epitehial cells 

C T-cell polarity E  Neuronal polarity - radial glial cells

D
 Neuronal polarity - pyramidal neurons

 

Figure 1  

Polarity axis

Golgi apparatus

Golgi outposts

Secretory vesicles

CentrosomeTransport routes

Apical surface/ventricular zone

Basal lamina

Target cell

T- cell



 Trans

 Median

 Cis

 

+-

+

Figure 2

γ-tubulin

α/β-tubulin dimer

γ-TuRC 

AKAP450/GM130 complex

CAMSAP2

EB1/3

CEP215

MMG 

MT stabilizing proteins (CLASPs, CAMSAP2, EB1/3)
and MT association promoting proteins (MLTC1)

Golgi matrix proteins 

A CB



 trans-Golgi

?

 
Figure 3

Golgi matrix proteins 

G-actin

Actin regulatory proteins 
(Arp2/3 complex, mDia1, INF2, FMNL1) 

MYO18A

PtdIns-4-P

F-actin

GTP

Transport routes

Cdc42 PITPs 

CERT 

GOLPH3 

FMNL2/3 

  

A B

anterograde
tra�cking

Golgi positioning

GCC88 ITSN-1


