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Deep Sensor Fusion for Real-Time Odometry Estimation

Michelle Valente!, Cyril Joly' and Arnaud de La Fortelle!

Abstract— Cameras and 2D laser scanners, in combination,
are able to provide low-cost, light-weight and accurate solutions,
which make their fusion well-suited for many robot navigation
tasks. However, correct data fusion depends on precise
calibration of the rigid body transform between the sensors.
In this paper we present the first framework that makes
use of Convolutional Neural Networks (CNNs) for odometry
estimation fusing 2D laser scanners and mono-cameras. The
use of CNNs provides the tools to not only extract the features
from the two sensors, but also to fuse and match them without
needing a calibration between the sensors. We transform the
odometry estimation into an ordinal classification problem in
order to find accurate rotation and translation values between
consecutive frames. Results on a real road dataset show that
the fusion network runs in real-time and is able to improve the
odometry estimation of a single sensor alone by learning how
to fuse two different types of data information.

I. INTRODUCTION

Self-localization of an intelligent vehicle is still a
challenging and ongoing task for the autonomous driving
development. A reliable localization is necessary for
intelligent vehicles to be able to take important decisions like
overtaking another vehicle or simply defining a trajectory.
To address this task, methods known as Simultaneous
Localization and Mapping (SLAM) allow to localize
the vehicle in a previously unknown environment while
concurrently mapping the environment. Different types of
sensors can be used for this purpose, such as cameras, laser
scanners and radars. Each sensor has its own particular
limitations and advantages and, for this reason, a single
sensor cannot reliably be used alone; thus it is necessary
to perform the fusion of different sensors to increase the
accuracy of various tasks. One of the main difficulties to
perform the fusion is to have a common data format and an
accurate calibration between the different sensors.

It is very popular the usage of 3D laser scanners for
autonomous driving research, however because of its cost it
has become a major drawback for automobile manufacturers
to be able to maintain a reasonable price for the future
vehicles. Moreover, the amount of data provided by 3D laser
scanners requires large computational resources making it
difficult to have real-time localization methods. Considering
this, we chose to focus on a solution for vehicles equipped
with low cost 2D laser scanners. On the other hand, since
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Fig. 1: Overview of the proposed system. Consecutive laser
scans and camera images are used, first in two separate
networks and sequentially in a common network, in order to
estimate the pose of the vehicle between consecutive frames.

only a 2D slice of the surrounding environment is detected
at each scan, some situations can be challenging if we only
rely on this sensor. To address this problem, we propose
to fuse the 2D laser scanner with a mono-camera, that can
detect more information about the environment and increase
the accuracy of the localization method.

In the last years, Deep Learning methods have received
attention in the field of autonomous driving. The most
common applications use cameras or laser scanners for tasks
such as obstacle detection [1] and classification [2]. These
tasks are mainly in the field of environment understanding
and mapping. However, the localization of the vehicle and
the fusion of different sensors is still a task that has not yet
been extensively explored by machine learning techniques.
The use of Neural Networks for this purpose could not only
make the task faster, but also eliminate the need of a precise
calibration between the sensors.

Considering this, we propose a complete Deep Learning
approach to use CNNs to extract the features of two
different sensors, a 2D laser scanner and a mono-camera,
and sequentially fuse them in order to estimate the odometry
of the vehicle. A schematic of the proposed approach is
presented in Figure [l We also present a new method to
transform the odometry estimation regression problem into
an ordinal classification that facilitates the training of the
network. The solution can be run in real time and tests in
real road scenarios shows competitive results compared to
other deep learning approaches.



The remainder of the paper is organized as follows. First,
we present the related work in Section the proposed
method and the design of the network is presented in
Section [[TI} experimental results are presented in Section [TV}
finally conclusion and perspectives are given in Section

II. RELATED WORK

The application of Deep Learning techniques has
presented impressive results recently in tasks such as object
detection and classification by the use of camera images. To
obtain these results, a large amount of datasets has become
available in the last years. In the context of intelligent
vehicles, interesting work has emerged in different fields:
mapping [5], trajectory prediction [4], control [7] and even
end-to-end approaches [6].

At the same time, localization, which is still a very
challenging problem for robotic systems, is not yet well
explored by deep learning methods. The most common
approaches are based on the use of camera images for
odometry estimation. They are inspired by the classic
methods for Visual Odometry (VO) [9][10], which consists
in estimating the camera’s motion by finding geometry
constraints from a sequence of images. The use of machine
learning for this purpose allows to deal with challenging
environments and camera parameters difficulties. The first
method proposed was PoseNet [11], which it is based on
the use of CNNs to estimate the 6-DoF pose using only
RGB images. More recently, Wang et al. [12] introduced
the DeepVO method, which uses RCNNs with the same
goal. The same authors also presented the method UndeepVO
[13], which proposes an unsupervised deep learning method
to estimate the pose of a monocular camera. However, the
classic VO methods still outperform deep learning based
methods published to this date, considering the accuracy in
the pose estimation.

Laser scanners are also popular for classic pose estimation
because of its accuracy. Classic approaches for this problem
consist in trying to match two point clouds and estimate
the transformation between them, this solution is known as
Iterative Closest Point (ICP) [14]. Since then, more robust
and complex algorithms were presented to achieve the same
objective. LOAM [15] is currently one of the most popular
method because of its high accuracy and ability to achieve
real-time processing by running two different algorithms in
parallel.

The application of deep learning techniques for this
purpose using laser scanners is still considered as a new
challenge and only few papers have addressed it. Nicolai
et al. [16] were the first to propose to apply 3D laser
scanner data in CNNSs to estimate odometry. Their approach
provides a reasonable estimation of odometry, however
still not competitive with the efficiency of state-of-the-art
scan matching methods. Later, Velas et al. [18] presented
another approach for using CNNs with 3D laser scanners
for IMU assisted odometry. Their results were able to get
high precision and close results compared to state-of-the-art
methods, such as LOAM [15], for translation, however

the method is not able to estimate rotation with sufficient
precision. Considering their results, the authors propose that
their method could be used as a translation estimator and use
together an Inertial Measurement Unit (IMU) to obtain the
rotation. Another drawback is that, according to the KITTI
benchmark, even using CNNs the method is slower than
LOAM.

The use of 2D laser scanners instead of 3D laser scanners
could reduce considerably the price of future intelligent
vehicles and the need of high computational resources.
The authors of this work presented in [19] a solution
that relies only on a 2D laser scanner for odometry
estimation using Recurrent Convolutional Neural Networks
(RCNNs). The method showed promising results along
with a very fast computational time. However, one of the
main difficulties encountered by this approach was that
sometimes in challenging environments the 2D laser scanner
could not detect many obstacles and it would generate
inaccurate results. Considering this, in this work we propose
a new solution to improve the odometry estimation by
fusing mono-cameras and 2D laser scanners using only
Convolutional Neural Networks.

The fusion between laser scanners and cameras is
commonly used in tasks such as object recognition and
navigation of mobile robots [20][21]. The use of Deep
Learning with sensor fusion is not yet extensively explored;
Most of the existing deep sensor fusion solutions are based
on object detection, like in [22] where the authors fuse
3D laser scanners and camera images to predict object’s
bounding boxes. There are also methods that use sensor
fusion for end-to-end learning [23], where the input is the
data of different sensors and the output is directly steering
commands.

We present the first deep learning method for odometry
estimation based on the fusion of a 2D laser scanner and a
camera. The proposed network is able to provide a real-time
solution that overcome the difficulties enconter by one sensor
alone. We also present how to transform the odometry
regression problem into a into a series of simpler binary
classification subproblems, known as ordinal classification.
Finally, we explore this solution in outdoor environments,
training and testing it with the KITTI [3] dataset, which
contains sequences on different types of scenarios.

III. METHOD

The proposed approach consists in finding the vehicle
displacement by estimating the transformation between a
sequence of camera images and laser scanner acquisitions.
From two consecutive observations, where each observation
is a 360° set of points measured during one laser rotation and
one camera image, the network predicts the transformation
T = [Ad,AB], which represents the travelling distance Ad
and the orientation AO between two consecutive laser scans
(si—1,8;) and camera images (c;—1,c¢;). Therefore, the goal
is to learn the optimal function g(.), which maps the fusion
between (s;—1,s;) and (¢;—1,¢;) to T at time ¢:

T}:g(<sl‘—1)st>7(cl‘—lacl)) (1)
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Fig. 2: Architecture of the proposed network. Each block of the illustration presents the size of the tensors considering that

the input is the raw sensor data pre-processed as presented in [subsection III-A

Once we learn these parameters, we can obtain the 2D
pose (x:,y:,6;) of the vehicle in time ¢ as follow:

Xt = X1 +Ad81n (AQ)
Yt =yi—1 +Adcos (AB) 2)
0{ - 9[7] +A9

In this way, we can accumulate the local poses of the
vehicle and estimate the global position of the vehicle at any
time t. Since the algorithm does not perform any sort of
loop closure, drift can be also accumulated, thus reducing
the accuracy of the vehicle’s localization. The main goal
is to explore the use of CNNs to match laser scans and
camera images between two consecutive frames for odometry
estimation, and especially, to prove that the fusion between
the two of them for this purpose is possible to be executed
by neural networks.

The following subsections will present in details the
proposed method. First, we show how the raw data of
the sensors are pre-processed. Sequentially, we present the
configuration of the network and the specifics of the training
process.

A. Data Pre-processing

The raw data coming from the two sensors need to be
prepared before they can be used as an input for the neural
network. For the laser scanner we use the same data encoding
of our previous work [19], where the sensor point set is
encoded into a 1D vector. The vector is created by binning
the raw scans into bins of resolution 0.1°. Since many points
can fall into the same bin, we calculate the average depth
value. Finally, considering all the bins of a 360° rotation
range, we store the depth values into a 3601 size vector,
where each possible bin angle average depth is represented
by the elements in the vector.

After two sequential laser scans are encoded as 1D vectors,
we concatenate them to create the input of the laser scanner
network. The idea is to create a sort of image of size

(2,3601), allowing to use standard convolutional layers to
extract the features detected by the sensor in the surrounding
environment.

For the camera raw data we only resize the images in order
to reduce the computational time. We tested different sizes
so that the accuracy of the method was not reduced but we
would still be able to produce faster results. Considering this,
the best match for accuracy and time was achieved with the
image size (416, 128). After resizing them, two consecutive
image are stacked together, in the same way of the scans, to
form a tensor that represents two camera acquisitions. This
format allows us to feed the two images to the same sequence
of CNNs to extract the features.

B. Network Architecture

In the architecture of the proposed network is
presented. The input consists in the pre-processed raw data

from the two sensors as explained in the previous subsection,
while the rest of the network can be separated in the three
main parts explained bellow: the laser scanner (CNN-Laser),
the camera (CNN-Cam) and finally the fusion.

1) CNN-Laser: Two pre-processed laser scanner
acquisitions, represented as a one dimension vector of size
3601, are concatenated to create the input tensor of the
network. Sequentially, the tensor is fed into the sequence
of 1D convolutional and average pool layers to learn the
features between the two acquisitions. We use the same
CNN configuration of our previous work [19]. It consists
of 6 1D convolutional layers, where each layer is followed
by a rectified linear unit (ReLU) activation. Between each
sequence of two convolutional layers, there is also one
average pool layer to reduce computation complexity. The
difference from the previous work is the extra layer, the
linear layer, after the sequence of CNNs to reduce the tensor
size before the fusion. The goal is to input the same amount
of information from both of the sensors to the fusion part
of the network.



2) CNN-Cam: The configuration of the camera network
is the CNN part of the RCNN proposed by DeepVO [12].
However, we use a smaller input as explained before in the
pre-processing. In the same way of the CNN-Laser, we added
an extra linear layer to reduce the tensor size before the
fusion. Therefore, the input is two raw camera images and
the output is the reduced features detected by the sequence
of CNNs to be then fused with the features detected at the
CNN-Laser.

3) Fusion: After extracting features from consecutive
laser scans and camera images using the previous described
CNNs, we concatenate their outputs in order to estimate
the pose of the vehicle. The concatenated features are fed
to two different sequence of linear layers. We tested the
use of same linear layers for both rotation and translation
estimation together, however better results were found once
we separated them. In order to avoid the overfitting, the two
linear layers are preceded by Dropout layers.

C. Training

The training of the network was performed in two steps;
First, we trained the single sensor CNNs separately to find
the best pre-trained weights possible for those networks.
For this purpose, we connected them to two separate linear
layers, one for the rotation and one for the translation. After
it, the pre-trained CNNs are connected to the fusion part of
the network and we perform the final training step.

In [19], we prove that the CNN network get better results
if we reformulate the problem as a classification task for
the rotation, and continue it as a regression one for the
translation. Considering all the possible variation of angles
between two frames, we created classes for the interval
+5.6° with 0.1° resolution, resulting in 112 possible classes.

In this work we propose to not only treat the rotation
as a classification task, but also the translation in order to
facilitate the training. We observed that in all the possible
sequences of the KITTI dataset the maximum translation
between two frames is around 2.6 meters and the minimum
0.0. Therefore, we created 270 classes for this interval
considering the resolution of 0.01 meters. Results showed
that it became easier for the network to converge and the
accuracy was not reduced by this transformation.

The main problem of transforming the rotation and
translation in a classification task is that no order about
the data is learned by the network. This happens because
machine learning methods for classification problems
commonly assume that the class values are unordered.
For example, it would not be possible to understand
that a difference of 2 degrees was higher than only 0.1
degrees. In [25] the authors introduce a simple method that
enables standard classification algorithms to make use of
ordering information in class attributes, known as ordinal
classification. The idea is to transform the ordinal regression
problem into a series of simpler binary -classification
subproblems. Inspired by this work, the authors of [26]
applied this idea solving the simpler binary classifications
for age estimation by the use of CNNs.

Ordinal Classification Labeling
Angle variation: —5.6° <6 <5.6°
Class for angle i with resolution 0.1°: 0 </, < 112

Translation variation: 0.0 <7 <2.7
Class for translation i with resolution 0.01 meters:0 < /; < 270

Each rank 7, receives a label [f to an angle or translation i

el fefelefe]-|¢]

r o, I3 Iy Is Tg 7y
Example:

Angle: -5.4° Class: 2
Ll fofofofof-fo]
r, Iy I3 Iy Is Ig Ty
Angle: -5.2° Class: 4
([ [ fefofof-[o]
r ry I3 Iy s Ig Ty

If correct angle is -5.1°:

distance (I ., I¥5 ,.) < distance (%5 .. I¥5 ,..)

Fig. 3: Summary of the ordinal classification labeling with
an example for the angle classification.

In order to transform our rotation and translation classes
into a series of binary classification subproblems it is
necessary to change how we label the dataset. Instead of
labeling directly with a class that represents the ground truth
value, the samples are labeled by an ordinal scale called the
rank. Considering k the number of possible classes, we are
going to transform the problem into k — 1 simpler binary
classification subproblems. Specifically, for one sample i
each subproblem receives a label lf‘ € 0,1 indicating if the
sample class /; is larger than r; as follow,

g [1 it -
0, otherwise.

The rank format allows the network to learn the order of
the classes by showing that one value is smaller or larger
than other. A summary of the ordinal classification labeling
process is presented in

To solve the binary classification subproblems we calculate
the Binary Cross Entropy between the target and the output
for rotation and translation and we sum them as follow:

L= ggcg(dA,d) + ﬁ gBCE(é, 9)
where Zpce(x,y) = — Y yilog (xi) + (1 — yi)log (1 —xy)
%

“)
d and 0 are relative ground-truth translation and rotation
rank labels, and d and @ their output of the network
counterparts. dand 6 pass by a Sigmoid function before the
loss function for numerical stability. We use the parameter
B > 0 to balance the scale difference between the rotation
and translation loss values.



CNN-Fusion DeepVO
Sequence
Trel Trel trel Trel
07 203 085 | 391 4.60
10 7.60 280 | 811 873
Mean 441 1.82 | 6.01 6.66
Computation Time (s/frame) 0.1 1.0

TABLE I: Average translation (%) and rotation (°/100m)
RMSE drift on trajectory lenghts of 100 to 800 meters,
along with the computation time per frame, for the proposed
approach and the DeepVO [12] method.

The network is implemented on the framework PyTorch
and the Adam optimizer is applied with learning rate 0.0001.
As recommended in [12], during the pre-training of the
CNN-Cam we initialize it with pre-trained FlowNet model
weights to reduce the training time.

IV. RESULTS

For validation we use the KITTI dataset [3], which
provides several sequences in different conditions for outdoor
environments. To simulate a 2D laser scanner data, we
extracted one 360° layer from the Velodyne data, while for
the camera we use the RGB raw images provided by the
dataset. We use the 11 sequences from the KITTI odometry
dataset which contain ground truth values to train and test
the proposed method. Among the 11 sequences, we separate
8 for training and 3 for testing. We use for training the
sequences 00, 02, 03, 04, 05, 06, 08 and 09 and for testing
the sequences 01, 07 and 10. We chose these three sequences
because they are not very long, leaving more data for the
training, but they can still be challenging and present the
potential of the proposed method. In the previous work
[19], we could not evaluate the sequence 01 because the
vehicle is in a highway where the 2D laser scanner could not
detect obstacles most of the time, making it impossible for a
laser-only network to predict the odometry. For this reason,
we add this sequence specially to observe if the fusion could
improve the results.

In order to validate our method and compare to the
solution DeepVO, we calculated the drift according to the
KITTI VO [3] evaluation metrics, i.e., averaged Root Mean
Square Errrors (RMSEs) of the translation and rotation error
for all subsequences (100, 200,..., 800 meters). However, we
need to adapt our 2D results to be able to compare to the 3D
errors of DeepVO, therefore we create 3D poses from our 2D
values by giving 0.0 to the values we do not estimate (lateral
and longitudinal angles and translation in the vertical axis).

presents the translation and rotation error score
for the testing sequences 07 and 10 and we compare these
values between the proposed approach and the method
DeepVO, along with their computational times. Even though
we transform our results to 3D, it is important to mention that
the results are not yet directly comparable, but we can still
have an estimation if the order of error is around the same
and we can compare the computation time of both methods.
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Fig. 4: Trajectories of two test sequences (07 and 10)
applying the proposed CNN-Fusion. The blue lines represent
the ground truth trajectory, while in red the predicted one.

For the translation error the comparison is easier to perform
since the global translation in the vertical axis is very small
and not significant compared to the other axes. On the other
hand, for the angles comparison, since most of the time the
3 angles are around 0 degree (the only high rotation rates are
on z axis during turns, which represent a very small part of a
complete trajectory), all their drifts are in the same order of
magnitude and should be relevant for the comparison; For
this reason, it is expected that the DeepVO method has a
rotation error around three times more than our solution. As
a result of these difficulties in the comparison of the two
methods, we can only really extract from these results that
the errors are around the same order of magnitude but we are
still providing a solution that is 10 times faster using no GPU
acceleration (2,6 GHz Intel Core i5, Intel Iris 1536 MB),
and can be as fast as 0.01s with GPU acceleration (4,0 GHz
Intel Core 17, GeForce GTX 1060). This faster processing is
mainly due to the fact that we resize the images for smaller
sizes and we use only CNNs instead of a RCNN.

We can observe in Figure [] that even with the eventual
errors in the odometry estimation, we can still obtain a
trajectory close to the ground truth. However, since the
proposed approach does not perform any sort of loop closure,
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presented in blue and in red the output of the Fusion-CNN network.

CNN-Cam CNN-Laser ~ CNN-Fusion
Sequence
[ o; o o; o8 o;
01 0.09 030 | 030 033 | 0.06 0.30
07 0.06 0.06 | 0.06 0.03 | 0.04 0.03
10 0.06 0.11 | 0.08 0.04 | 0.05 0.04

TABLE II: Average rotation absolute error o, (degrees) and
the average translation absolute error ¢; (meters) results for
the single sensor CNNs, CNN-Cam and CNN-Laser, and the
result after CNN-Fusion.

and does not even use temporal information by recurrent
neural networks (as in the DeepVO method), one eventual
large error can be accumulated over time, generating a large
drift like the one we have by the end of sequence 10.

For this reason, a better way to understand the accuracy
of the proposed approach is presented in and in
[Figure 3] [Table TI] shows the average rotation absolute error
o, and the average translation absolute error o; for the
single sensor CNNs and the CNN-Fusion. We can observe
that in all the cases the result of the fusion was equal or
better than the result of the single sensor network. Specially

for the rotation estimation, the fusion of the features was
able to increase the accuracy in all of the sequences, which
proves that the network was able to learn how to perform the
fusion of the two sensors. In the sequence 01, which is the
hardest sequence because of the vehicle’s velocity and lack
of features to detect, it is clear how the laser was not able
to estimate the angles because of the few detected points,
but after the fusion with the camera the network was able
to estimate more accurate angles. However, the translation
was still inaccurate because this is the only sequence in
the training dataset where the vehicle has a high velocity,
therefore there were not other samples for it to learn the
translation classes for this case.

presents the odometry estimation (rotation and
translation) together with the ground truth for each frame

of the sequences 07 and 10. These values present how the
network can most of the time estimate accurate odometry,
however there are still some difficult cases that can result in
inaccurate values. For example, in the sequence 10 we can
notice that the highest angle was not properly estimated, this
probably happened because there are not a lot of samples
for this type of rotation, making it hard for the network to
learn this rotation class. We can expect that training this



type of network with a larger dataset, with more samples
for the challenging cases, could possibly resolve this type of
problems and increase the accuracy.

The results show how promising is the fusion between
sensors by the use of CNNs, and that the proposed method
could be used as a complement to traditional localization
methods for intelligent vehicles or any mobile robot. It is
also important to mention that we trained the network with
a relatively small dataset compared to other deep learning
classification tasks, therefore the result could be considerably
improved using more sequences for training.

V. CONCLUSION AND FUTURE WORK

In this paper we presented the first Deep Learning
approach for sensor fusion to odometry estimation. We used
as input only 2D laser scanner data and camera images to
match their features in order to determine the translation
and rotation of the vehicle using sequences of CNNs. The
proposed network presents that the fusion between the
sensors is possible by applying a purely CNN method and we
can obtain good accuracy using only low cost sensors. We
also introduced a new form of treating the odometry problem
in deep learning methods by transforming the regression task
into smaller binary classification subproblems that facilitates
the training of the network.

We evaluated the results using the KITTI odometry
dataset, making it possible to compare to other approaches.
The results showed competitive accuracy, however classic
approaches can still provide better results and a better
understanding of the quality of their outputs. In spite of that,
the proposed approach could be an interesting complement
for classic localization estimation methods, since it can be
run in real-time and could give relatively accurate values in
systems where no wheel encoder data is provided or GPS
signal is absent. Moreover, the proposed method presents
that the use of Neural Networks is possible to perform
the fusion between 2D laser scanners and mono-cameras,
and this method could be used for other tasks in robotic
systems. In the future work, better results could be obtained
by training on larger datasets, specially with samples where
the vehicle is moving in high speed and when there are sharp
turns, and by exploring the use of temporal information or
loop closure methods.
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