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Semantic segmentation of LiDAR points clouds:
Rasterization beyond Digital Elevation Models

Florent Guiotte, Minh-Tan Pham, Romain Dambreville, Thomas Corpetti, Sébastien Lefèvre

Abstract—LiDAR point clouds are receiving a growing interest
in remote sensing as they provide rich information to be used
independently or together with optical data sources such as
aerial imagery. However, their non-structured and sparse nature
make them difficult to handle, conversely to raw imagery for
which many efficient tools are available. To overcome this
specific nature of LiDAR point clouds, standard approaches
often rely in converting the point cloud into a digital elevation
model, represented as a 2D raster. Such a raster can then be
used similarly as optical images, e.g. with 2D convolutional
neural networks for semantic segmentation. In this letter, we
show that LiDAR point clouds provide more information than
only the DEM, and that considering alternative rasterization
strategies helps to achieve better semantic segmentation results.
We illustrate our findings on the IEEE DFC 2018 dataset.

Index Terms—LiDAR, DEM, rasterization, Deep Learning,
Semantic Segmentation.

I. INTRODUCTION

Thanks to their very high resolution, LiDAR point clouds
are known to be of very high interest to identify complex
structures, especially in urban environments, such as trees,
road, cars. . . However, as related point clouds are voluminous
and irregularly distributed, land cover mappings are in many
studies often simplified to a digital elevation model (DEM)
used as additional information for fusion with multispectral
or hyperspectral images.

In this study, we start from the idea that this rasterization
step related to the production of a single DEM is not optimal
as many additional information embed in the LiDAR point
cloud is lost. We then rather prefer to focus on the extraction
of more advanced rasterized maps. In a first attempt with
the same dataset and the same evaluation protocol [3], we
computed a series of attribute profiles on 2D grids containing
various information extracted during the mapping from 3D
to 2D (number of points in a cell, first echo, last echo, . . . );
these features have fed a simple Random Forest classifier
with efficient results. In this paper, we extend this work by
considering a deep learning network.

More than designing the most adapted network, our aim
is rather to show that LiDAR point clouds provide more
information than only the DEM, and that considering alter-
native rasterization strategies helps to achieve better semantic
segmentation results. We illustrate our findings on the IEEE
DFC 2018 dataset.

The paper is organized as follows. We review related works
in Sec. II. We then present in Sec. III various strategies that
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can be employed to map a 3D point cloud into a 2D raster.
After recalling the deep network architecture used in this paper
(Sec. IV), we report in Sec. V the outcomes of our experiments
conducted on the IEEE DFC 2018 dataset. We finally conclude
the paper in Sec. VI.

II. RELATED WORK

LiDAR point clouds have become a popular remote sensing
data source for land cover mapping. Recent developments have
allowed precise point cloud segmentation, especially using
deep networks [5], [6]. However large point clouds like those
provided by airbone LiDAR are more challenging for direct
end to end learning because of the large amount of data and
their unstructured nature, as opposed to regular 2D grids in
images [4]. Therefore, to address this problem, many authors
either suggest to reorganise the point cloud into regular 2D
grids and/or to exploit the multispectral information. These
directions are detailed in the following.

As a matter of fact, recent LiDAR sensors now provide
multispectral signals, through the generation of a point cloud
specific to a given wavelength. A few studies have been
reported with such data. We can mention [9] which showed
that using dual wavelength led to substantial improvements
in land cover mapping w.r.t. a single wavelength. In [10], a
multi-spectral LiDAR system was used to classify ground with
pattern matching classifier applied pointwise on intensities and
NDVI.

Another possibility consists in using various rasters com-
puted on a LiDAR point cloud. Let us note that this idea is
not totally new, and a few recent attempts have been made in
this direction, as for example [8] were the DFC 2018 dataset
is classified with LiDAR only or together with other optical
data. Several features are extracted based solely on LiDAR
information (e.g. median to altitude, intensity and number
of echoes) or combined with other information (composition
of spectral intensities, intensity ratio, brightness, difference
between DSM, etc), and/or with local features computed
solely on intensity. Experiments were conducted using several
classifiers: random forest (RF), gradient boosting machine and
CNN on 20 classes. While this study had shown the relevance
of combining multiple data sources to process the DFC 2018
dataset, it did not allow to derive any conclusion regarding
the relevance of alternative LiDAR rasters and their specific
performance with deep semantic segmentation networks.

In a very recent study [3], we have shown that such
alternative LiDAR rasterizations actually provide additional
information source that can help to describe the contents of
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a remotely-sensed scene, and improve its classification. This
was demonstrated using well-established multilevel features
(attribute profiles) and classifier (RF). Nevertheless, given the
widely-recognized performance of deep learning for semantic
segmentation, the interest of such rasters as inputs to a deep
network has still to be demonstrated. This is the goal of
this letter and the next section discusses about rasterization
strategies.

III. RASTERIZATION OF UNSTRUCTURED POINT CLOUDS

The main benefits of LiDAR rasterization are:
• To reduce the complexity since data are represented on

a regular grid;
• To provide a regular sampling (easier to manipulate

neighbours) instead of dealing with irregular point clouds;
• To have a prior known number of data unlike unknown

number of point clouds;
• To reduce the radiometric and altimetric artefacts

thanks to the aggregation of values.
In general the use of a DEM only is not optimal since
LiDAR systems enable to capture complex patterns in the three
dimensions and a DEM aggregates the vertical information.
This loss in the vertical direction is prejudicial since many
urban objects are characterised by their vertical structure. For
example in vegetated areas, the information in the vertical
direction enables to capture the whole trees structure (and
not only their surface). In addition, the vertical information
detects ground below vegetation or objects below trees such
as residential buildings, roads and cars. Therefore, we suggest
here to provide rasters where such information in the vertical
direction is kept. In comparison with other works [8], we
tried to summarise this vertical component by creating several
feature maps based on the vertical distribution, in addition to
usual DEMs. The general rasterization process can be defined
in three steps detailed below:

1- The reorganisation of the point clouds by binning
them into a regular grid. More formally, we apply a
transformation PRh,f (for “points to raster”, associated with
a discretization step h and an information function f ) defined
on the dataset X as:

PRh,f : R3 × R −→ Eh × R
{x, y, z, I} 7−→ {i, j, I(Xi,j)} with:

Xi,j the set of points s.t.
i s.t. xm + ih ≤ x < xm + (i+ 1)h

j s.t. ym + jh ≤ y < ym + (j + 1)h

I(Xi,j) = f(i, j,Xi,j , I)

(1)

with Eh the raster grid, xm and ym the minimum values of
all points x and y in the dataset X . The rule of function
f is to associate to each cell location (i, j) an information
related to the data point Xi,j included in the cell. Its value
is discussed below.

2- The extraction of LiDAR feature maps. Many
functions f can be defined to provide rasters. For example a
DEM high and a DEM low uses respectively the positions of

Fig. 1: Overview of the SegNet architecture with LiDAR
rasters as input.

the maximum and the minimum z coordinates i.e., first and
last returns inside a cell Xi,j :

fDh(i, j, x, y, z, I) = max(z) s.t (x, y, z) ∈Xi,j

fDl(i, j, x, y, z, I) = min(z) s.t (x, y, z) ∈Xi,j

(2)

To enable more flexibility, other functions can be used such
as the intensity of the highest and lowest points:

fIh(i, j, x, y, z, I) = I(xp, yp, zp), p being the point s.t.
zp = max(z)(x,y,z)Xi,j

(3)

fIl(i, j, x, y, z, I) = I(xp, yp, zp), p being the point s.t.
zp = min(z)(x,y,z)Xi,j

(4)

or the number of echoes per cell:

fN (i, j, x, y, z, I) = |Xi,j | (5)

3- The interpolation of empty cells. If the discretization step
h is small, empty bins are likely to appear. In this work, we
fill them using a linear interpolation.

IV. NEURAL NETWORK

Deep learning approaches and particularly deep convolu-
tional neural networks are currently unrivalled at the top of
the state of the art for semantic segmentation applications. To
evaluate the pertinence of our different rasters, we exploited
the SegNet model [2] which has been widely used for semantic
segmentation in computer vision domain. In remote sensing,
this network has also proved its effectiveness on multispectral
images with visible (RGB) and infrared bands in [1]. The
SegNet model relies on an encoder-decoder architecture based
on convolutional layers of the VGG-16 network [7], followed
by batch normalization, rectified linear unit (ReLU) and then
pooling and unpooling layers (w.r.t the encoder and decoder,
respectively) [2]. The input of SegNet has usually three
channels by default. In our work, not only each of LiDAR
rasters but also their combinations will be used as input
of the network, which allows us to exploit complementary
information from those rasters for better segmentation results.

V. EXPERIMENTS

We first introduce the dataset and the LiDAR rasters we
used before discussing the efficiency of the proposed rasters.
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(a) Ground truth train

(b) Ground truth test

(c) Classification with Dh

(d) Classification with Ih, Il, Dh

Fig. 2: Illustration: Horizontal disjoint split between training set (a) and test set (b); (c) Classification result using DEM (Dh)
only; (d) Classification result using the combination of {Ih, Il, Dh}.

A. Dataset

We chose the multi-spectral LiDAR acquisition of the
University of Houston issued from 2018 IEEE GRSS Data
Fusion Contest dataset [11] to support our experiments. The
associated ground truth map has a spatial resolution of 0.5m.
The original 20 classes have been reduced to 7 generic
urban classes (roads, grass, trees, residential buildings, non-
residential buildings, cars and trains) to evaluate the overall
accuracy.

B. LiDAR feature maps

To generate our rasters, the grid step was set to h = 0.5m
to fit with the ground truth. We removed the first and last 0.1
percentiles of the point cloud based on elevation distribution
since they are more likely to be outliers.

We chose to gather the geometric information contained
in the 3 wavelengths to get a dense point cloud. With this
composite point cloud we created several elevation rasters:

• Highest and lowest point in the cell (i.e. DEM and
“reversed” DEM), noted Dh, Dl and corresponding to
the use of function fDh (2));

Then, with each point cloud separately we created intensity
and echo rasters:

• Intensity of the highest and lowest points in the cell
(noted Ih, Il and corresponding to function (3));

• Number of echoes per beam in the cell (noted N and
corresponding to function (5)).

C. Classification

Training phase: The dataset has been divided into a training
set and a test set with an horizontal split from the original
data (disjoint split) as shown on Fig.2-(a)-(b). We used the
code from [1]1 to perform all the experiments with parameter
setting as default in [1] (learning rate 0.01 with momentum
0.9 and weight decay 5 × 10−4) for a fair comparison. As
the input size of our SegNet model varies w.r.t. the rasters or
different feature combinations, the network was trained from
scratch. During the training, we randomly extracted 256×256
image patches from the training set. Batch size was set to 16
and all experiments were stopped after 20 epochs.

D. Experimental results

In table I, we present the accuracy per-class, the Average
Accuracy (AA), Overall Accuracy (OA) and Cohen’s Kappa
coefficient (κ) for each feature (see section V-B) and their
combination. As one can observe, the use of a DEM only is
globally far from optimal (except for grass and roads where
this value is really meaningful while other features slightly
disturb the identification) despite the fact that most studies

1https://github.com/nshaud/DeepNetsForEO
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Per-class accuracy (%) Evaluation metrics
Grass Trees Residential Non-res building Roads Cars Trains AA(%) OA(%) κ(×100)

1 Dh 95.62 77.66 44.18 98.72 99.83 0.09 100.00 73.72 90.13 85.24
2 N 16.08 92.48 46.50 97.63 95.39 6.50 100.00 64.94 87.27 78.37
3 Il 56.94 89.35 41.96 99.39 97.16 98.81 99.94 83.36 86.98 80.10
4 Dl 90.93 89.67 22.09 99.12 99.57 0.00 99.94 71.57 87.67 81.31
5 Ih 59.82 95.15 47.78 98.27 96.43 99.98 99.96 85.34 87.54 81.14
6 {N, Ih, Dh} 93.15 97.72 39.47 98.99 99.66 13.42 100.00 77.49 90.66 86.01
7 {Ih, Il, Dh} 81.64 94.12 76.95 98.36 99.38 57.10 100.00 86.87 93.88 91.00
8 {Ih, Il, Dh, Dl} 87.63 92.84 60.20 93.32 96.98 68.16 100.00 86.44 92.31 88.57
9 {N, Ih, Il, Dh, Dl} 79.13 95.35 82.70 96.28 99.19 10.05 100.00 80.38 92.42 88.97

TABLE I: Per-class accuracy, average accuracy (AA), overall accuracy (OA) and Cohen’s Kappa coefficient (κ) for each feature
and combination of them using Segnet.

exploit only this property when rasterizing LiDAR point
clouds. The use of the last echos (position Dl and intensity Il)
enable to greatly improve the classification. These echos are
related to structures behind vegetated areas and provide very
relevant information, as noticed on the classification results.
As for the number of echos N , its value combined with
other features enables to discriminate more properly only trees
(where many echos are included) and residential areas (where
only one echo is present) but it does not improve the overall
classification in our experiments. Finally, the combination of
the DEM, first and last intensities enables to provide the best
classification results. This demonstrates the fact the LiDAR
data are very rich and are currently not optimally exploited
when they are rasterized in a DEM only.

VI. CONCLUSION

In this letter, we explored the use of alternative rasters
(beyond the standard DEM) to classify LiDAR point clouds.
We measured the performance of a well-established deep
neural network for multispectral semantic segmentation with
different rasters extracted from the multispectral LiDAR point
cloud provided with the IEEE DFC 2018.

Our results show that the DEM is not the most discrimina-
tive feature, and that alternative features can be more helpful
for land cover mapping.

Furthermore, an advantage of our map-based method is
to allow us to rely on image (raster) segmentation networks
with no or very small adaptation effort, instead of requiring
to design specific networks dedicated to point clouds. Since
semantic segmentation of images is a very active topic in
computer vision, our approach will allows LiDAR processing
tasks to benefit from future developments in the field.

Among future works, we would like to see if combining
the different features in a same network leads to better results.
Indeed, it is a promising direction given our preliminary results
with non-deep learning techniques [3]. Furthermore, we plan
to investigate deep architectures among those well-established
for semantic segmentation.
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