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Hilbert-Huang transform (HHT) is useful for the analysis of nonlinear or nonstationary bio-

signals including brainwaves. In this work, a method is proposed for the characterization of 

the levels of attentiveness by using electroencephalogram (EEG) signals and HHT analysis. 

Single channel EEG signals over the frontal area were acquired from participants at different 

levels of attentiveness and were decomposed into a set of intrinsic mode functions (IMF) 

by empirical mode decomposition (EMD). Hilbert transform analysis was applied to each 

IMF to obtain the marginal frequency spectra, and then the band powers and spectral 

entropies (SE) were selected as the attributes entered a support vector machine (SVM) for 

the two-class classification. Compared with the predictive models of approximate entropy 

(ApEn) and fast Fourier transform (FFT), the results showed that the band powers extracted 

from IMF2 to IMF5 of 𝛼  and 𝛽  waves and their SE can best discriminate between 

attentive and relaxed states with the classification average accuracy of 84.80%. In 

conclusion, this integrated signal processing method is capable of attentiveness recognition 

and may be used in a clinical setting for the detection of attention deficit.  
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1. Introduction   

Attention is an important feature that reflects the mental state of the brain and can be 

measured by using electroencephalography (EEG). The measurement of the degree of 

attention is mainly associated with α and β waves [1]. In particular, α waves between 8 and 

13 Hz with amplitudes from 30 to 50 μV are evident on the EEG of a relaxed participant 

with closed eyes. The β oscillations between 14 and 30 Hz with amplitudes from 5 to 20 μV 

are evident during active attention. Therefore, quantifying these frequency-specific features 

using EEG can be used to probe the level of attentiveness [2,3].  

Previous studies have shown that for EEG attentiveness recognition, using a k-nearest 

neighbor classifier based on the self-assessment manikin model can yield an average 

accuracy of 57.03% [4], and using support vector machine (SVM) model of power spectral 

density resulted in an average accuracy of 76.82% [5]. In addition, the accuracy can be 

increased to 81% when taking into account approximate entropy using fuzzy entropy [6]. 

On a single subject level, the accuracy is up to 89.4% when using the integration of common 

spatial pattern filtering and nonlinear mutual information method [7]. Taken together, 

frequency-specific and nonlinear features extracted from EEG are essential for attentiveness 

recognition. Therefore, in this study, we proposed a method for the characterization of the 

levels of attentiveness based on Hilbert-Huang transform (HHT) and SVM. HHT has been 

used to process nonlinear and nonstationary brainwave signals [8,9] in EEG analysis and 

clinical applications, such as motor imaginary [10], seizure detection [11-13], and anesthesia 

monitoring [14,15]. SVM, a machine learning technique, gradually becomes a popular 

translation method for classification with high accuracy [16-18]. Given a set of training 

samples, SVM can build a predictive model of the specific EEG features by the supervised 

learning algorithm, performing a classifier for attentiveness. 

In this study, we measured the brain activity over the frontal area with one channel EEG 
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device during participants solving some puzzles shown on the screen as well as during a 

resting period. EEG signals were first decomposed to intrinsic mode functions (IMF) using 

empirical mode decomposition (EMD), after which the instantaneous frequencies of IMFs 

were obtained using HHT. The resulting marginal spectra (MS) of specific frequency bands 

and spectral entropy (SE) entered an SVM as the feature attributes for characterization of 

attentiveness.  

2. Materials and methods 

2-1. Data collection 

EEG data were measured by using a commercial mobile EEG monitor (MindWave, 

NeuroSky) at a sampling rate of 512 Hz [19]. The unipolar recording device had a fixed 

channel position on the scalp surface of the forehead (Fp1), according to the International 

10/20 system [20]. An ear clip (A1) of the device was used to provide a ground reference to 

filter out the electrical noise.  

This study, numbered 201812EM027, was approved by the Research Ethics Committee 

of National Taiwan University, Taiwan. Twenty participants were recruited: eight males 

and twelve females, whose ages ranged from 20 to 26 (average age = 21.9). The participants 

were instructed to sit still in a quiet room, wearing the EEG monitor. Two tasks were 

conducted by the participants: (1) pay their attention on solving designated spot-the-

difference puzzles shown on a screen for 5 minutes; (2) then relax with their eyes opened 

and fixated at a blank screen for 5 minutes. Figure 1 shows the EEG of a representative 

participant during the two tasks. The dashed lines indicate the onset of the rest task. The 

continuous EEG signal was epoched as a collection of time-locked trials with the time length 

of 1 second. The middle 200 epochs of each task were analyzed to build a classifying model. 

As shown in Figure 1, the red block is considered as attention data (200 epochs), and the 
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green block is relaxation data (200 epochs). Therefore, 200 attention and 200 relaxation 

epochs of twenty participants were analyzed to build the individualized classifiers. Besides, 

both of the last 50 epochs were used as the testing data to validate the models. The flowchart 

of this study is shown in Figure 2. The selected features of EEG data extracted by Hilbert-

Huang analysis (EMD, HT, and MS) were entered the SVM for attentiveness recognition. 

 

2-2. Hilbert-Huang Transform 

HHT [21] is a time–frequency–energy method for the analysis of nonlinear or non-

stationary data sets, the process of which can be divided into two parts: EMD and the Hilbert 

transform (HT) [22]. For dealing with nonlinear and non-stationary signals and extracting 

the basis for the HT, EMD has been proposed to generate finite component sets empirically 

from original data. The repetitive extraction of EMD is based on the oscillatory modes and 

waveforms of signals in the time domain, assuming that any data comprises different simple 

intrinsic oscillatory modes. An IMF of a signal is a function with (1) the same number of 

zero-crossings and extrema, and with (2) symmetric envelopes defined by local maxima and 

minima. Meeting these conditions, IMFs form an orthogonal basis for the original signal. 

The definition guarantees the HT of IMF has well behavior to analyze the instantaneous 

frequency benefited from its simple oscillation. The procedure of extracting an IMF is called 

the sifting process of EMD, which is used to remove riding waves and symmetrize the wave 

profiles. The sifting process should be repeated as many times as necessary to convert the 

extracted signal into an IMF. Thus, a signal, 𝑥(𝑡), can be represented as 

𝑥(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑛(𝑡)𝑛
𝑖=1 , (1) 

where 𝑐𝑖(𝑡) and 𝑟𝑛(𝑡) are the ith IMF and the residue, respectively [10,21]. All raw EEG 

epochs in this study were decomposed into 8 IMFs and a residue, the number of which was 

determined by sample length and stopping criteria of the sifting process.  

https://cdict.net/q/symmetrize
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After the EMD process, the HT of the ith IMF can be calculated as [23] 

𝑦𝑖(𝑡) =
1

𝜋
𝑃 ∫

𝑐𝑖(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
, (2) 

where 𝑃 is the Cauchy principal value. By arranging 𝑐𝑖(𝑡) and 𝑦𝑖(𝑡) into a complex pair, 

an analytic signal 𝑧𝑖(𝑡) can be formed as 

𝑧𝑖(𝑡) = 𝑎𝑖(𝑡)e𝑗∅𝑖(𝑡) = 𝑐𝑖(𝑡) + 𝑗𝑦𝑖(𝑡), (3) 

where 𝑎𝑖(𝑡)  is defined as the instantaneous amplitude, and ∅𝑖(𝑡)  is defined as the 

instantaneous phase. Hence all HT of IMFs constitute the HHT spectrum 𝐻(𝜔, 𝑡) of whole 

signal 𝑥(𝑡), presenting time-frequency-energy information as a 3D spectrum: 

𝐻(𝜔, 𝑡) = 𝐻𝐻𝑇{𝑥(𝑡)} = ∑ 𝑎𝑖(𝑡)𝑒𝑗 ∫ 𝜔𝑖(𝑡)𝑑𝑡𝑛
𝑖=1 , (4) 

where 𝜔𝑖(𝑡) is defined as instantaneous angular frequency as 𝑑∅𝑖(𝑡) 𝑑𝑡⁄ , and the residue 

𝑟𝑛(𝑡) is omitted. Finally, the MS, representing the accumulated energy over the entire data 

span from the contribution of each frequency value, can be defined as: 

ℎ(𝜔) = ∫ 𝐻(𝜔, 𝑡)𝑑𝑡
𝑇

0
. (5) 

Moreover, SE was further used to measure the quantities of signal disorder in the 

frequency domain [24], and SE can be evaluated by the normalized powers of frequencies: 

SE = −
∑ (ℎ̂(𝑓) log2 ℎ̂(𝑓))𝑓

log2 𝑚
, (6) 

where ℎ̂(𝑓) =
ℎ(𝑓)

∑ ℎ(𝑓)
  is the normalized frequency component and 𝑚  is the number of 

frequency components. The normalized entropy values were between 0 (complete 

regularity) and 1 (maximum irregularity), showing the concentration of frequency 

distribution [25]. 

2-3. Feature selection and Support vector machine 

Having extracted the frequency-specific power from HHT and computed the SE, we 

employed the linear forward selection method to reduce the number of attributes that enter 
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SVM. 

The SVM was developed from statistical learning theory to analyze a data set for the 

classification of multi-classes [26,27]. A data set is trained to acquire a mathematical model, 

which is used to discriminate a testing data set. For binary classification, an SVM model 

constructs a hyperplane that optimally separates data sets into one of two classes, and the 

distance from the hyperplane to the nearest data points on each side is maximized.  

Assuming the testing data set is linearly separable, a general form of hyperplane can be 

defined by 𝐰T𝐱 + b = 0, where 𝐰 is the normal vector to the hyperplane, and b is the 

bias term, and a classifier, 𝑑 = sgn(𝐰T𝐱 + b), can be selected. For each data point 𝐱𝑖, the 

following equation must be satisfied: 

𝑑𝑖(𝐰T𝐱𝑖 + b) ≥ 1, for 1 ≤ 𝑖 ≤ 𝑛. (7) 

𝐰 and b are then optimized to set an optimal separating hyperplane, and the margin 

between the two classes is maximized [26]. 

If the testing data set is not linearly separable, slack variables ξ𝑖  are introduced to 

measure the degree of misclassification, and the primal problem is modified to [27] 

minimize: ‖𝐰‖𝟐/2 + 𝐶 ∑ ξ𝑖 

subject to: 𝑑𝑖(𝐰T𝚽(𝐱𝑖) + b) ≥ 1 − ξ𝑖 , for 1 ≤ 𝑖 ≤ 𝑛, (8) 

where 𝐶 is the regularization parameter, which controls the punishment for misclassified 

data points and 𝚽(𝐱𝑖) maps 𝐱𝑖 into a higher dimensional space to make the separation in 

that space easier. To reduce the computational load, the Representer Theorem [28] shows 

that 𝐰 with large dimensionality can be written as a linear combination of the training data, 

𝐰 = ∑ 𝛼𝑖𝑑𝑖𝚽(𝐱𝑖). Therefore, we can optimize 𝛼𝑖 instead of 𝐰, and the decision function 

becomes  

𝑓(𝐱) = ∑ 𝛼𝑖𝑑𝑖 𝐾(𝐱𝑖 , 𝐱) + b, (9) 
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where 𝐾(𝐱𝑖 , 𝐱) = 𝚽(𝐱𝑖)T𝚽(𝐱) is the kernel function. The new dual problem is modified 

to [29]: 

maximize: ∑ 𝛼𝑖 − 1/2 × ∑ 𝛼𝑗𝛼𝑘𝑑𝑗𝑑𝑘𝑗𝑘 𝐾(𝐱𝑗 , 𝐱𝑘)𝑖  

subject to: 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑎𝑛𝑑 ∑ 𝛼𝑖𝑑𝑖 = 0𝑖 . (10) 

In this study, a Gaussian radial basis function (RBF) kernel, 𝐾(𝐱, 𝐱′) = exp(−𝛾‖𝐱 − 𝐱′‖2), 

was used. Both 𝐶 and 𝛾 are carefully chosen to obtain optimal results. 

 A typical procedure of LIBSVM [27] involves several steps: (1) the input of attributes 

of a data set with pre-classified indices, (2) training the data to build a model, and (3) 

predicting the classification or information of a test data set from the model. In the c-support 

vector classification in this study, the attribute vectors of attention epochs were labeled as 

class 1 in advance, while those of relaxed epochs were labeled as class -1. These attribute 

vectors with two-task labels comprised an input matrix for SVM training. After building the 

models, the classification of new epochs can be predicted using these models. 

3. Results and discussions 

 Figure 3 presents the full HHT 3D spectrum of the signal in Figure 1, providing the 

time-frequency-energy distribution of the continuous data in one trial. One of the 

participants paid attention for 300 seconds and then relaxed. The high energy located in a 

low-frequency band may include artifacts such as blinks. It is noted that the energy of high 

frequencies in the red block is statistically larger than which in the green block, indicating 

that the alpha and beta waves are indeed different in attention/inattention task (T=4.4049, 

p<0.05).  

The raw signals and their IMFs of an attention epoch and a relaxation epoch are 

presented in Figure 4 (a) and (b), respectively. 8 IMFs and a residual trend of the epoch were 

extracted by EMD. After performing the Hilbert transform, we found that IMF2, IMF3, 
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IMF4, and IMF5 contained the power within the desired frequency range (8~30 Hz) while 

the IMF1, IMF6~8 contained statistically no power in the frequencies of interest (p<0.05). 

The marginal spectrum of an IMF presents the time integration of its 3D spectrum and 

describes the distribution of power contained in the IMF as a function of frequency. Figure 

5 shows the marginal spectra of IMF2 to IMF5, which were used to derive the features of 

frequency.  

Table I lists the attention assessment results of a representative participant using SVM 

with several attribute vectors. Regarding the impact of attributes on the accuracy, the 

features comprising of 𝛼  and  𝛽  powers estimated from {IMF2~IMF5 and SE} #6 

obtained the best classification result of 93.25% accuracy. Frequency-specific power 

attributes of the original EEG signal after HHT {𝛼 -original, 𝛽 -original} #1 resulted in 

85.25% accuracy, suggesting an essential role in reflecting the attentiveness. The result that 

{SE} #4 feature alone could obtain the prediction accuracy of 86.25% suggested that the 

nonlinear characteristics of brain dynamics were important indicators of the mental states. 

Table I also indicates that using more features as the attributes did not help to obtain better 

accuracy. The result of feature selection of machine learning further confirmed that IMF1 

and IMF6~IMF8 were not important features for classification. In other words, the most 

important EEG features that can reflect the state of attentiveness in this study are the 

attributes #6: α-IMF2, α-IMF3, α-IMF4, α-IMF5, β-IMF2, β-IMF3, β-IMF4, β-IMF5, α-SE, 

and β-SE.  

Having established the individualized predictive models of SVM, we tested the 

predictive model to classify the attentiveness state of each participant as listed in Table II. 

The mean self-accuracy of 84.80% with 10-fold cross validation shows that the selected 

features can offer efficient differentiation for the assessment of attentiveness. To validate 

the individualized models that we built, additional 50 attention and 50 relaxation epochs of 
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each participant were treated as the independent test data. The models classified the test data 

and outputted the predictions of the attentiveness, the accuracy of which are listed in Table 

III. The results show the agreement of the predictive models.  

To compare with the proposed method that generated the time-frequency-domain and 

nonlinear features, we also implemented two analytic methods: the approximate entropy 

(ApEn) of original EEG signal as a time-domain and nonlinear feature, and the power 

spectral density of original EEG signal estimated by fast Fourier transform (FFT) as a 

frequency-domain and linear feature. These features were then respectively input into SVM 

as the attributes to build the predictive models for comparison. Figure 6 presents the 

boxplots of the above three methods, and the one-way ANOVA indicates the statistically 

significant differences in their results (p < 0.01). The SVM model of ApEn had a mean 

accuracy 73.94% with the smallest standard deviation compared to the others. The SVM 

model of FFT had a mean accuracy 77.80%, however, its large standard deviation indicated 

that there was huge between-subject variability in FFT features. According to the results, 

the proposed method of SVM combining with HHT can best discriminate between attentive 

and relaxed states.  

Moreover, in this method, we used only one channel data to build the predictive models 

and yielded good accuracy up to 96.00% with an average of twenty participants being 

83.90%. EEG recording using more channels may help improve the system; nevertheless, 

the single channel EEG monitor is inexpensive, convenient and portable for publics. We 

believe that this convenient method has the potential to be used in clinical settings for the 

detection of attention deficit. 

4. Conclusion 

A method of feature extraction and characterization of EEG signals using HHT 
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frequency analysis and SVM has been presented. Raw EEG data have been analyzed by 

HHT to obtain marginal spectra for nonlinear and nonstationary frequency information. The 

α and β band powers of IMF2~5 and their spectral entropies were selected as the attributes 

of SVM to obtain the mean accuracy of 84.80%. We conclude that the proposed method can 

offer efficient differentiation for the assessment of attentiveness, showing promise in 

applications of attention deficit detection or biofeedback training. 
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Figure 1. A continuous raw EEG signal of a representative participant while conducting two 

tasks. The participant paid attention for 5 minutes (until the dotted line) and then took a 

break with eyes opened for another 5 minutes. The epochs in the red block were collected 

as attention data, and the epochs in the green block were collected as relaxation data for 

further analysis. 

 

 

 

Figure 2. The flowchart of the proposed method. The EEG data were treated with Hilbert-

Huang analysis to obtain the time-frequency information. The extracted features were the 

input of the support vector machine to build a proper classifier for attentiveness recognition. 
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Figure 3. The HHT spectrum of the representative participant while conducting two tasks. 

The colorbar shows the magnitude of the energy distribution. The conducted task was 

switched at the 300th second. The time-frequency-energy information of attentive and 

relaxed tasks are illustrated in red and green blocks, respectively.  

 

 

 

 

Figure 4. (a) IMFs of an EEG epoch when the representative participant was paying 

attention to solve a puzzle. (b) IMFs of an EEG epoch when the representative participant 

had been instructed to relax and take a rest. 

(a) (b) 
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Figure 5. Marginal spectra of IMF2~5 when the representative participant was (a) paying 

attention and (b) taking a rest. 

 

 

Figure 6. The boxplots of accuracy of SVM models using HHT marginal power density, 

approximate entropy, and Fourier power density as the attributes. 
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TABLE I.  THE IMPACT OF DIFFERENT ATTRIBUTE VECTORS ON THE ACCURACY OF SVM 

MODELS OF A REPRESENTATIVE PARTICIPANT 

# Attributes Accuracy 

1 α-original, β-original 85.25% 

2 α-IMF4, β-IMF4 82.00% 

3 
α-IMF2, α-IMF3, α-IMF4, α-IMF5,  

β-IMF2, β-IMF3, β-IMF4, β-IMF5 
88.00% 

4 α-SE, β-SE 86.25% 

5 α-original, β-original, α-SE, β-SE 87.50% 

6 

α-IMF2, α-IMF3, α-IMF4, α-IMF5,  

β-IMF2, β-IMF3, β-IMF4, β-IMF5,  

α-SE, β-SE 
93.25% 

7 

α-IMF1, α-IMF2, α-IMF3, α-IMF4, α-IMF5,  

β-IMF1, β-IMF2, β-IMF3, β-IMF4, β-IMF5,  

α-SE, β-SE 
91.25% 

8 

α-IMF2, α-IMF3, α-IMF4, α-IMF5, α-IMF6,  

β-IMF2, β-IMF3, β-IMF4, β-IMF5, β-IMF6,  

α-SE, β-SE 
91.75% 

9 

α-IMF1, α-IMF2, α-IMF3, α-IMF4, α-IMF5, α-IMF6,  

β-IMF1, β-IMF2, β-IMF3, β-IMF4, β-IMF5, β-IMF6,  

α-SE, β-SE 
91.75% 

10 

α-IMF1, α-IMF2, α-IMF3, α-IMF4, α-IMF5, α-IMF6, α-IMF7, α-IMF8,  

β-IMF1, β-IMF2, β-IMF3, β-IMF4, β-IMF5, β-IMF6, β-IMF7, β-IMF8,  

α-SE, β-SE 
91.75% 
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TABLE II.  THE ACCURACY OF SVM MODELS OF 20 PARTICIPANTS USING ATTRIBUTES #6 

Participant Accuracy Participant Accuracy 

1 77.75% 11 81.50% 

2 86.75% 12 84.00% 

3 81.00% 13 83.25% 

4 85.50% 14 88.25% 

5 89.75% 15 89.00% 

6 77.25% 16 72.25% 

7 77.00% 17 90.25% 

8 93.50% 18 82.00% 

9 89.75% 19 93.25% 

10 81.25% 20 92.75% 

  Average 84.80% 

 

 

 

TABLE III.  THE ACCURACY OF PREDICTIONS WITH INDEPENDENT TEST DATA 

Participant Accuracy Participant Accuracy 

1 82.00% 11 78.00% 

2 91.00% 12 80.00% 

3 92.00% 13 79.00% 

4 66.00% 14 91.00% 

5 89.00% 15 96.00% 

6 76.00% 16 77.00% 

7 73.00% 17 86.00% 

8 92.00% 18 82.00% 

9 89.00% 19 92.00% 

10 76.00% 20 91.00% 

  Average 83.90% 
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