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Absorbing Layers for the Simulation of Open Boundaries in TLM Field 
Computation 

Michel M. Ney and Sandrick Le Maguer 
Laboratory for Electronics and Communication Systems (LEST), UMR CNRS 6616 

Ecole Nationale Superieure des Telecommunications de Bretagne, BP 832, 29285 BREST Cedex, FRANCE 

Abstract 
Like other so-called volumic methods, the TI..M requires artificial boundaries when simulations of open problems are
performed. There are two cases for which artificial boundaries are needed: when structures under investigation are
surrounded by unbounded space or when discontinuity characterization needs matched loads. These artificial 
boundaries enforce conditions commonly named absorbing boundary conditions (ABC). The paper discusses the 
most recent techniques based on absorbing media and their implementation in TIM computations.

L Introduction 
The perfect matched layer (PML) technique, originally developed by Berenger [I] for the FD1D, is currently under 
intense investigation. It has been found that PML technique is more efficient for inhomogeneous media than one-way
equation techniques and, in addition, it is numerically stable and can cope under certain conditions, with evanescent
waves. The PML technique is based on the insertion of absorbing layers at the limit of the computational domain. 
These layers are seen as perfectly matched media by a traveling wave (or transparent for evanescent waves) incident 
from the computational domain at any angle and for arbitrary frequency. More recently, anisotropic PML media were
proposed to enhance the performance with respect to the evanescent waves (2]. Finally, Transparent absorbing
boundary (TAB) was proposed for FDTD computation [3]. It consists in multiplying the true field solution by space
functions that vanish at the limits of the computational domain. The so-called auxiliary fields are computed using a
finite difference scheme. The true values of the fields can be readily computed form the auxiliary fields. The reported
performances are as good as the ones obtained with PML techniques. However, this technique does not require extra
computations in layers surrounding the domain of interest. It is only recently that absorbing media techniques have
been implemented for TLM simulations (see for instance [ 4, 5]). In this paper, a review of the implementation of the
PML in the TIM algorithm is presented and the potential use of anisotropic PML and TAB techniques discussed.

IL Perfectly Matched Layer (PML) 
Consider a :fictitious medium that has constitutive parameters e, µ and, electric and magnetic conductivities cr and cr *, 
respectively. In such a charge-free homogeneous and isotropic medium, fields are governed by the following cud's
Maxwell's equations in the sinusoidal steady-state: 

VAE=-jroµ·H-cr*·H (I) VAH=jroe·E+cr·E (2) 
For a plane wave propagating along, say, the z-axis the wave equation writes: 

ffEx U *) U )E &2 - roµ·+cr · ©e·+cr x = O 

from which we derive the intrinsic impedance of the medium:

Thus, if one has the condition:

1]= jµ_ (1-jcr* /roµ)I/2
-y-;- (I-j cr I roe)112 

cr cr* -=-=ps µ 

(3) 

(4) 

(5) 

then its wave impedance is exactly matched to a medium with intrinsic impedance .Jµ/s . This result holds at any

frequency, provided that normal incidence is achieved. The idea of the PML technique is to create a new fictitious
layer medium that can be perfectly matched in the three directions of propagation. In such a medium (I) and (2) are
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transformed by splitting each field component into two subterms. For instance, one can rewrite (1) and (2) in the 
time-domain for� =Exy +�. and�= �+� which yields: 

OH • c(Ezx + Ezy) OE µ�+o H = - ---2
Ot y xy  fy fy (6) OH • c(Eyz + Eyx) aEyµ ----B.. + o H = --at z xz & . & (7) 

OExy O(Hzx + Hzy) ali2 aExz _ a(Hyz + Hyx) OHy &a+oyExy = C>:! C>:! (8) &a+o2Exz _ & - r;: (9) 

in which electric and magnetic conductivities pertaining to y and z directions are introduced. Thus a total of 12 
equations similar to the above are necessary to simulate a PML medium. For perfect match at any incidence and 
frequency, conductivities in PML equations have to fulfill (5). Thus, a wave impinging at any incident angle 
undergoes no reflection, no refraction and is attenuated while traveling in the PML medium. It is also important to 
note that when considering the interface between PML and a lossless comfutational domain perpendicular to the<;
direction, then perfect matching is achieved by considering only (as, oe, ) :t: 0 with C e {x,y,z} (uniaxial PML). 
However, one has to consider all six conductivities for corners limiting tlie computational box. Also, one can easily
show that evanescent waves with direction of attenuation perpendicular to the interface are not distorted by the PML 
but do not undergo additional attenuation. PML layers are usually terminated by perfectly conducting walls. Finally,
tapered conductivities' profile must be used to avoid numerical reflections at the PML interface.

II. I Interface FDID-PMUILM (non unified or split algorithm) 
The field subtenns are computed via the finite difference form of the PML equations (for example ((6) to (9)). The 
subterms, for instance E_xy and Exz, are defined at the same time and location of their field component they are 
derived from (Ex in the above exemple). However, it is well known that the field components in the Yee's cell are not 
defined at the same location as in the TLM-SCN (see fig. I). Therefore, the only way to interface both algorithms is
to proceed to some interpolation. The whole procedure can be decomposed into three steps [6]: 

I. Standard algorithms are applied: In the TLM cells adjacent to the interface: E0, HD at the center of the cell,
are computed from the known incident voltages at time n-1/2. In the FDID cells adjacent to interface, HD
field components normal to the cell faces are computed with the standard Y ee's algorithm. 

2. Reflected voltages at time n+ 112 are computed via ED, H° and incident voltages at time n-112 (accelerated 
algorithm [7]). 11"-components (in the TLM domain on the fuces of the adjacent cells) required by the FDID 
to compute ED+l/2 on the interface are interpolated between adjacent TLM cells. 

3. Tangential E-components on the interface required by the TLM are interpolated from the FDID values on
the interface. Then, TLM impulses are transferred except at arms normal to the interface where they are 
computed from the above interpolated tangential E-components and the reflected voltages found in step 2). 

Then, a new interpolation procedure can start for the next time iteration. It can be mentioned that only one cell on
each side of the interface are involved in the process unlike in [4]. 

lnterfuce 
--n;r-------------�::.-.=1 

Ez _/ ; �--+---··----.;t'n-112 :,>�!.:.:;1J;..-±,.--�-::a8 .

FDIDcells 

Ground plane 
Fig. 1: Interface between a Y ee's and Fig. 2: Conducting strip discontinuity due to the 

a TLM-SCN cell. misalignment of electric field components. 

The advantage of this approach is the relatively low memory cost of the FDID algorithm in the PML, the stability
and relatively good absorbing performances. The drawback are the additional parasitic reflections at the interface due 
to the interpolation procedure. This is accentuated when high-field gradients prevails like in the case of the matched 
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load for a microstrip line illustrated in fig. 2. A refined mesh is required to decrease these reflections as well as the 
misalignment effect [ 6]. 
II.2 Unified TLM-SCN algorithm 
Without loss of generality consider the case ofuniaxial PML for which only ( crz. crz *) -:F 0 (tnterface perpendicular to
z-axis). First, we shall derive the contribution ofsubterms to the field component Ex. at the center of the cell:

DEx E ( E aHz 8Hy aE;-.-y aH srso Bt+crz x + -<>z xy) =-ay-& (10) srso ----at+E;-.-y = ayz (11) 
� 8H aH aExz E aHy ui::.x E ( E ) z Y (12) + (13) SrSoat+cry x:+ crz xz =-ay-& srsoa- crz xz=-& 

Comparing with Maxwell-Ampere's law (2), one can identify in (10) and (12) as curl's field equations in
homogeneous media which can be simulated by the standard SCN. In addition, one can identify source terms given
by the expressions in brackets controlled by field subterms governed by (11) and (13), respectively. Thus, following 

· ar,a.z4 the procedure described in (8] one can evaluate the value of
these controlled somce at the center of the TLM cell in terms of
incident voltages. To achieve this, one introduces two voltages 
per subterms that should correctly approximate (11) and (13)(see :fig. 3). Among the various possibilities to combine PML
equations, the one presented here gave the best results in terms a10,<1u of stability. For uniaxial PML simulation, only 26 voltages are

Fig. 3: Voltages in P.ML-TLM node (uniaxial) 

required. For multiaxial PML, the fully loaded TLM node
includes 30 voltages. It reduces to 27 and 24 voltages for its
hybrid and super condensed version, respectively. The absorbing
performance is slightly better than with the split algorithm.
However, instability occurrences had to be circumvented by
reducing the time step (9]. The procedure to construct a PML
TLM cell is not unique as field samples in the TLM cell can be
chosen at different locations. For instance in [IO], one sample
(voltage) is taken at the center of the cell for the subterms. As a
result, only 24 voltages are needed for the SCN. Another scheme

was presented in (11] with a circuit approach for the construction of a PML-TLM node. It is difficult to compare
absorbing performances between the different schemes as no absorption :figures were reported in (IO] and [11] but
rather error levels in field magnitude for free space propagation simulations. 

II.3 Anisotropic PML
In order to avoid the manipulation of field subtermes, Gedney [2] proposed to introduce a maxwellian anisotropic
medium with diagonal permittivity and permeability tensors. For instance, the Maxwell-Ampere curJls equation is
written in sinusoidal steady-state as: 

OHk aHj . Sj sk 
{ 8j-8k=1ros7Ei i,j, k E x, y, z} (14)

with si = ai[l+cri I Ucos)] where ai and Oj correspond to evanescent and traveling waves, respectively. Note that
si can be chosen arbitrarily. The idea is to write (14) in the time domain, for instance: 

al-{k aHj SjSl: [ aE· J -----=-- s-1+(crk+cr·-cr·)E·+F· aj ale Si 
at J t t t (15) aF, s-1 +cr·F: =r·i:::· at t t t'-i (16) 

in which Yi=fcricrk-cri(cri:+crj-cri)]. Manipulating Faraday-Maxwell's law yields similar equations. To

implement the above relations in the TLM algorithm, one follows the general procedure descn"bed in [8]. This results
in adding six stubs to compute auxiliary quantities at the center of the cell (only two in the uniaxial case). The
advantage of the approach is that 24 voltages only are needed for the general case. It reduces to 21 and 18 voltages
for the the Hybrid and Symmetrical Super Condensed nodes, respectively. 
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II.4 Transparent Absorbing Boundary (TAB) 
More recently, a procedure based on field mapping was presented [3]. FDID simulations for free-space propagation
showed excellent absorption performances. The idea is to write auxiliary fields in terms of the true solutions
E0(r,t) , H0(r,t) as:

E(r,t)=F(r)E0(r ,t) (17) H(r,t)=F(r)H0(r,t) (18) 

where F(r) is some positive definite space function that vanishes at the limit of the computational domain. Inserting
(17) and (18) in curl's Maxwell' equations (1) and (2) yields: 

* OH 1 
-cr -H-µ-

Ot
-=V AE-

F 
VF/\E (19) 

---
e>·E+s-ae-=V /\H-_!_VF/\H

Ot =-F __ 
(20) 

The underlined factors can be grouped and considered as loss terms. Taking F(r)= f(x)f(y)f(z), one can discretize
(19) and (20) and apply again the general procedure descnoed in (8] to obtain reflected voltages for a TLM 
algorithm. Once the auxiliary fields are computed, true solutions are easily extracted from (17) and (18). This 
procedure is very attractive as it is theoretically valid for any type of waves and doesn't need computations in some
extra layers like in PML techniques. In addition, it does not require extra stubs. Finally, the extra memory needed to
store F(r) is generally 2(Nx+� +NJ wich is negligible.

ill Conclusion 
A class of recent ABC that can be implemented in TLM were presented. Most of the techniques are based on
perfectly matched layers that surround the computational domain. The basic PML leads to two types of approaches:

the split and unified algorithm. For the later, stability issues have still to be addressed. Nevertheless, good absorbing
conditions can be achieved but generally inferior to the ones achieved by FDID computations. Finally, two recent
techniques implemented in the TLM algorithm were proposed. Again, stability issues must be addressed. However, 
the condensed nature of the TIM scheme may bring some potential advantage in the TAB technique, for instance, as 
compared to FDTD. 
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