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Abstract. In the last two decades, there has been much progress on model checking
of both probabilistic systems and higher-order programs. In spite of the emergence of
higher-order probabilistic programming languages, not much has been done to combine
those two approaches. In this paper, we initiate a study on the probabilistic higher-order
model checking problem, by giving some first theoretical and experimental results. As a
first step towards our goal, we introduce PHORS, a probabilistic extension of higher-order
recursion schemes (HORS), as a model of probabilistic higher-order programs. The model
of PHORS may alternatively be viewed as a higher-order extension of recursive Markov
chains. We then investigate the probabilistic termination problem — or, equivalently,
the probabilistic reachability problem. We prove that almost sure termination of order-2
PHORS is undecidable. We also provide a fixpoint characterization of the termination
probability of PHORS, and develop a sound (although possibly incomplete) procedure for
approximately computing the termination probability. We have implemented the procedure
for order-2 PHORSs, and confirmed that the procedure works well through preliminary
experiments.

1. Introduction

Computer science has interacted with probability theory in many fruitful ways, since the
very early days [21]. Probability theory enables state abstraction, reducing in this way the
state space’s cardinality. It has also led to a new model of computation, used for instance
in randomized computation [56] or in cryptography [29]. The trend of a rise of probability
theory’s importance in computer science has been followed by the programming language
community, up to the point that probabilistic programming is nowadays a very active
research area. Probabilistic choice can be modeled in various ways in programming, and
fair binary probabilistic choice is for instance perfectly sufficient to obtain universality if
the underlying programming language is universal itself [64, 19]. This has been the path
followed in probabilistic λ-calculi [61, 39, 20, 19, 22, 18, 34].

Key words and phrases: model checking, probabilistic programs, higher-order programs, termination
probabilities.
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In the present paper, we are interested in analysis of probabilistic, higher-order recursive
programs. Model checking of probabilistic finite state systems has been a very active research
field (see [3, 14] for a survey). Over the last two decades, there has also been much interest
and progress in model checking of probabilistic recursive programs [24, 26, 8, 6], which
cannot be modeled as finite state systems, and thus escape the classic model checking
framework and algorithms. None of the proposals in the literature on probabilistic model
checking, however, is capable of handling higher-order functions, which are a natural feature
in functional languages. This is in sharp contrast to what happens for non-probabilistic
higher-order programs, for which model checking techniques can be fruitfully employed for
proving both reachability and safety properties, as shown in the extensive literature on
the subject (e.g. [58, 33, 46, 49, 51, 32, 31, 67, 62]). There have been some studies on the
termination of probabilistic higher-order programs [17], but to our knowledge, they have
not provided a procedure for precisely computing the termination probability, nor discussed
whether it is possible at all: see Section 7 for more details. Summing up, little has been
known about the decidability and complexity of model checking of probabilistic higher-order
programs, and even less about the existence of practical procedures for approximately solving
model checking problems.

One may think that probabilistic and higher-order computation is rather an exotic
research topic, but it is important for precisely modeling and verifying any higher-order
functional programs that interact with a probabilistic environment. As a simple example,
consider the following (non-higher-order) OCaml-like program, which uses a primitive flip

for generating true or false with probability 1
2 .

let rec f() = if flip() then () else f() in f()

The program almost surely terminates (i.e., terminates with probability 1), but if we ignore
the probabilistic aspect and model flip() as a non-deterministic (rather than probabilistic)
primitive, then we would conclude that the program may not terminate. The following
program makes use of an interesting combination of probabilistic choice and higher-order
functions:

let boolgen () = flip()

let rec listgen f () =

if flip() then [] else f():: listgen f ()

in listgen (listgen boolgen) ()

The function listgen above takes a generator f of elements as an argument, and creates a
list of elements, each of them obtained by calling f . Thus, the whole program generates
a list of lists of Booleans. The length of such a list of lists is randomized, and distributed
according to the geometric distribution. We may then wish to ask, for example, (i) whether
it almost surely terminates, and (ii) what is the probability that a list of even length is
generated. Generating random data structures like the one listgen produces, by the way,
is not at all an artificial task, being central to, e.g., random test generation [59, 55].

As a model of probabilistic higher-order programs, we first introduce PHORS, a proba-
bilistic extension of higher-order recursion schemes (HORS) [43, 58]. Our model of PHORS
is expressive enough to accurately model probabilistic higher-order functions, but the under-
lying non-probabilistic language (i.e., HORS, obtained by removing probabilistic choice) is
not Turing-complete; thus, we can hope for the existence of algorithmic solutions to some of
the verification problems. As an example, we can decide indeed whether the termination
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probability of PHORS is 0, by reduction to a model checking problem for non-probabilistic
HORS.

Through the well-known correspondence between HORS and (collapsible) higher-order
pushdown automata [43, 33], PHORS can be considered a higher-order extension of proba-
bilistic pushdown systems [8, 6] and of recursive Markov chains [69], the computation models
used in previous work on model checking of probabilistic recursive programs. We can also
view PHORS as an extension of the λY -calculus [65] with probabilities, just like HORS can
be viewed as an alternative presentation of the λY -calculus. The correspondence between
HORS and the λY -calculus has been useful for transferring techniques for typed λ-calculi
(most notably, game semantics [58], intersection types [45, 49] and Krivine machines [62])
to HORS; thus, we expect similar benefits in using PHORS (rather than probabilistic
higher-order pushdown automata) as models of probabilistic higher-order programs.

As a first step towards understanding the nature of the model checking problem for
probabilistic higher-order programs, the present paper studies the problem of computing
the termination (or equivalently, reachability) probabilities of PHORS. Note that, as in a
non-probabilistic setting, one can easily reduce a safety property verification problem to a
may-termination problem (i.e. the problem of checking whether a program may terminate),
by encoding safety violation as termination. We can also verify certain liveness properties,
by encoding a good event as a termination and checking that the termination probability is 1.
As we will see in Section 2, the two questions (i) and (ii) mentioned earlier on the listgen

program can also be reduced to the problem of computing the termination probability of a
PHORS. Note also that computing the termination (or equivalently, reachability) probability
has been a key to solving more general model checking problems (such as LTL/CTL model
checking) for recursive programs [69, 6].

As the first result on the problem of computing termination probabilities, we prove
that the almost sure termination problem, i.e., whether a given PHORS terminates with
probability 1, is undecidable for order-2 or higher. This contrasts with the case of recursive
Markov chains, for which the almost sure termination problem can be decided in PSPACE [24].
The proof of undecidability is based on a reduction from the undecidability of Hilbert’s
tenth problem (i.e. unsolvability of Diophantine equations) [53]. The undecidability result
also implies that it is not possible to compute the exact termination probability. More
precisely, for any rational number r ∈ (0, 1], the set {G | Pr(G) ≥ r} (where Pr(G) denotes
the termination probability of G) is not recursively enumerable (in other words, the set is
Π0

1-hard in the arithmetical hierarchy). Note, however, that this negative result does not
preclude the possibility to compute the termination probability with arbitrary precision;
there may exist an algorithm that, given a PHORS G and ε > 0 as inputs, finds r such that
the termination probability of G belongs to (r, r + ε). A definite result on the existence of
such an approximation algorithm remains open.

As a positive result towards approximately computing the termination probability, we
show that the termination probability of order-n PHORS can be characterized by fixpoint
equations on order-(n− 1) functions on real numbers. The fixpoint characterization of the
termination probability of recursive Markov chains [24] can be viewed as a special case of
our result where n = 1. The fixpoint characterization immediately provides a semi-algorithm
for the lower-bound problem: “Given a PHORS G and a rational number r ∈ [0, 1], does
Pr(G) > r hold?” Recall, however, that {G | Pr(G) ≥ r} is not recursively enumerable, so
there is no semi-algorithm for the variation: “Given a PHORS G and a rational number
r ∈ [0, 1], does Pr(G) ≥ r hold?”
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The remaining question is whether an upper-bound on the termination probability can
be computed with arbitrary precision. We have not settled this question yet, but propose a
procedure for soundly estimating an upper-bound of the termination probability of order-2
PHORS by using the fixpoint characterization above, à la FEM (finite element method). We
have implemented the procedure, and conducted preliminary experiments to confirm that
the procedure works fairly well in practice: combined with the lower-bound computation
based on the fixpoint characterization, the procedure was able to instantly compute the
termination probabilities of (small but) non-trivial examples with precision 10−2. We also
briefly discuss how to generalize the procedure to deal with PHORS of arbitrary orders.

This paper’s contributions can thus be summarized as follows:

(i) A formalization of probabilistic higher-order recursion schemes (PHORS) and their
termination probabilities. This is in Section 2.

(ii) A proof of undecidability of the almost sure termination problem for PHORS (of order
2 or higher), which can be found in Section 3.

(iii) A fixpoint characterization of the termination probability of PHORS, which immedi-
ately yields the semi-decidability of the lower-bound problem. This is in Section 4

(iv) A sound procedure for computing an upper-bound to the termination probability of
order-2 PHORS (which is described in Section 5) accompanied by an implementation
and preliminary experiments with promising results, reported in Section 6.

The paper also includes Section 7, which discusses related work, and Section 8, which
concludes the article. A preliminary summary of this article appeared in Proceedings of
LICS 2019 [48].

2. Probabilistic Higher-Order Recursion Schemes (PHORS) and Termination
Probabilities

This section introduces probabilistic higher-order recursion schemes (PHORS1), an extension
of higher-order recursion schemes [43, 58] in which programs can at any evaluation step
perform a discrete probabilistic choice, then proceeding according to its outcome. Higher-
order recursion schemes are usually treated as generators of infinite trees, but as we are
only interested in the termination probability, we consider nullary tree constructors e and Ω,
which represent termination and divergence respectively.

We first define types and applicative terms. The set of types, ranged over by κ, is given
by:

κ ::= o | κ1 → κ2.

Intuitively, o describes the unit value, and κ1 → κ2 describes functions from κ1 to κ2. As
usual, the order of a type κ is defined by:

order(o) = 0

order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)).

We often write o` → o for o→ · · · → o︸ ︷︷ ︸
`

→ o, and abbreviate κ1 → · · · → κk → κ′ to κ̃→ κ′.

The set of applicative terms, ranged over by t, is given by:

t ::= e | Ω | x | t1t2,
1We write PHORS for both singular and plural forms.



ON THE TERMINATION OF PROBABILISTIC HIGHER-ORDER PROGRAMS 5

where e and Ω are (the only) constants of type o and x ranges over a set of variables.
Intuitively, e and Ω denote termination and divergence respectively (the latter can be defined
as a derived form, but assuming it as a primitive is convenient for Section 4). We consider
the following standard simple type system for applicative terms, where K, called a type
environment, is a map from a finite set of variables to the set of types.

K ` e : o K ` Ω : o

K(x) = κ

K ` x : κ
K ` t1 : κ2 → κ K ` t2 : κ2

K ` t1t2 : κ

Definition 2.1 (PHORS). A probabilistic higher-order recursion scheme (PHORS) is a
triple G = (N ,R, S), where:

(1) N is a map from a finite set of variables (called non-terminals and typically denoted
F, G, . . .) to the set of types.

(2) R is a map from dom(N ) to terms of the form λx1. · · ·λxk.tL ⊕p tR, where p ∈ [0, 1]
is a rational, and tL, tR are applicative terms. If N (F ) = κ1 → · · · → κk → o, R(F )
must be of the form λx1. · · ·λxk.tL ⊕p tR, where N , x1 : κ1, . . . , xk : κk ` tL : o and
N , x1 : κ1, . . . , xk : κk ` tR : o.

(3) S ∈ dom(N ), called the start symbol, is a distinguished non-terminal that satisfies
N (S) = o.

The order of a PHORS (N ,R, S) is maxF∈dom(N ) order(N (F )), i.e., the highest order of
the types of its non-terminals. We write Pk for the set of order-k PHORS.

When R(F ) = λx1. · · ·λxk.tL ⊕p tR, we often write F x1 · · · xk = tL ⊕p tR, and specify R
as a set of such equations. The rule F x1 · · · xk = tL ⊕p tR intuitively means that F t1 · · · tk
is reduced to [t1/x1, . . . , tk/xk]tL and [t1/x1, . . . , tk/xk]tR with probabilities p and 1 − p,
respectively. We often write just F x1 · · · xk = tL for F x1 · · · xk = tL ⊕1 tR.

Definition 2.2 (Operational Semantics and Termination Probability of PHORS). Given

a PHORS G = (N ,R, S), the rewriting relation
d,p−−→G (where d ∈ {L,R} and p ∈ [0, 1]) is

defined by:

R(F ) = λx1. · · ·λxk.tL ⊕p tR

F t1 · · · tk
L,p−−→G [t1/x1, . . . , tk/xk]tL

R(F ) = λx1. · · ·λxk.tL ⊕p tR

F t1 · · · tk
R,1−p−−−−→G [t1/x1, . . . , tk/xk]tR

We write
π,p
==⇒G for the relational composition of

d1,p1−−−→G , . . . ,
dn,pn−−−→G, when π = d1 · · · dn and

p =
∏n
i=1 pi. Note that n may be 0, so that we have t1

ε,1
=⇒G t2 iff t1 = t2. By definition, for

each π ∈ {L,R}∗, there exists at most one p such that S
π,p
==⇒G e. For an applicative term t,

we define P(G, t, π) by:

P(G, t, π) =

{
p if t

π,p
==⇒G e

0 if t
π,p
==⇒G e does not hold for any p

.

The partial and full termination probabilities, written P(G, t, n) and P(G, t), are defined by:

P(G, t, n) =
∑

π∈{L,R}≤n
P(G, t, π) and P(G, t) =

∑
π∈{L,R}∗

P(G, t, π).

Finally, we set P(G, n) = P(G, S, n) and P(G) = P(G, S).

We often omit the subscript G below and just write
d,p−−→ and

π,p
==⇒ for

d,p−−→G and
π,p
==⇒G

respectively. The termination probability of G, refers to its full termination probability P(G).
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Figure 1. A Recursive Markov Chain Modeling G1.

Example 2.1. Let G1 be the order-1 PHORS (N1,R1, S), where:

N1 = {S 7→ o, F 7→ o→ o}
R1 = {S = F e ⊕1 Ω, F x = x ⊕p F (F x)}.

The start symbol S can be reduced, for example, as follows.

S
L,1−−→ F (e)

R,1−p−−−−→ F (F e)
L,p−−→ F e

L,p−−→ e.

Thus, we have S
LRLL,p2(1−p)
=========⇒ e. As we will see in Section 4, the termination probability

P(G1) is the least solution for r of the fixpoint equation: r = p + (1 − p)r2. Therefore,
P(G1) = p

1−p if 0 ≤ p < 1
2 and P(G1) = 1 if 1

2 ≤ p. The corresponding example of a recursive

Markov chain is reported in Figure 1, using the notational conventions from [24]. By the
way, G1 can be seen as realizing a binary, random walk on the natural numbers, starting
from 1.

As the previous example suggests, there is a mutual translation between recursive
Markov chains and order-1 PHORS; see the Appendix A.1 for details.

Example 2.2. Let G2 be the order-2 PHORS (N2,R2, S) where:

N2 = {S 7→ o, H 7→ o→ o, F 7→ (o→ o)→ o,

D 7→ (o→ o)→ o→ o}
R2 = {S = (F H) ⊕1 e, H x = x ⊕ 1

2
Ω,

F g = (g e) ⊕ 1
2

(F (Dg)), D g x = (g (g x)) ⊕1 Ω}.

The start symbol S can be reduced, for example, as follows.

S
L,1−−→ F H

R, 1
2−−→ F (DH)

L, 1
2−−→ DH e

L,1−−→ H(H e)

L, 1
2−−→ H e

L, 1
2−−→ e.

Contrary to G1, it is quite hard to find an RMC which models the behavior of G2. In fact,
this happens for very good reasons, as we will see in Section 3.

The following result is obvious from the definition of P(G).

Theorem 2.1. For any rational number r ∈ [0, 1], the set {G | P(G) > r} is recursively
enumerable.

Proof. This follows immediately from the facts that P(G) > r if and only if P(G, n) =∑
π∈{L,R}≤n P(G, S, π) > r for some n, and that P(G, n) is computable.

In other words, whether P(G) > r is semi-decidable, i.e., there exists a procedure that
eventually answers “yes” whenever P(G) > r. As we will see in Section 3, however, for every
r ∈ (0, 1], {G | P(G) ≥ r} is not recursively enumerable.
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Remark 2.1. Given a PHORS G, replacing each probabilistic operator ⊕p s.t. 0 < p < 1
with a binary tree constructor br and replacing tL ⊕1 tR (tL ⊕0 tR, resp.) with tL (tR, resp.),
we obtain an ordinary HORS GND . Then P(G) = 0 if and only if the tree generated by GND

has no finite path to e. Thus, by [50] (see the paragraph below the proof of Theorem 4.5
about the complexity of the reachability problem), whether P(G) = 0 is decidable, and (n− 1)-
EXPTIME complete. Note, on the other hand, that there is no clear correspondence between

the almost sure termination problem P(G)
?
= 1 and a model checking problem for GND . If

the tree of GND has neither Ω nor infinite path (which is decidable), then P(G)=1, but the
converse does not hold.

Remark 2.2. The restriction that a probabilistic choice may occur only at the top-level
of each rule is not a genuine restriction. Indeed, whenever we wish to write a rule of the
form F x̃ = C[tL ⊕p tR], we can normalize it to F x̃ = C[G x̃], where G is defined by
G x̃ = tL ⊕p tR. Keeping this in mind, we sometimes allow probabilistic choices to occur
inside terms. In fact, a PHORS can be considered as a term (of type o) of a probabilistic
extension of the (call-by-name) λY -calculus [65]. We define the set of probabilistic λY terms
by:

s ::= e | Ω | x | λx.s | s1s2 | Y (λf.λx.s) | s1 ⊕p s2.

Here, ⊕p is a probabilistic choice operator of type o → o → o, and other terms are
simply-typed in the usual way. Then, PHORS and probabilistic λY terms can be converted
to each other. We use PHORS in the present paper for the convenience of the fixpoint
characterizations discussed in Section 4.

Remark 2.3. We adopt the call-by-name semantics, and allow probabilistic choices only on
terms of type o. The call-by-value semantics, as well as probabilistic choices at higher-order
types can be modeled by applying a standard CPS transformation. Moreover, a PHORS does
not have data other than functions, but as in ordinary HORS [46], elements of a finite set
(such as Booleans) can be modeled by using Church encoding.

We provide a few more examples of PHORS below.

Example 2.3. Recall the list generator example in Section 1, whose termination is equivalent
to that of the following program, obtained by replacing the output of each function with the
unit value ().

let boolgen () = flip() in

let rec listgen f ()=

if flip() then () else (f(); listgen f ())

in listgen (listgen boolgen) ()

With a kind of CPS transformation, termination of the above program is reduced to that of
the following PHORS G3:

S = Listgen (Listgen Boolgen) e

Boolgen k = k

Listgen f k = k ⊕ 1
2
f(Listgen f k)

It is not difficult to confirm that P(G3) = 1 (using the fixpoint characterization given in
Section 4).
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Example 2.4. The following is a variation of the list generator example (Example 2.3),
which generates ternary trees instead of lists:

let boolgen () = flip() in

let rec treegen f =

if flip() then Leaf

else Node(f(), treegen f, treegen f, treegen f) in

treegen(boolgen)

The following PHORS G4 captures the termination probability of the aforementioned program:

S = Treegen Boolgen e

Boolgen k = k

Treegen f k = k ⊕ 1
2

(f(Treegen f (Treegen f (Treegen f k))))

Interestingly, G4 is not almost surely terminating, since P(G4) =
√

5−1
2 .

To increase the chance of termination, let us change the original program as follows:

let boolgen () = flip() in

let rec treegen p f =

if flipp(p) then Leaf

else Node(f(), treegen
p+1

2 f, treegen
p+1

2 f, treegen
p+1

2 f) in

treegen 1
2 boolgen

where flipp is the natural generalization of flip. Here, treegen is parameterized with
probability p, which is increased upon each recursive call. We assume that flipp(p) returns
true with probability p and false with 1− p. The corresponding PHORS G5 is:

S = Treegen H Boolgen e

Boolgen k = k

H x y = x ⊕ 1
2
y

G p x y = x ⊕ 1
2

(p x y)

Treegen p f k = p k (f(Treegen (G p) f (Treegen (G p) f (Treegen (G p) f k))))

The function Treegen is parameterized by a probabilistic choice function p, which is initially
set to the function H (that chooses the first argument with probability 1

2). The function G
takes a probabilistic choice function, and returns a probabilistic function λx.λy.x ⊕ 1

2
(p x y),

which chooses the first argument with probability p+1
2 . As expected, G5 is almost surely

terminating.

Example 2.5. Recall the list generator example again. Suppose that we wish to compute
the probability that listgen(boolgen) generates a list of even length. It can be reduced to
the problem of computing the termination probability of the following program:

let boolgen () = flip() in

let rec loop() = loop() in

let rec listgenE f () =

if flip() then () else (f(); listgenO f ())

and listgenO f () =
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if flip() then loop() else (f(); listgenE f ()) in

listgenE boolgen ()

Here, we have duplicated listgen to listgenE and listgenO, which are expected to
simulate the generation of even and odd lists respectively. Thus, the then-branches of
listgenE and listgenO have been replaced by termination and divergence respectively.
As in the previous example, the above program can further be translated to the following
PHORS G6:

S = ListgenE Boolgen e

Boolgen k = k

ListgenE f k = k ⊕ 1
2

(f(ListgenO f k))

ListgenO f k = Ω ⊕ 1
2

(f(ListgenE f k)).

The termination probability of the PHORS is

1

2
+

1

2
· 1

4
+

1

2
·
(

1

4

)2

+ · · · = 1

2
·
∞∑
i=0

1

4i
=

2

3
.

Thus, the probability that the original program generates an even list is also 2
3 .

Let us also consider the problem of computing the probability that listgen(boolgen)
generates a list containing an even number of true’s. It can be reduced to the termination
probability of the following PHORS.

S = ListgenE Boolgen e

Boolgen k1 k2 = k1 ⊕ 1
2
k2

ListgenE f k = k ⊕ 1
2

(f(ListgenO f k)(ListgenE f k))

ListgenO f k = Ω ⊕ 1
2

(f(ListgenE f k)(ListgenO f k)).

The function Boolgen now takes two continuations k1 and k2 as arguments, and calls k1 or
k2 according to whether true or false is generated in the original program. The function
ListgenE (ListgenO, resp.) is called when the number of true’s generated so far is even
(odd, resp.). The termination probability of the PHORS above is 3

4 .

In the following example, a standard program transformation for randomized algorithms
is captured as a PHORS. More specifically, a higher-order function is defined, which turns
any Las-Vegas algorithm that sometimes declares not to be able to provide the correct
answer into one that always produces the correct answer. (For more details about the use of
the scheme above, please refer to [35]).

Example 2.6. Consider a probabilistic function f , which takes a value of type A, and
returns a value of type B with probability p and Unknown with probability 1 − p. The
following higher-order function determinize takes such a function f as an argument, and
generates a function from A to B.

type ’b pans = Ans of ’b | Unknown

let rec determinize(f:’a->’b pans)(x:’a)=

match f x with

Ans(r) -> r

| Unknown -> determinize f x
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To confirm that determinize f almost surely terminates and returns a value of type
B, it suffices to check that the PHORS term Determinize g almost surely terminates for
g = λy.λz.y ⊕p z, where Determinize is defined by:

Determinize g = g e (Determinize g).

Here, the first argument of g corresponds to the body of the clause Ans(r)-> · · ·, while the
second argument corresponds to that of the clause Unknown-> · · ·. Almost sure termination
of Determinize(λy.λz.y ⊕p z) for any p > 0 can further be encoded as that of the following
PHORS G7:

S = (Determinize One) ⊕ 1
2

(ForallP Zero One)

One y z = y

Zero y z = z

Avg p q y z = (p y z) ⊕ 1
2

(q y z)

ForallP p q = (Determinize (Avg p q))⊕ 1
2

((ForallP p (Avg p q)) ⊕ 1
2

(ForallP (Avg p q) q))

It runs Determinize (λy.λz.y ⊕p z) for every p(0 < p ≤ 1) of the form k
2n with non-

zero probability. Thus, P(G7) = 1 if Determinize(λy.λz.y ⊕p z) almost surely termi-
nates for every p > 0. Conversely, by the continuity of the termination probability of
Determinize (λy.λz.y ⊕p z) except at p = 0 (which we omit to discuss formally), P(G7) = 1
implies that Determinize(λy.λz.y ⊕p z) almost surely terminates for every p > 0.

Remark 2.4. Although PHORS do not have probabilities as first-class values, as demon-
strated in the examples above, certain operations on probabilities can be realized by encoding
a probability p into a probabilistic function λx.λy.x ⊕p y. The function Avg in Example 2.6

realizes the average operation p1+p2
2 . The multiplication p1p2 can be represented by Mult p1 p2,

where Mult p1 p2 x y = p1 (p2 x y) y.

3. Undecidability of Almost Sure Termination of Order-2 PHORS

We prove in this section that the almost sure termination problem, i.e., whether the
termination probability P(G) of a given PHORS G is 1, is undecidable even for order-2
PHORS. The proof is by reduction from the undecidability of Hilbert’s 10th problem [53]
(i.e. unsolvability of Diophantine equations). Note that almost sure termination of an order-1
PHORS is decidable, as order-1 PHORS are essentially equi-expressive with probabilistic
pushdown systems and recursive Markov chains [24, 26, 8, 6]. In fact, by the fixpoint
characterization given in Section 4.3, the termination probability of an order-1 PHORS can
be expressed as the least solution of fixpoint equations over reals, which can be solved as
discussed in [24]. Thus, our undecidability result for order-2 PHORS is optimal.

We start by giving an easy reformulation of the unsolvability of Diophantine equations
in terms of polynomials with non-negative coefficients, which follows immediately from the
original result.

Lemma 3.1. Given two polynomials P (x1, . . . , xk) and Q(x1, . . . , xk) with non-negative
integer coefficients, whether P (x1, . . . , xk) < Q(x1, . . . , xk) for some x1, . . . , xk ∈ Nat is
undecidable. More precisely, the set of pairs of polynomials: {(P (x1, . . . , xk), Q(x1, . . . , xk)) |
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∃x1, . . . , xk ∈ Nat.P (x1, . . . , xk) < Q(x1, . . . , xk)} is Σ0
1-complete in the arithmetical hierar-

chy.

Proof. Let D(x1, . . . , xk) be a multivariate polynomial with integer coefficients. Then, for all
natural numbers x1, . . . , xk ∈ Nat, D(x1, . . . , xk) = 0 if and only if (D(x1, . . . , xk))

2 − 1 <
0. Any such polynomial (D(x1, . . . , xk))

2 − 1 may be rewritten as P (x1, . . . , xk) −
Q(x1, . . . , xk), where P (x1, . . . , xk) and Q(x1, . . . , xk) have only non-negative integer co-
efficients. Then, D(x1, . . . , xk) = 0 if and only if P (x1, . . . , xk) < Q(x1, . . . , xk). Since
whether D(x1, . . . , xk) = 0 for some x1, . . . , xk ∈ Nat is undecidable [53], it is also
undecidable whether P (x1, . . . , xk) < Q(x1, . . . , xk) for some x1, . . . , xk ∈ Nat. Fur-
thermore, since the set of sastisfiable Diophantine equations is Σ0

1-complete, the set
{(P (x1, . . . , xk), Q(x1, . . . , xk)) | ∃x1, . . . , xk ∈ Nat.P (x1, . . . , xk) < Q(x1, . . . , xk)} is Σ0

1-
hard. The set is also obviously recursively enumerable, hence belongs to Σ0

1.

Roughly, the idea of our undecidability proof is to show that for every P and Q as above,
one can effectively construct an order-2 PHORS that does not almost surely terminate
if and only if P (x1, . . . , xk) < Q(x1, . . . , xk) for some x1, . . . , xk. Henceforth, we say t is
non-AST if t is not almost surely terminating. For ease of understanding, we first construct

an order-3 PHORS GP,Q3 that satisfies the property above in Section 3.1 and then refine the

construction to obtain an order-2 PHORS GP,Q2 with the same property in Section 3.2.

3.1. Construction of the Order-3 PHORS GP,Q3 . Let P (x1, . . . , xk) and Q(x1, . . . , xk)
be, as above, polynomials with non-negative coefficients. We give the construction of

GP,Q3 in a top-down manner. We let GP,Q3 enumerate all the tuples of natural numbers
(n1, . . . , nk), and for each tuple, spawn a process Lt (P (n1, . . . , nk)) (Q(n1, . . . , nk)) with
non-zero probability, where Lt m1m2 is a process that is non-AST if and only if m1 < m2.

Thus, we define the start symbol S of GP,Q3 by:

S = Loop Zero · · · Zero.
Loop x1 · · · xk = (Lt (P x1 · · · xk) (Qx1 · · · xk))

⊕ 1
2

(Loop (Succ x1) · · · xk) ⊕ 1
2
· · · ⊕ 1

2
(Loop x1 · · · (Succ xk)).

Here, for readability, we have extended the righthand sides of rules to n-ary probabilistic
choices:

t1 ⊕p1 t2 ⊕p2 · · · ⊕pn−1 tn.

These can be expressed as t1 ⊕p1 (F2 x1 · · · xk), where auxiliary non-terminals are defined
by:

F2 x1 · · · xk = t2 ⊕p2 (F3 x1 · · · xk) · · · Fn−1 x1 · · · xk = tn−1 ⊕pn−1 tn.

We can express natural numbers and operations on them by using Church encoding:

Zero s z = z Succ n s z = s (n s z)

Add n m s z = n s (m s z) Mult n m s z = n (m s) z.

Here, the types of the non-terminals above are given by:

N (Zero) = CT N (Succ) = CT→ CT
N (Add) = N (Mult) = CT→ CT→ CT,
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where CT = (o→ o)→ o→ o is the usual type of Church numerals. Note that the order of
CT is 2, while that of N (Succ), N (Add), and N (Mult) is 3. By using the just introduced
operators, we can easily define P and Q as order-3 non-terminals. By abuse of notation, we
often use symbols P and Q to denote both polynomials and the representations of them as
non-terminals; similarly for natural numbers.

It remains to define an order-3 non-terminal Lt , so that Lt m1m2 is non-AST if

and only if m1 < m2. Since GP,Q3 runs Lt (P n1 · · · nk) (Qn1 · · · nk) for each tuple of

Church numerals (n1, . . . , nk) with non-zero probability, GP,Q3 is non-AST if and only if
P (n1, . . . , nk) < Q(n1, . . . , nk) for some natural numbers n1, . . . , nk. The key ingredient
used for the construction of Lt is the function CheckHalf of type (o→ o→ o)→ o, defined
as follows:

CheckHalf g = F ′ g e F ′ g x = g x (F ′ g (F ′ g x)).

Here, F ′ above is a parameterized version of F from Example 2.1: F ′ ⊕p (where ⊕p is
treated as a function of type o→ o→ o, which chooses the first argument with probability
p and the second one with 1 − p) corresponds to F . As discussed in Example 2.1, F e is
non-AST if and only if p < 1

2 . Thus, CheckHalf g = F ′ g e (which is equivalent to F e

when g = ⊕p ) is non-AST if and only if the probability that g chooses the first argument
is smaller than 1

2 . Let CheckLt (which will be defined shortly) be a function which takes
Church numerals m1 and m2, and returns a function of type o→ o→ o that chooses the
first argument with probability smaller than 1

2 if and only if m1 < m2. Then, Lt can be
defined by:

Lt m1 m2 = CheckHalf (CheckLt m1 m2).

Finally, CheckLt can be defined by:

CheckLt m1 m2 x y = (NatToPr m1 x y) ⊕ 1
2

(NatToPr m2 y x).

NatToPr m x y = m (H x) y. H x y = x ⊕ 1
2
y.

Let us write [m] for the natural number represented by a Church numeral m. For a Church

numeral m, NatToPr m x y (which is equivalent to (H x)[m]y) chooses x with probability
1− 1

2[m] and y with probability 1
2[m] . Thus, the probability that CheckLt m1 m2 x y chooses

x is
1

2
·
(

1− 1

2[m1]

)
+

1

2
· 1

2[m2]
=

1

2
+

1

2
·
(

1

2[m2]
− 1

2[m1]

)
,

which is smaller than 1
2 if and only if [m1] < [m2], as required. This completes the

construction of GP,Q3 . See Figure 2 for the whole rules of GP,Q3 . From the discussion above,

it should be trivial that GP,Q3 is non-AST if and only if P (x1, . . . , xk) < Q(x1, . . . , xk) holds
for some x1, . . . , xk ∈ Nat.

3.2. Decreasing the Order. We now refine the construction of GP,Q3 to obtain an order-2

PHORS GP,Q2 that satisfies the same property. The idea is, instead of passing around a
Church numeral m, to pass a probabilistic function equivalent to NatToPr m, which takes
two arguments and chooses the first and second arguments with probabilities 1− 1

2[m] and 1
2[m] ,

respectively. Note that a Church numeral m has an order-2 type CT = (o→ o)→ o→ o,
whereas NatToPr m has an order-1 type o→ o→ o. This ultimately allows us to decrease
the order of the PHORS.
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S = Loop Zero · · · Zero.
Loop x1 · · · xk = (Lt (P x1 · · · xk) (Qx1 · · · xk))

⊕ 1
2

(TestAll (Succ x1) · · · xk) ⊕ 1
2
· · · ⊕ 1

2
(TestAll x1 · · · (Succ xk)).

Lt m1 m2 = CheckHalf (CheckLt m1 m2).

CheckHalf y = F ′ y e.

F ′ g x = g x (F ′ g (F ′ g x)).

CheckLt m1 m2 x y = (NatToPr m1 x y) ⊕ 1
2

(NatToPr m2 y x).

NatToPr m x y = m (H x) y.

H x y = x ⊕ 1
2
y.

Zero s z = z.

Succ n s z = s(n s z).

Add nms z = n s(msz).

Mult nms z = n (ms) z.

P x1 · · · xk = · · · (* constructed using Zero,Succ,Add ,Mult *).

Q x1 · · · xk = · · · (* constructed using Zero,Succ,Add ,Mult *).

Figure 2. The rules of GP,Q3

Based on the idea above, we replace Lt with LtPr , which now takes probabilistic
functions of type o→ o→ o as arguments:

LtPr g1 g2 = CheckHalf (CheckLtPr g1 g2).

CheckLtPr g1 g2 x y = (g1 x y) ⊕ 1
2

(g2 y x).

Here, CheckLtPr is an analogous version of CheckLt , and CheckHalf is as before:
CheckHalf g is non-AST if and only if the probability that g chooses the first argument is
smaller than 1

2 . Then, LtPr (NatToPr (P n1 · · · nk)) (NatToPr (Qn1 · · · nk)) is non-AST
if and only if P (n1, . . . , nk) < Q(n1, . . . , nk).

It remains to modify the top-level loop Loop, so that we can enumerate (terms equiv-
alent to) LtPr (NatToPr (P n1 · · · nk)) (NatToPr (Qn1 · · · nk)) for all n1, . . . , nk ∈ Nat,
without explicitly constructing Church numerals. Instead of using Church encodings, we can
encode natural numbers and operations on them (except multiplication) into probabilistic
functions as follows.

ZeroPr x y = y SuccPr g x y = x ⊕ 1
2

(g x y)

OnePr x y = x ⊕ 1
2
y AddPr g1 g2 x y = g1 x (g2 x y).

Basically, a natural number m is encoded as a probabilistic function of type o→ o→ o, which
chooses the first and second arguments with probabilities 1− 1

2m and 1
2m respectively. Notice

that AddPr (NatToPr m1) (NatToPr m2) is equivalent to NatToPr (Add m1 m2), because
the probability that AddPr (NatToPr m1) (NatToPr m2) x y chooses y is 1

2[m1]
· 1

2[m2]
=
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1
2[m1]+[m2]

. We call this encoding the probabilistic function encoding, or PF encoding for
short.

The multiplication cannot, however, be directly encoded. To compensate for the lack of
the multiplication operator, instead of passing around just n1, . . . , nk in the top-level loop,
we pass around the PF encodings of the values of ni11 · · ·n

ik
k for each i1 ≤ d1, . . . , ik ≤ dk,

where d1, . . . , dk respectively are the largest degrees of P (x1, . . . , xk) + Q(x1, . . . , xk) in

x1, . . . , xk. We thus define the start symbol S of GP,Q2 by:

S = LoopPr OnePr ZeroPr · · · ZeroPr︸ ︷︷ ︸
(d1+1)···(dk+1)−1 times

.

LoopPr x̃ = (LtPr (P ′ x̃) (Q′ x̃))

⊕ 1
2

(LoopPr (Inc1,(0,...,0) x̃) · · · (Inc1,(d1,...,dk) x̃)) ⊕ 1
2
· · ·

⊕ 1
2

(LoopPr (Inck,(0,...,0) x̃) · · · (Inck,(d1,...,dk) x̃)).

Here, x̃ denotes the sequence of (d1 +1) · · · (dk+1) variables x(0,...,0), . . . , x(d1,...,dk), consisting
of x(i1,...,ik) for each i1 ∈ {0, . . . , d1}, . . . , ik ∈ {0, . . . , dk}. Each variable x(i1,...,ik) holds (the

PF encoding of) the value of ni11 · · ·n
ik
k .

Moreover, the functions P ′ and Q′ are the PF encodings of the polynomials P
and Q. Since P and Q can be represented as linear combinations of monomials
xi11 · · ·x

ik
k for i1 ≤ d1, . . . , ik ≤ dk, P ′ and Q′ can be defined using ZeroPr and

AddPr . For example, if P (x1, x2) = x2
1 + 2x1x2, then P ′ is defined by: P ′ x̃ y z =

AddPr x(2,0) (AddPr x(1,1) x(1,1)) y z.

The function Incj,(i1,...,ik) x̃ represents the PF encoding of ni11 · · · (nj + 1)ij · · ·nikk , as-

suming that x̃ represents (the PF encoding of) the values n0
1 · · ·n0

k, . . . , n
d1
1 · · ·n

dk
k . Note

that Incj,(i1,...,ik) can also be defined by using ZeroPr and AddPr , since xi11 · · · (xj +

1)ij · · ·xikk can be expressed as a linear combination of monomials x0
1 · · ·x0

k, . . . , x
d1
1 · · ·x

dk
k .

For example, if k = 2, then Inc2,(1,2) can be defined by Inc2,(1,2) x̃ y z =

AddPr x(1,2) (AddPr x(1,1) (AddPr x(1,1) x(1,0))) y z, because x1(x2 + 1)2 = x1x
2
2 + 2x1x2 +

x1.
This completes the construction of GP,Q2 . See Figure 3 for the list of all rules of GP,Q2 .

By the discussion above, we have:

Theorem 3.2. The almost sure termination of order-2 PHORS is undecidable. More
precisely, the set {G | P(G) = 1,G is an order-2 PHORS} is Π0

1-hard.

Proof. By the construction of GP,Q2 above, P(GP,Q2 ) = 1 if and only if P (x1, . . . , xk) ≥
Q(x1, . . . , xk) holds for all x1, . . . , xk ∈ Nat. By Lemma 3.1, the set of pairs (P,Q) that
satisfy the latter is Π0

1-complete, hence the set {G | P(G) = 1,G is an order-2 PHORS} is
Π0

1-hard.

As a corollary, we also have:

Theorem 3.3. For any rational number r ∈ (0, 1], the followings are undecidable:

(1) whether a given order-2 PHORS G satisfies Pr(G)≥r.
(2) whether a given order-2 PHORS G satisfies Pr(G)=r.

More precisely, the sets {G ∈ P2 | Pr(G)≥r} and {G ∈ P2 | Pr(G)=r} are Π0
1-hard.
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S = LoopPr OnePr ZeroPr · · · ZeroPr︸ ︷︷ ︸
(d1+1)···(dk+1)−1

.

LoopPr x̃ = (LtPr (P ′ x̃) (Q′ x̃)) ⊕ 1
2

(LoopPr (Inc1,(0,...,0) x̃) · · · (Inc1,(d1,...,dk) x̃))

⊕ 1
2
· · · ⊕ 1

2
(LoopPr (Inck,(0,...,0) x̃) · · · (Inck,(d1,...,dk) x̃)).

LtPr g1 g2 = CheckHalf (CheckLtPr g1 g2).

CheckLtPr g1 g2 x y = (g1 x y) ⊕ 1
2

(g2 y x).

CheckHalf y = F ′ y e.

F ′ g x = g x (F ′ g (F ′ g x)).

ZeroPr x y = y.

OnePr x y = x ⊕ 1
2
y.

SuccPr g x y = x ⊕ 1
2

(g x y).

AddPr g1 g2 x y = g1 x (g2 x y).

P ′ x̃ = · · · (* PF encoding of P , defined using ZeroPr and AddPr *)

Q′ x̃ = · · · (* PF encoding of Q, defined using ZeroPr and AddPr *)

Incj,(i1,...,ik) = · · · (* for each j ∈ {1, . . . , k}, i1 ≤ d1, . . . , ik ≤ dk*)

Figure 3. The rules of GP,Q2

Proof. Let G be an order-2 PHORS with the start symbol S. Define G′ as the PHORS
obtained by replacing the start symbol with S′ and adding the rules S′ = S ⊕r Ω. Then
Pr(G′) ≥ r if and only if Pr(G′) = r if and only if Pr(G) = 1. Thus, the result follows from
Theorem 3.2.

Remark 3.1. Let us write Ψ∼r for the set of order-2 PHORS G such that Pr(G) ∼ r where
∼∈ {<,≤,=,≥, >}. By Theorem 2.1 and Theorem 3.2, we have that:

(i) For any rational number r ∈ [0, 1], Ψ>r is recursively enumerable (or, belongs to Σ0
1).

(ii) For any rational number r ∈ (0, 1], Ψ≥r is Π0
1-hard (whereas Ψ≥0 is obviously recur-

sive).
(iii) For any rational number r ∈ (0, 1], Ψ=r is Π0

1-hard (whereas Ψ=0 is recursive; recall
Remark 2.1).

It is open whether the following propositions hold or not.

(iv) Ψ<r is recursively enumerable for every rational number r.
(v) Ψ≤r is recursively enumerable for every rational number r.
(vi) There exists an algorithm that takes an order-2 PHORS G and a rational number

ε > 0 as inputs, and returns a rational number r such that |Pr(G)− r| < ε.

Statements (iv) and (vi) are equivalent. In fact, if (iv) is true, we can construct an algorithm
for (vi) as follows. First, test whether Pr(G) = 0 (which is decidable). If so, output r = 0.
Otherwise, pick a natural number m such that 1

m < 1
2ε, and divide the interval (0, 1 + 1

2ε) to
m (overlapping) intervals(

0, 1
m + 1

2ε
)
,
(

1
m ,

2
m + 1

2ε
)
, . . . ,

(
m−2
m , m−1

m + 1
2ε
)
,
(
m−1
m , 1 + 1

2ε
)
.
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Table 1. Hardness of the termination problems in terms of the arithmetical
hierarchy. For recursive sets (i.e. those in ∆0

1 = Σ0
1 ∩ Π0

1), more precise
computational complexities of the membership problems are given. “PHORS”
means order-k PHORS where k ≥ 2.

Models Ψ>0 Ψ>r (r ∈ (0, 1)) Ψ<r (r ∈ (0, 1])
RMC P PSPACE PSPACE
PHORS lower bound (k−1)-EXPTIME-

complete
(k − 1)-EXPTIME Σ0

1

upper bound Σ0
1 Σ0

2

Turing-complete language Σ0
1-complete Σ0

1-complete Σ0
2-complete

By using procedures for (i) and (iv), one can enumerate all the order-2 PHORS whose
termination probabilities belong to each interval. Thus, G is eventually enumerated for one
of the intervals ( i

m ,
i+1
m + 1

2ε); one can then output i
m as r. Conversely, suppose that we

have an algorithm for (vi). For each order-2 PHORS G, repeatedly run the algorithm for
ε = 1

2 ,
1
4 ,

1
8 , . . ., and output G if the output r′ for (G, ε) satisfies r′ + ε < r. Then, G is

eventually output just if Pr(G) < r (note that if Pr(G) < r, then ε eventually becomes smaller
than 1

2(r − Pr(G)); at that point, the output r′ satisfies r′ + ε < (Pr(G) + ε) + ε < r).
Proposition (v) implies (iv) (and hence also (vi)). If there is a procedure for (v), one

can enumerate all the elements of Ψ<r by running the procedure for enumerating Ψ≤r−ε for
ε = 1

2 ,
1
4 ,

1
8 , . . .

Remark 3.2. Table 1 summarizes the hardness of termination problems in terms of the
arithmetical hierarchy for recursive Markov chains (RMC), PHORS, and a probabilistic
language whose underlying (non-probabilistic) language is Turing-complete. The results for
RMC and the Turing-complete language come from [24] and [54]. As seen in the table, the
results on PHORS are not tight, except for the problem P(G) > 0. Since the expressive power
of PHORS is between those of RMC and the Turing complete language, the hardness of each
problem is between those of the two models. Theorem 3.3 shows Σ0

1-hardness of P(G) < r,
but we do not know yet whether the problem is Σ0

1-complete or Σ0
2-complete, or lies between

the two classes.

Remark 3.3. Theorem 3.2 implies that, in contrast to the decidability of LTL model
checking of recursive Markov chains [8, 25], the corresponding problem for order-2 PHORS
(of computing the probability that an infinite transition sequence satisfies a given LTL
property) is undecidable and there are even no precise approximation algorithms. Let us
extend terms with events:

t ::= · · · | event a; t

where event a; t raises an event a and evaluates t. Consider the problem of, given an order-2
PHORS G, computing the probability Paω(G) that a occurs infinitely often. Then there is no
algorithm to compute Paω(G) with arbitrary precision, in the sense of (vi) of Remark 3.1.

To see this, notice that by parametric GP,Q2 with e, we can define a nonterminal F : o→ o

such that F x almost surely reduces to x if and only if there exist no n1, . . . , nk such that
P (n1, . . . , nk) < Q(n1, . . . , nk). Consider the (extended) PHORS GP,Q,aω whose start symbol
S is defined by:

S = event a;F (S).
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Then

Paω(G1) =

{
0 if there exists n1, . . . , nk such that P (n1, . . . , nk) < Q(n1, . . . , nk)
1 otherwise.

Thus, there is no algorithm to approximately compute GP,Q,aω even within the precision of
ε = 1

2 .

Remark 3.4. The PHORS G2 obtained above satisfies the so called “safety” restriction [42,
52]. Thus, based on the correspondence between safe grammars and pushdown systems [42],
the undecidability result above would also hold for probabilistic second-order pushdown systems
(without collapse operations [33]).

4. Fixpoint Characterization of Termination Probability

Although, as observed in the previous section, there is no general algorithm for exactly
computing the termination probability of PHORS, there is still hope that we can approx-
imately compute the termination probability. As a possible route towards this goal, this
section shows that the termination probability of any PHORS G can be characterized as
the least solution of fixpoint equations on higher-order functions over [0, 1]. As mentioned
in Section 1, the fixpoint characterization immediately yields a procedure for computing
lower-bounds of termination probabilities, and also serves as a justification for the method
for computing upper-bounds discussed in Section 5. We first introduce higher-order fixpoint
equations in Section 4.1. We then characterize the termination probability of an order-n
PHORS in terms of fixpoint equations on order-n functions over [0, 1] (Section 4.2), and
then improve the result by characterizing the same probability in terms of order-(n − 1)
fixpoint equations for the case n ≥ 1 (Section 4.3). The latter characterization can be seen
as a generalization of the characterization of termination probabilities of recursive Markov
chains as polynomial equations [24], which served as a key step in the analysis of recursive
Markov chains (or probabilistic pushdown systems) [24, 26, 8, 6].

4.1. Higher-order Fixpoint Equations. We define the syntax and semantics of fixpoint
equations that are commonly used in Sections 4.2 and 4.3. We first define the syntax of
fixpoint equations.

E (equations) ::= {f1 (x̃1,1) · · · (x̃1,`1) = e1, . . . , fm (x̃m,1) · · · (x̃m,`m) = em};
e (expressions) ::= r | x | f | e1 + e2 | e1 · e2 | e1e2 | (e1, . . . , ek).

Here, r ranges over the set of real numbers in [0, 1], and (x̃) represents a tuple of variables
(x1, . . . , xk). In the set E of equations, we require that each function symbol occurs at most
once on the lefthand side. The expression e1 · e2 represents the multiplication of the values
of e1 and e2, whereas e1e2 represents a function application; however, we sometimes omit ·
when there is no confusion (e.g., we write 0.5x for 0.5 · x). Expressions must be well-typed
under the type system given in Figure 4. The order of a system of fixpoint equations E is
the largest order of the types of functions in E , where the order of the type R of reals is 0,
and the order of a function type is defined analogously to the order of types for PHORS in
Section 2.
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τ (types) ::= R | τ1 → τ2 | τ1 × · · · × τn.

r ∈ R
Γ ` r : R

Γ ` e1 : R Γ ` e2 : R
Γ ` e1 + e2 : R

Γ ` e1 : R Γ ` e2 : R
Γ ` e1 · e2 : R

Γ(x) = τ

Γ ` x : τ
Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` e1e2 : τ

Γ ` ei : τi for each i ∈ {1, . . . , k}
Γ ` (e1, . . . , ek) : τ1 × · · · × τk

Γ, (x̃i,1) : τi,1, . . . , (x̃i,`i) : τi,`ii ` ei Γ(fi) = τi,1 → · · · → τi,`i → R (for each i ∈ {1, . . . ,m})
Γ ` {fi (x̃i,1) · · · (x̃i,`i) = ei | i ∈ {1, . . . ,m}}

Figure 4. Type system for fixpoint equations. (x1, . . . , xk) : τ denotes
x1 : τ1, . . . , xk : τk where τ = τ1 × · · · × τk.

Example 4.1. The following is a system of order-2 fixpoint equations:

{f1 = f2 f3 (0.5, 0.5), f2 g (x1, x2) = g(x1 + x2), f3 x = 0.3x+ 0.7f3(f3 x)}.
It is well-typed under f1 : R, f2 : (R→ R)→ (R× R)→ R, f3 : R→ R.

The semantics of fixpoint equations is defined in an obvious manner. Let R∞ be the
set consisting of non-negative real numbers and ∞. We extend addition and multiplication
by: x+∞ = ∞+ x = ∞, 0 · ∞ = ∞ · 0 = 0, and x · ∞ = ∞ · x = ∞ if x 6= 0. Note that
(R∞,≤, 0) forms an ω-cpo, where ≤ is the extension of the usual inequality on reals with
x ≤ ∞ for every x ∈ R∞. For each type τ , we interpret τ as the cpo JτK = (Xτ ,vτ ,⊥τ ),
defined by induction on τ :

XR = R∞

vR =≤
⊥R = 0

Xτ1→τ2 = {f ∈ Xτ1 → Xτ2 | f is monotonic and ω-continuous}
vτ1→τ2 = {(f1, f2) ∈ Xτ1→τ2 ×Xτ1→τ2 | ∀x ∈ Xτ1 .f1(x) vτ2 f2(x)}
⊥τ1→τ2 = λλx ∈ Xτ1 .⊥τ2

Xτ1×···×τk = Xτ1 × · · ·Xτk

vτ1×···×τk = {((x1, . . . , xk), (y1, . . . , yk)) | xi vτi yi for each i ∈ {1, . . . , k}}
⊥τ1×···×τk = (⊥τ1 , . . . ,⊥τk).

By abuse of notation, we often write JτK also for Xτ . We also often omit the subscript τ
and just write v and ⊥ for vτ and ⊥τ respectively. The interpretation of base type R can
actually be restricted to [0, 1], but for technical convenience (to make the existence of a
fixpoint trivial) we have defined XR as R∞.

For a type environment Γ, we write JΓK for the set of functions that map each x ∈ dom(Γ)
to an element of JΓ(x)K. Given ρ ∈ JΓK and e such that Γ ` e : τ , its semantics JeKρ ∈ JτK is
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defined by:

JrKρ = r

JxKρ = ρ(x)

JfKρ = ρ(f)

Je1 + e2Kρ = Je1Kρ + Je2Kρ
Je1 · e2Kρ = Je1Kρ · Je2Kρ

Je1e2Kρ = (Je1Kρ)(Je2Kρ)
J(e1, . . . , ek)Kρ = (Je1Kρ, . . . , JekKρ).

Given E such that Γ ` E , we write ρE for the least solution of E , i.e., the least ρ ∈ JΓK such that
Jf(x̃1) · · · (x̃`)Kρ{x̃1 7→ỹ1,...,x̃` 7→ỹ`} = JeKρ{x̃1 7→ỹ1,...,x̃` 7→ỹ`} for every equation f(x̃1) · · · (x̃`) = e ∈
E and (ỹ1) ∈ Jτ1K, . . . , (ỹ`) ∈ Jτ`K with Γ(f) = τ1 → · · · → τ` → R. Note that ρE always
exists, and is given by: ρE = lfp(FE) =

⊔
i∈ω F iE(⊥JΓK), where FE ∈ JΓK→ JΓK is defined as

the map such that

FE(ρ)(f) = λλ(ỹ1) ∈ Jτ1K. . . . λλ(ỹ`) ∈ Jτ`K.JeKρ{x̃1 7→ỹ1,...,x̃` 7→ỹ`}

for each f(x̃1) · · · (x̃`) = e ∈ E with Γ(f) = τ1 → · · · → τ` → R. Note that FE is continuous
in the ω-cpo JΓK.

Example 4.2. Let E be the system of equations in Example 4.1. Then, ρE is:{
f1 7→

3

7
, f2 7→ λλ g ∈ R→ R. λλ(x1, x2) ∈ R×R.g(x1 + x2), f3 7→ λλx ∈ R.

3

7
x

}
.

4.2. Order-n Fixpoint Characterization. We now give a translation from an order-n
PHORS G to a system of order-n fixpoint equations E , so that P(G, S) = ρE(S). The
translation is actually straightforward: we just need to replace e and Ω with the termination
probabilities 1 and 0, and probabilistic choices with summation and multiplication of

probabilities. The translation function (·)# is defined by:

(N ,R, S)# = (R#, S)

R# = {F x̃ = p · (tL)# + (1− p) · (tR)# | R(F ) = λx̃.tL ⊕p tR}

e# = 1 Ω# = 0 x# = x (st)# = s#t#.

We write EG for R#. We define the translation of types and type environments by:

o# = R

(κ1 → κ2)# = κ#
1 → κ#

2

(x1 : κ1, . . . , xn : κn)# = x1 : κ#
1 , . . . , xn : κ#

n .

The following lemma states that the output of the translation is well-typed.

Lemma 4.1. Let G = (N ,R, S) be an order-n PHORS. Then N# ` EG and N# ` S : R.

By the above lemma and the definition of the translation of type environments, it follows
that for an order-n PHORS G, the order of EG is also n. The following theorem states the
correctness of the translation (see Appendix B.1 for a proof).
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Theorem 4.2. Let G be an order-n PHORS. Then P(G) = ρEG (S).

Example 4.3. Recall G1 = (N1,R1, S) from Example 2.1:

N1 = {S 7→ o, F 7→ o→ o};
R1 = {S = F e ⊕1 Ω, F x = x ⊕p F (F x)}.

N#
1 = {S 7→ R, F 7→ R→ R}, and EG1 consists of: S = 1 · F (1) and F x = p · x+ (1− p) ·

F (F x). The least solution ρEG1 is

S =

{ p
1−p if 0 ≤ p < 1

2

1 if 1
2 ≤ p ≤ 1

F = λλx.

{ p
1−p · x if 0 ≤ p < 1

2

x if 1
2 ≤ p ≤ 1.

Example 4.4. Recall G3 from Example 2.3:

S = Listgen (Listgen Boolgen) e Boolgen k = k Listgen f k = k ⊕ 1
2

(f(Listgen f k)).

The corresponding fixpoint equations are:

S = Listgen (Listgen Boolgen) 1

Boolgen k = k

Listgen f k =
1

2
k +

1

2
(f(Listgen f k)).

By specializing Listgen for the cases f = Listgen Boolgen and f = Boolgen, we obtain:

S = ListgenList 1

Boolgen k = k

ListgenList k =
1

2
k +

1

2
(ListgenBool(ListgenList k))

ListgenBool k =
1

2
k +

1

2
(Boolgen(ListgenBool k)).

The least solution is:

S = 1 Boolgen k = ListgenList k = ListgenBool k = k.

4.3. Order-(n − 1) Fixpoint Characterization. We now characterize the termination
probability of order-n PHORS (where n > 0) in terms of order-(n− 1) equations, so that the
fixpoint equations are easier to solve. When n = 1, the characterization yields polynomial
equations on probabilities; thus the result below may be considered as a generalization of
the now classic result on the reachability problem for recursive Markov chains [24].

The basic observation (that is also behind the fixpoint characterization for recursive
Markov chains [24]) is that the termination behavior of an order-1 function of type o` → o

can be represented by a tuple of probabilities (p0, p1, . . . , p`), where (i) p0 is the probability
that the function terminates without using any of its arguments, and (ii) pi is the probability
that the function uses the i-th argument. To see why, consider a term f t1 · · · t` of type
o, where f is an order-1 function of type o` → o. In order for f t1 · · · t` to terminate, the
only possibilities are: (i) f terminates without calling any of the arguments, or (ii) f calls ti
for some i ∈ {1, . . . , `}, and ti terminates (notice, in this case, that none of the other tj ’s
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are called: since ti is of type o, once ti is called from f , the control cannot go back to f).
Thus, the probability that f t1 · · · t` terminates can be calculated by p0 + p1q1 + · · · p`q`,
where each qi denotes the probability that ti terminates. The termination probability is,
therefore, independent of the precise internal behavior of f ; only (p0, p1, . . . , p`) matters.
Thus, information about an order-1 function can be represented as a tuple of real numbers,
which is order 0. By generalizing this observation, we can represent information about an
order-n function as an order-(n− 1) function on (tuples of) real numbers. Since the general
translation is quite subtle and requires a further insight, however, let us first confirm the
above idea by revisiting Example 2.1.

Example 4.5. Recall G1 in Example 2.1, consisting of: S = F e and F x = x ⊕p F (F x).
Here, we have two functions: S of type o and F of type o→ o. Based on the observation
above, their behaviors can be represented by S0 and (F0, F1) respectively, where S0 (F0,
resp.) denotes the probability that S (F , resp.) terminates, and F1 represents the probability
that F uses the argument. Those values are obtained as the least solutions for the following
system of equations.

S0 = F0 + F1 · 1
F0 = p · 0 + (1− p)(F0 + F1 · F0)

F1 = p · 1 + (1− p)(F1 · F1 · 1).

To understand the last equation, note that the possibilities that x is used are: (i) F chooses
the left branch (with probability p) and then uses x with probability 1, or (ii) F chooses
the right branch (with probability 1− p), the outer call of F uses the argument F x (with
probability F1), and the inner call of F uses the argument x. By simplifying the equations,
we obtain:

S0 = F0 + F1

F0 = (1− p)(F0 + F1F0)

F1 = p+ (1− p)F 2
1 .

The least solution is the following:

F0 = 0 S0 = F1 =

{ p
1−p if 0 ≤ p < 1

2

1 if 1
2 ≤ p ≤ 1.

The translation for general orders is more involved. For technical convenience in
formalizing the translation, we assume below that the rules of PHORS do not contain e;
instead, the start symbol S (which is now a non-terminal of type o→ o) takes e from the
environment. Thus, the termination probability we consider is P(G, S e), where e does not
occur in R. This is without any loss of generality, since e can be passed around as an
argument without increasing the order of the underlying PHORS, if it is higher than 0.

To see how we can generalize the idea above to deal with higher-order functions, let us
now consider the following example of an order-2 PHORS:

S x = F (H x)x

F f y = f(f y)

H xy = x ⊕ 1
2

(y ⊕ 1
2

Ω).
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Suppose we wish to characterize the termination probability of S e, i.e., the probability that
S uses the first argument. (In this particular case, one can easily compute the termination
probability by unfolding all the functions, but we wish to find a compositional translation
so that it can work in the presence of recursion.) We need to compute the probability that

F (H x) x reaches (i.e., reduces to) x, which is the probability p1 that F (H x(1)) x(2) reaches

x(1), plus the probability p2 that F (H x(1)) x(2) reaches x(2); we have added annotations
to distinguish between the two occurrences of x. What information on F is required for
computing it? To compute p2, we need to obtain the probability that F uses the formal
argument y. Since it depends on f , we represent it as a function F1 defined by:

F1 f1 = f1 · f1.

Here, f1 represents the probability that the original argument f uses its first argument. We
can thus represent p2 as F1(H2), where H2 is 1

4 , the probability that f = H x uses the first
argument, i.e., the probability that H uses the second argument. Now let us consider how to
represent p1, the probability that F (H x(1))x(2) reaches x(1). We construct another function
F0 from the definition of F for this purpose. A challenge is that the variable x is not visible
in (the definition of) F ; only the caller of F knows the reachability target x. Thus, we
pass to F0, in addition to f1 above, another argument f0, which represents the probability
that the argument f reaches the current target (which is x in this case). Therefore, p1 is
represented as F0 (H1, H2), where

F0 (f0, f1) = f0 + f1 · f0 H1 =
1

2
.

In f0 + f1 · f0, the occurrence of f0 on the lefthand side represents the probability that
the outer call of f in f(f x) reaches the target (without using (f x)), and f1 · f0 represents
the probability that the outer call of f uses the argument f x, and then the inner call of f
reaches the target. Now, the whole probability that S uses its argument is represented as
S1, where

S1 = F0(H1, H2) + F1(H2),

with Fi’s and Hi’s being as defined above. Note that the order of the resulting equations is
one. In summary, as information about an order-1 argument f of arity k, we pass around a
tuple of real numbers (f0, f1, . . . , fk) where fi (i > 0) represents the probability that the
i-th argument is reached, and f0 represents the probability that the “current target” (which
is chosen by a caller) is reached.

A further twist is required in the case of order-3 or higher. Consider an order-3 function
G defined by:

G h z = h (H z) z

where G : ((o→ o)→ o→ o)→ o→ o, and H is as defined above. Following the definition
of F1 above, one may be tempted to define G1 (for computing the reachability probability
to z) as G1 h1 = · · ·, where h1 is a function to be used for computing the probability that
h uses its order-0 argument. However, h1 is not sufficient for computing the reachability
probability to z; passing the reachability probability to the current target (like f0 above)
does not help either, since a caller of G does not know the current target z. We thus need
to add an additional argument h2 for computing the probability to a target that is yet to be
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set by a caller of h. Thus, the definition of G1 is:2

G1 (h1, h2) = h2(H1, H2) + h1(1).

Here, h2(H1, H2) and h1(1) respectively represent the probabilities that G (H z(1)) z(2)

reaches z(1), and z(2). The first argument of h2 (i.e., H1) represents the probability that
H z reaches z, and H2 represents the probability that H z reaches its argument (the second
argument of H).

We can now formalize the general translation based on the intuitions above. We
often write κ1 → · · · → κk ⇒ o` → o for κ1 → · · · → κk → o` → o when either
order(κk) > 0 or k = 0. We define ar(κ) as the number of the last order-0 arguments, i.e.,
ar(κ1 → · · · → κk ⇒ o` → o) = `.

Given a rule F z1 . . . zm = tL ⊕p tR of PHORS, we uniquely decompose z1, . . . , zm
into two (possibly empty) subsequences z1, . . . , z` and z`+1, . . . , zm so that the order of z`
is greater than 0 if ` > 0 (note, however, that the orders of z1, . . . , z`−1 may be 0), and
z`+1, . . . , zm are order-0 variables (in other words, z`+1, . . . , zm is the maximal postfix of
z1, . . . , zm consisting of only order-0 variables). Since (the last consecutive occurrences of)
order-0 arguments will be treated in a special manner, as a notational convenience, when we
write F ỹ x̃ = tL ⊕p tR for a rule of PHORS, we implicitly assume that x̃ is the maximal
postfix of the sequence ỹ x̃ consisting of only order-0 variables. Similarly, when we write
F s̃ t̃ for a fully-applied term (of order 0), we implicitly assume that t̃ is the maximal postfix
of the sequence of arguments, consisting of only order-0 terms.

Consider a function definition of the form:

F y1 · · · ym x1 · · · xk = tL ⊕p tR
where (following the notational convention above) the sequence x1, . . . , xk is the maximal
postfix of y1, . . . , ym, x1, . . . , xk consisting of only order-0 variables. We transform each
subterm t of the righthand side tL ⊕p tR by using the translation relation of the form:

K;x1, . . . , xk `N t : κ (e0, e1, . . . , e`+k+1)

where N and K are type environments for the underlying non-terminals and y1, . . . , ym
respectively, and κ is the type of t with ar(κ) = `. We often omit the subscript N . The
output of the translation, (e0, e1, . . . , e`+k+1), can be interepreted as capturing the following
information.

• e0: the reachability probability (or a function that returns the probability, given appropriate
arguments; similarly for the other ei’s below) to the current target (set by a caller of F ).
• ei (i ∈ {1, . . . , `}): the reachability probability to t’s i-th argument.
• e`+i (i ∈ {1, . . . , k}): the reachability probability to xi.
• e`+k+1: the reachability probability to a “fresh” target (that can be set by a caller of t);

this is the component that should be passed as h2 in the discussion above. In a sense, this
component represents the reachability probability to a variable xk+1 that is “fresh” for t
(in that it does not occur in t).

In the translation, each variable y (including non-terminals) of type κ̃⇒ om → o is replaced
by (y0, y1, . . . , ym, ym+1), which represents information analogous to (e0, e1, . . . , e`, e`+k+1):
y0 represents (a function for computing) the reachability probability to the current target,
yi (i ∈ {1, . . . ,m}) represents the reachability probability to the i-th order-0 argument

2 For the sake of simplicity, the following translation slightly deviates from the general translation defined
later.
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K;x1, . . . , xk `N Ω : o (0k+2)
(Tr-Omega)

K;x1, . . . , xk `N xi : o (0i, 1, 0k−i+1)
(Tr-GVar)

K(y) = κ̃⇒ o` → o

K;x1, . . . , xk `N y : κ̃⇒ o` → o (y0, y1, . . . , y`, (y`+1)k+1)
(Tr-Var)

N (F ) = κ̃⇒ o` → o

K;x1, . . . , xk `N F : κ̃⇒ o` → o (F0, F1, . . . , F`, (F0)k+1)
(Tr-NT)

K;x1, . . . , xk `N s : κ1 → κ̃⇒ o` → o (s0, . . . , s`+k+1)
K;x1, . . . , xk `N t : κ1  (t0, . . . , t`′+k+1) ar(κ1) = `′

K; x̃ `N st : κ̃⇒ o` → o (s0(t0, . . . , t`′ , t`′+k+1), s1(t1, . . . , t`′ , t`′+k+1), . . . , s`(t1, . . . , t`′ , t`′+k+1),
s`+1(t`′+1, t1, . . . , t`′ , t`′+k+1) . . . , s`+k+1(t`′+k+1, t1, . . . , t`′ , t`′+k+1))

(Tr-App)

K;x1, . . . , xk `N s : o`+1 → o (s0, . . . , sk+`+2) K;x1, . . . , xk `N t : o (t0, . . . , tk+1)

K;x1, . . . , xk `N st : o` → o (s0 + s1 · t0, s2, . . . , s`+1, s`+2 + s1 · t1, . . . , s`+k+2 + s1 · tk+1)
(Tr-AppG)

y1 : κ1, . . . , y` : κ`;x1, . . . , xk `N td : o (td,0, . . . , td,k+1) for each d ∈ {L,R}
ỹi = (yi,0, . . . , yi,ar(κi)+1) ỹi

′ = (yi,1, . . . , yi,ar(κi)+1)

N ` (F ỹ x1 · · · xk = tL ⊕p tR) 
{Fi ỹ1′ · · · ỹ`′ = ptL,i + (1− p)tR,i | i ∈ {1, . . . , k}} ∪ {F0 ỹ1 · · · ỹ` = ptL,0 + (1− p)tR,0}

(Tr-Rule)

E =
⋃
{Ei | N ` (F ỹ x1 · · · xk = tL ⊕p tR) Ei, (F ỹ x1 · · · xk = tL ⊕p tR) ∈ R}

(N ,R, S) (E , S1)
(Tr-Gram)

Figure 5. Translation rules for the order-(n− 1) fixpoint characterization

(among the last m argument), and ym+1 (which corresponds to h2 in the explanation above)
represents the reachability probability to a fresh target (to be set later). In contrast, the
variables x1, . . . , xk will be removed by the translation.

The translation rules are given in Figure 5. In the rules, to clarify the correspondence
between source terms and target expressions, we use metavariables s, t, . . . (with subscripts)
also for target expressions (instead of e). We write ek for the k repetitions of e.

We now explain the translation rules. In rule Tr-Omega for the constant Ω, all the
components are 0 because Ω represents divergence. There is no rule for e; this is due to
the assumption that e never occurs in the rules. Rule Tr-GVar is for order-0 variables,
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for which only one component is 1 and all the others are 0. The (i + 1)-th component is
1, because it represents the probability that xi is reached. In rule Tr-Var for variables,
the first `+ 1 components are provided by the environment. Since y (that is provided by
the environment) does not “know” the local variables x1, . . . , xk (in other words, y cannot
be instantiated to a term that contains xi), the default parameter y`+1 (for computing the
reachability probability to a “fresh” target are fresh ) is used for all of those components. The
rule Tr-NT for non-terminals is almost the same as Tr-Var, except that F0 is used instead
of F`+1; this is because F does not contain any free variables, the reachability target for F is
not set yet, hence F0 can be used for computing the reachability probability to a fresh target.
Rule Tr-App is for applications. Basically, the output of the translation of t is passed to si;
note however that t0 is passed only to s0; since s1, . . . , s`+k should provide the reachability
probability to order-0 arguments of s or local variables, the reachability probability to the
current target (that is represented by t0) is irrelevant for them. For s`+1, . . . , s`+k, the
reachability targets are x1, . . . , xk; thus, information about how t reaches those variables is
passed as the first argument of s`+1, . . . , s`+k. For the last component, s`+k+1 and t`′+k+1

are used so that the reachability target can be set later. In rule Tr-AppG, the reachability
probability to the current target (expressed by the first component) is computed by s0 +s1 ·t0,
because the current target is reached without using t (as represented by s0), or t is used (as
represented by s1) and t reaches the current target (as represented by t0); similarly for the
reachability probability to local variables. Tr-Rule is the rule for translating a function
definition. From the definition for F , we generate definitions for functions F0, . . . , Fk. For
i ∈ {1, . . . , k}, td,i is chosen as the body of Fi, since it represents the reachability probability
to xi. Rule Tr-Gram is the translation for the whole PHORS; we just collect the output of
the translation for each rule.

For a PHORS G = (N ,R, S) (where N (S) = o → o), we write ErefG for E such that
(N ,R, S) (E , S1). Such an E is actually unique (up to α-equivalence), given N ,R. Note
also that by definition of the translation relation, the output of the translation always exists.

Example 4.6. Recall the order-2 PHORS G2 in Example 2.2:

S = F H H x = x ⊕ 1
2

Ω F g = (g e) ⊕ 1
2

(F (Dg)) Dg x = g (g x).

It can be modified to the following rules so that e does not occur.

S z = F H z H x = x ⊕ 1
2

Ω

F g z = (g z) ⊕ 1
2

(F (Dg) z) Dg x = g (g x).

Here, e can be passed around through the variable z. Consider the body F H z of S. F and
H are translated as follows.

N ; z ` F : (o→ o)→ o→ o (F0, F1, F0, F0)
N ; z ` H : o→ o (H0, H1, H0, H0)

By applying Tr-App, we obtain:

N ; z ` F H : o→ o (F0(H0, H1, H0), F1(H1, H0), F0(H0, H1, H0), F0(H0, H1, H0)).

Using Tr-GVar, z can be translated as follows.

N ; z ` z : o (0, 1, 0).
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Thus, by applying Tr-AppG, we obtain:

N ; z ` F H z : o 
(F0(H0, H1, H0) + F1(H1, H0) · 0,
F0(H0, H1, H0) + F1(H1, H0) · 1, F0(H0, H1, H0) + F1(H1, H0) · 0).

By simplifying the output, we obtain:

N ; z ` F H z : o (F0(H0, H1, H0), F0(H0, H1, H0) + F1(H1, H0), F0(H0, H1, H0)).

Thus, we have the following equations for S0 and S1.

S0 = F0(H0, H1, H0) S1 = F0(H0, H1, H0) + F1(H1, H0).

The following equations are obtained for the other non-terminals.

H0 = 0 H1 =
1

2

F0 (g0, g1, g2) =
1

2
g0 + F0(D0(g0, g1, g2), D1(g1, g2), D0(g2, g1, g2))

F1 (g1, g2) =
1

2
(g1 + g2) +

1

2
(F0(D0(g2, g1, g2), D1(g1, g2), D0(g2, g1, g2))

+ F1(D1(g1, g2), D0(g2, g1, g2))

D0(g0, g1, g2) = g0 + g1g0

D1(g1, g2) = g2 + g1(g1 + g2).

We can observe that the values of the variables g0 and g2 are always 0. Thus, by removing
redundant arguments, we obtain:

S0 = F0(
1

2
)

S1 = F0(
1

2
) + F1(

1

2
)

F0(g1) = F0(D1(g1))

F1(g1) =
1

2
g1 +

1

2
(F0(D1(g1)) + F1(D1(g1)))

D0(g1) = 0

D1(g1) = g2
1.

By further simplification (noting that the least solution for F0 is λg1.0), we obtain:

S1 = F1(1
2) F1(g1) = 1

2g1 + 1
2F (g2

1).

The least solution of S1 is Σi≥0
1

22i+i+1
= 0.3205 · · ·.

Example 4.7. Consider the following order-3 PHORS:

S x = F (C x) F g = g H C xf = f x H x = x ⊕ 1
2

Ω,

where
S : o→ o, F : ((o→ o)→ o)→ o, C : o→ (o→ o)→ o, H : o→ o.
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This is a tricky example, where in the body of S, x is embedded into the closure C x and
passed to another function F ; so, in order to compute how S uses x, we have to take into
account how F uses the closure passed as the argument. The PHORS is translated to:

S0 = F0(C0(0, 0), C0(0, 0))

S1 = F0(C0(1, 0), C0(0, 0))

F0 (g0, g1) = g0(H0, H1, H0)

C0 (x0, x1) (f0, f1, f2) = f0 + f1 · x0

H0 = 0 H1 =
1

2
,

where

S0 : R, S1 : R,

F0 : (R× R× R→ R)× (R× R× R→ R)→ R,

C0 : (R× R)→ (R× R× R)→ R,

H0 : R, H1 : R.

The order of the equations is 2 (where the largest order is that of the type of F0). We have:

S1 = F0(C0(1, 0), C0(0, 0)) = C0(1, 0)(H0, H1, H0) = H0 +H1 · 1 =
1

2
.

In fact, the probability that S e reaches e is 1
2 .

Example 4.8. Recall PHORS G5 from Example 2.3:

S x = Treegen H Boolgen x

Boolgen k = k ⊕ 1
2
k

H x y = x ⊕ 1
2
y

G p x y = x ⊕ 1
2

(p x y)

Treegen p f k = p k(f(Treegen (G p) f (Treegen (G p) f (Treegen (G p) f k)))).

(Here, we have slightly modified the original PHORS so that S is parameterized with
e.) As the output of the translation as defined above is too complex, we show below a
hand-optimized version of the fixpoint equations.

S1 = Treegen1 (H1, H2)

H1 = H2 =
1

2

G1 (p1, p2) =
1

2
+

1

2
p1

G2 (p1, p2) =
1

2
p2

Treegen1 (p1, p2) = p1 + p2 · (Treegen1 (G1(p1, p2), G2(p1, p2)))3.

Here, Treegen1 is the function that returns the probability that Treegen p Boolgen x reaches
x, where the parameters p1 and p2 represent the probability that p chooses the first and
second branches respectively. Let ρ be the least solution of the fixpoint equations above.
We can find ρ(S1) = 1 based on the following reasoning (which is also confirmed by the
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experiment reported in Section 6). Let us define an m-th approximation Treegen
(m)
1 of

ρ(Treegen1) by

Treegen
(0)
1 (p1, p2) = 0

Treegen
(m+1)
1 (p1, p2) = p1 + p2 · (Treegen

(m)
1 (G1(p1, p2), G2(p1, p2)))3.

Then ρ(Treegen1) (p1, p2) ≥ Treegen
(m)
1 (p1, p2) for every m ≥ 0. We show Treegen

(m)
1 (1−

1
2n ,

1
2n ) ≥ 1− 1

2n+m−1 for every n ≥ 2, m ≥ 1 by induction on n. When m = 1, we have:

Treegen
(1)
1 (1− 1

2n
,

1

2n
) = (1− 1

2n
) +

1

2n
· 0 = 1− 1

2n
= 1− 1

2n+m−1
.

For the inductive step, we have

Treegen
(m+1)
1 (1− 1

2n
,

1

2n
) = 1− 1

2n
+

1

2n
· (Treegen

(m)
1 (1− 1

2n+1
,

1

2n+1
)))3

≥ 1− 1

2n
+

1

2n
· (1− 1

2n+m
)3

≥ 1− 1

2n
+

1

2n
· (1− 3

1

2n+m
)

≥ 1− 1

22n+m−2
≥ 1− 1

2n+(m+1)−1

as required. Thus,

Treegen
(m)
1 (

1

2
,
1

2
) =

1

2
+

1

2
Treegen

(m−1)
1 (1− 1

22
,

1

22
) ≥ 1

2
+

1

2
(1− 1

2(2+(m−1)−1)
)

for every m ≥ 2. Thus, ρ(S1) = ρ(Treegen1)(1
2 ,

1
2) (which should be no less than

Treegen
(m)
1 (1

2 ,
1
2) for every m) must be 1.

4.4. Correctness of the Translation. To state the well-formedness of the output of the
translation, we define the translation of types as follows.

(κ1 → · · · → κk ⇒ o` → o)
†

= (κ1
† → · · · → κk

† → R)× (κ1
†′ → · · · → κk

†′ → R)` × (κ1
† → · · · → κk

† → R)

(κ1 → · · · → κk ⇒ o` → o)
†′

= (κ1
†′ → · · · → κk

†′ → R)` × (κ1
† → · · · → κk

† → R).

We also write (κ1 → · · · → κk ⇒ o` → o)
†+m

for

(κ1
† → · · · → κk

† → R)× (κ1
†′ → · · · → κk

†′ → R)` × (κ1
† → · · · → κk

† → R)m+1.

It represents the type of the tuple (e0, . . . , e`+m+1) obtained by translating a term of type
κ1 → · · · → κk ⇒ o` → o with order-0 variables x1, . . . , xm. The distinction between κi

† and
κi
†′ reflects the fact that in the output (e0, e1, . . . , e`, e`+1, . . . , e`+m+1) of the translation,

e1, . . . , e` take one less argument (recall Tr-App). The translation of the type environment
N for non-terminals is defined by:

(F1 : κ1, . . . , Fk : κk)
† = (F1,0, . . . , F1,ar(κ1)) : κ†1, . . . , (Fk,0, . . . , Fk,ar(κk)) : κ†k.

The following lemma states that the output of the translation is well-typed.
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Lemma 4.3 (Well-typedness of the output of transformation). Let G = (N ,R, S) be a
PHORS. If N ` R (E , S1), then N † ` E and N †(S1) = R.

As a corollary, it follows that for any order-n PHORS G (where n > 0), the order of ErefG is
n− 1.

The following result is the main theorem of this section, which states the correctness of
the translation.

Theorem 4.4. Let G = (N ,R, S) be an order-n PHORS, Then, P(G, S e) = ρErefG (S1).

A proof of the theorem is found in Appendix B.2. Here we only sketch the proof. We
first prove the theorem for recursion-free PHORS (so that any term is strongly normalizing;
see Appendix B.1 for the precise definition), and extend it to general PHORS G by using
finite approximations of G, obtained by unfolding each non-terminal a finite number of times.
To show the theorem for recursion-free PHORS, we prove that the translation relation is
preserved by reductions in a certain sense; this is, however, much more involved than the
corresponding proof for Section 4.2: we introduce an alternative operational semantics for
PHORS that uses explicit substitutions. See Appendix B.2 for details.

5. Computing Upper-Bounds of Termination Probability

Theorems 4.2 and 4.4 immediately provide procedures for computing lower -bounds of
the termination probability as precisely as we need (cf. Theorem 2.1). The termination
probability, in other words, is a recursively enumerable real number (see, e.g. [11]), but it is
still open whether it is a recursive one. Indeed, computing good upper-bounds is non-trivial.
For example, an upper-bound for the greatest solution of ErefG can be easily computed, but

it does not provide a good upper-bound for the least solution of ErefG , unless the solution is
unique. Take, as an example, the trivial PHORS consisting of a single equation S = S: the
greatest solution is 1, while the least is 0.

In this section, we will describe how upper approximations to the termination probability
can be computed in practice. We focus our attention mainly on order-2 PHORS, which yield
equations over first-order functions on real numbers. Order-n case is only briefly discussed
in Section 5.3.

5.1. Properties of the Fixpoint Equations Obtained from PHORS. Before dis-
cussing how to compute an upper-bound of the termination probability, we first summarize
several important properties of the (order-1) fixpoint equations obtained from an order-2
PHORS (by the translation in Section 4.3), which are exploited in computing upper-bounds.

(1) The fixpoint equations are of the form:

f1(x1, . . . , x`1) = e1, · · · fk(x1, . . . , x`k) = ek, (5.1)

where each ei consists of (i) non-negative constants, (ii) additions, (iii) multiplications,
and (iv) function applications. Each variable xi ranges over [0, 1].

(2) The formal arguments x1, . . . , x`i of each function fi can be partitioned into several
groups of variables (x1, . . . , xdi,1), (xdi,1+1, . . . , xdi,2), . . . , (xdgi−1+1, . . . , x`i), so that the
relevant input values are those such that the sum of the values of the variables in each
group ranges over [0, 1]. This is because each group of variables (xdi,j−1+1, . . . , xdi,h)
either corresponds to an order-0 argument (and has thus length 1) or to an order-1
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argument of an order-2 function Fi of the original PHORS, where one of the variables
represents the probability that Fi terminates without using any arguments, and each of
the other variables represents the probability that Fi uses each argument of Fi. Since
these events are mutually exclusive, the sum of those values ranges over [0, 1].

(3) The functions f1, . . . , fk can also be partitioned into several groups of functions
(f1, . . . , fj1), (fj1+1, . . . , fj2), . . . , (fj`−1+1, . . . , fj`), so that the sum (fjm−1+1(x̃) + · · ·+
fjm(x̃) of the return values of the functions in each group ranges over [0, 1] (assuming
that the arguments x̃ are in the valid domain, i.e., the sum of x̃ ranges over [0, 1]).
This is because an order-2 function Fi is translated to a tuple of order-1 functions
(Fi,0, . . . , Fi,j), and the components of the tuple return the probabilities to reach mu-
tually different targets.3 We write fgrp(f) for the partition that f belongs to, i.e.,
fgrp(fi) = {fjm−1+1, . . . , fjm} if jm−1 + 1 ≤ i ≤ jm.

(4) Suppose that (x1, . . . , x`i) ranges over the valid domain of fi. Then, the value of each
subexpression of ei ranges over [0, 1]; this is because each subexpression represents
some probability. This invariant is not necessarily preserved by simplifications like
1
2x+ 1

2y = 1
2(x+ y); the value of x+ y may not belong to [0, 1]. We apply simplifications

only so that the invariant is maintained.

The properties above can be easily verified by inspecting the translations from Section 4.3.
Finally, another important property is pointwise convexity. The least solution f of the

fixpoint equations, as well as any finite approximations obtained from ⊥ by Kleene iterations,
are pointwise convex, i.e., convex on each variable, i.e., f(x1, . . . , (1− p)x+ py, . . . , xn) ≤
(1− p)f(x1, . . . , x, . . . , xn) + pf(x1, . . . , y, . . . , xn) whenever 0 ≤ p ≤ 1 and 0 ≤ x, y. Note,
however, that f is not necessarily convex in the usual sense: f((1− p)~x+ p~y) ≤ (1− p)f(~x) +

pf(~y) may not hold for some ~0 ≤ ~x, ~y and 0 ≤ p ≤ 1. For example, let f(x1, x2) be x1 · x2.
Then, 1

4 = f(1
2 ,

1
2) = f(1

2(0, 1) + 1
2(1, 0)) > 1

2f(0, 1) + 1
2f(1, 0) = 0. Recall that FErefG is the

functional associated with the fixpoint equations ErefG ; we simply write F for FErefG below.

Lemma 5.1. Fm(⊥) and lfp(F) are both pointwise convex. They are also monotonic.

Proof. The pointwise convexity and monotonicity of Fm(⊥) follow from the fact that,
following our first observation, it is (a tuple of) multi-variate polynomials with non-negative
integer coefficients. The pointwise convexity of lfp(F) follows from the fact that, for every
m, when ~x and ~y differ by at most one coordinate,

(1− p)lfp(F)(~x) + plfp(F)(~y) ≥ (1− p)Fm(⊥)(~x) + pFm(⊥)(~y)
≥ Fm(⊥)((1− p)~x+ p~y)

and we can then take the supremum to conclude. The monotonicity of lfp(F) also follows
from a similar argument.

5.2. Computing an Upper-Bound by Discretization. Given fixpoint equations as in
(5.1), we can compute an upper-bound of the least solution of the equations, by overapproxi-
mating the values of f1, . . . , fk at a finite number of discrete points, à la “Finite Element
Method”. To clarify the idea, we first describe a method for the simplest case of a single
equation f(x) = e on a unary function in Section 5.2.1. We then extend it to deal with a

3According to the translation in Section 4.3, the first element Fi,0 takes one more argument than the
other elements; for the sake of simplicity, we assume in this section that all the functions in each partition
take the same number of arguments, by adding dummy arguments as necessary.
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binary function in Section 5.2.2, and discuss the general case (where we need to deal with
multiple equations on multi-variate functions) in Section 5.2.3.

5.2.1. Computing an Upper-Bound for a Unary Function. Suppose that we are given a
PHORS G and that ErefG consists of a single equation f(x) = e, where f is a function f from
[0, 1] to [0, 1], and where e consists of non-negative real constants x, additions, multiplications,
and applications of f . We abstract f to a sequence of real numbers (r0, . . . , rn) ∈ [0, 1]n+1,
where ri represents the value of f( in). Thus, the abstraction function α mapping any function

f : [0, 1]→ [0, 1] to its abstract form [0, 1]n+1 is defined by

α(f) =

(
f

(
0

n

)
, f

(
1

n

)
, . . . , f

(n
n

))
.

We write γ for any concretization function γ, mapping any element of [0, 1]n+1 back to a
function in [0, 1]→ [0, 1]. The idea here is that if γ satisfies certain axioms, to be discussed
later, then we can obtain an upper-bound of the least solution of f = F(f) by solving the
following system of inequalities on the real numbers ~r = (r0, . . . , rn):

~r ≥ α(F(γ(~r))). (5.2)

Let F̂ be the functional λλ~s.α(F(γ(~s))). Notice that solutions to (5.2) are precisely the

pre-fixpoints of F̂ , and we will thus call them abstract pre-fixpoints of F .
There are at least two degrees of freedom here:

(1) How could we define the concretization function? Here we have at least two
choices (see Figure 6):

(a) γ(~r) could be the step function f̂ such that f̂(0) = r0 and f̂(x) = ri if x ∈ ( i−1
n , in ].

(b) γ(~r) could be the piecewise linear function f̂ such that f̂(x) = ri+
x− i

n
1
n

(ri+1− ri)(=

(i+ 1− nx)ri + (nx− i)ri+1) if x ∈ [ in ,
i+1
n ].

The first choice turns (α, γ) into a Galois insertion. The second choice is itself valid
despite not being a Galois insertion: if an abstraction ~r majorizes α(f) for some pointwise
convex function f , we immediately have γ(~r) ≥ f . This way, γ satisfies the assumption
of Lemma 5.2 below.

(2) How could we solve inequalities? Again, we have at least two choices.
(c) Use the decidability of theories of real arithmetic (e.g., minimize

∑
i ri so that all

the inequalities are satisfied).
(d) Abstract also the values of ~r so that they can take only finitely many discrete values,

say, 0, 1
m , . . . ,

m−1
m , 1. The inequality (5.2) is then replaced by:

~s ≥ αh(α(F(γ(~s)))),

where every si is the “discretized version” of ri, and the abstraction function αh,

given a tuple of reals as an input, replaces each element r ∈ [0, 1] with drmem . Since
they are now inequalities over a finite domain, we can obtain the least solution by a
finite number of Kleene iterations, starting from ~s = ~0.

The following lemma ensures that the inequality (5.2) is indeed a sufficient condition for
γ(~r) to be an upper-bound on lfp(F). Note that both step functions and stepwise linear
functions satisfy the assumption of the lemma below.
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y=f(x)

x

y

1

1

O

y

1

x
1O

y=f(x)

Figure 6. Overapproximation by a step-function (left) and a stepwise linear
function (right)

Lemma 5.2. Suppose that the concretization function γ is monotonic, and that ~r ≥ α(f)
implies γ(~r) ≥ f for every pointwise convex f . Then, any abstract pre-fixpoint of F is an
upper bound of lfp(F).

Proof. First, we show that γ(F̂m(⊥)) ≥ Fm(⊥) holds for every m, by induction on m. The
base case m = 0 is trivial, since F0(⊥) = ⊥. If m > 0, then we have

F̂m(⊥) = α(F(γ(F̂m−1(⊥)))) ≥ α(F(Fm−1(⊥))) = α(Fm(⊥)).

Since, by hypothesis, ~r ≥ α(Fm(⊥)) implies that γ(~r) ≥ Fm(⊥) (since Fm(⊥) is pointwise

convex), we can conclude that γ(F̂m(⊥)) ≥ Fm(⊥). Now, suppose ~r is an abstract pre-

fixpoint of F . Then γ(~r) ≥ γ(F̂m(~r)) ≥ γ(F̂m(⊥)) ≥ Fm(⊥), and as F is ω-continuous, we
have γ(~r) ≥ supm∈ω Fm(⊥) = lpf(F) as required.

Below we consider the combination of (b) and (d). Figure 7 shows a pseudo code for
computing an upper-bound of f(c) for the least solution f of f(x) = e and c ∈ [0, 1]. In the

figure, αh(x) = dmxe
m . The algorithm terminates under the assumptions that (i) e consists

of non-negative constants, x, +, ·, and applications of f , and (ii) every subexpression of e
evaluates to a value in [0, 1] (if x ∈ [0, 1] and f ∈ [0, 1]→ [0, 1]), which are satisfied by the
fixpoint equations obtained from a PHORS (recall Section 5.1).

Example 5.1. Consider f(x) = 1
4x+ 3

4f(f(x)) and let n = 2 and m = 4. The value r(j) of
r after the j-th iteration is given by:

r(0) = [0, 0, 0]; r(1) = [0, 0.25, 0.25]; r(2) = [0, 0.25, 0.5]; r(3) = [0, 0.25, 0.5].

Thus, the upper-bound obtained for f(1) is 0.5. The exact value of f(1) = 1
3 . A more precise

upper-bound is obtained by increasing the values of n and m. For example, if n = 16 and
m = 256, the upper-bound (obtained by running the tool reported in a later section) is
0.3398 · · ·.
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main(e, c){
r := [0, . . . , 0]; r′ := [1, . . . , 1] (* dummy *);

while not(r=r′) do {
r′ := r; (* copy the contents of array r to r′ *)
for each i ∈ {0, . . . , n} do r′[i] := αh(eval(e, {f 7→ r, x 7→ i

n}))};
return apply(r, c); }

apply(r, c) { (* apply the function represented by array r to c *)

i := bncc; (* i
n ≤ c < i+1

n *)

return (i+ 1− nc)r[i] + (nc− i)r[i+ 1]; }
eval(e, ρ){
match e with

x → return ρ(x) | c → return c
| f(e′) → return apply(ρ(f), eval(e′, ρ))
| e1 + e2 → return eval(e1,ρ)+eval(e2,ρ)
| e1 · e2 → return eval(e1,ρ)·eval(e2,ρ) }

Figure 7. Pseudo code for computing an upper-bound of f(c) where f(x) =
e (unary function case)

5.2.2. Computing an upper-bound for a binary function. We now consider a fixpoint equation
of the form f(x1, x2) = e, where x1 and x2 are such that 0 ≤ x1, x2, and x1 + x2 ≤ 1. Such
an equation is obtained from an order-2 PHORS by using the fixpoint characterization in
the previous section. A new difficulty compared with the unary case is that f(x1, x2) may
take a value outside [0, 1], or may even be undefined for (x1, x2) ∈ [0, 1]× [0, 1] such that
x1 + x2 > 1. Figure 8 shows how we discretize the domain of f . The grey-colored and
red-colored areas show the valid domain of f , for which we wish to approximate f(x1, x2)
using the values at discrete points. An upper-bound of the value of f at a point (x1, x2)
in the grey area can be obtained by (pointwise) linear interpolations from (upper-bounds
of) the values at the surrounding four points, i.e., ( i1n ,

i2
n ), ( i1n ,

i2+1
n ), ( i1+1

n , i2n ), ( i1+1
n , i2+1

n )

where x1 ∈ [ i1n ,
i1+1
n ] and x2 ∈ [ i2n ,

i2+1
n ], as follows.

f̂(x1, x2)

= (i2 + 1− nx2)f̂(x1,
i2
n ) + (nx2 − i2)f̂(x1,

i2+1
n )

= (i2 + 1− nx2)(i1 + 1− nx1)f̂( i1n ,
i2
n )

+(i2 + 1− nx2)(nx1 − i1)f̂( i1+1
n , i2n )

+(nx2 − i2)(i1 + 1− nx1)f̂( i1n ,
i2+1
n )

+(nx2 − i2)(nx1 − i1)f̂( i1+1
n , i2+1

n ).

Note that f̂(x, y) ≥ f(x, y) at the four points imply that f̂(x1, x2) ≥ f(x1, x2), because
f(x, y) is convex on each of x and y (recall Section 5.1).

A difficulty is that to estimate the value of f at a point in the red area, we need the value
at a red point ♦, but the value of f at the red point may be greater than 1 or even ∞, being
outside f ’s domain. To this end, we discretized the codomain of f to {0, 1

m , . . . ,
mh−1
m , h,∞}

(instead of {0, 1
m , . . . ,

m−1
m , 1}) for some h ≥ 1. Any value greater than h is approximated to

∞. The value at a point in the red area is then approximated in the same way as for the
case of a point in the grey area, except that if f̂( i1+1

m , i2+1
m ) =∞, then f̂(x1, x2) = 1.
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x 

y 

O 1 

1 

Figure 8. Discretization in the case of a binary function f(x, y), whose
domain is {(x, y) | 0 ≤ x, 0 ≤ y, x + y ≤ 1} (i.e., the grey and red areas).
Outside the domain, the value of f(x, y) may not belong to [0, 1], or may be
even undefined. The value at a point in the grey area can be estimated by
using those at discrete points •. To estimate the value at a point in the red
area, we also need the value of f(x, y) at a point marked by ♦.

A further complication arises when the equation contains function compositions, as
in f(x1, x2) = E[f(f(x1, x2), x2)] where E denotes some context. In this case, the point

(f̂(x1, x2), x2) may even be outside the area surrounded by ♦ and •-points either if (x1, x2) is

a ♦-point or if (x1, x2) is a •-point but f̂(x1, x2)+x2 is too large due to an overapproximation.

In such a case, (f̂(x1, x2), x2) belongs to the purple area (lower left triangles) in the figure.
To this end, we also compute (upper-bounds of) the values at points marked by 4 and

use them to estimate the value at a point in the purple area. If the point (f̂(x1, x2), x2)
is even outside the area surrounded by •, ♦, or 4, then we use ∞ as an upper-bound of
f(f(x1, x2), x2) if (x1, x2) is a ♦-, or 4-point, and 1 if (x1, x2) is a •-point.

Except the above differences, the overall algorithm is similar to the unary case in
Figure 7, and essentially the same soundness argument as Lemma 5.2 applies.

Example 5.2. Consider f(x1, x2) = x1 + x2(f(x1, x2))2, and let n = m = 2. The value of

r =

 r0,2 r1,2 r2,2

r0,1 r1,1 r2,1

r0,0 r1,0 r2,0

, where ri,j is an upper-bound of the value of f( i2 ,
j
2), changes as

follows. 0 0 0
0 0 0
0 0 0

 −→
 0 0.5 1

0 0.5 1
0 0.5 1

 −→
 0 1 ∞

0 1 ∞
0 0.5 1

 −→
 0 ∞ ∞

0 1 ∞
0 0.5 1


Thus, for example, f(0, 0.5) and f(0.3, 0.3) are overapproximated respectively by 0 and

0.36f̂(0.5, 0.5)+0.24f̂(0.5, 0)+0.24f̂(0, 0.5)+0.16f̂(0, 0) = 0.48. The exact values for f(0, 0)
and f(0.3, 0.3) are 0 and 1

3 ; so the upper-bound for f(0.3, 0.3) is sound but imprecise. By
choosing n = 16 and m = 256, we obtain 0.3359 · · · as an upper-bound of f(0.3, 0.3).

This is an example where the values of f at red points in Figure 8 are ∞. The exact
value of f(x1, x2) for general x1 and x2 is given by:

f(x1, x2) =

{
x1 if x2 = 0
1−
√

1−4x1x2
2x2

if x1 > 0
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Thus, f(0.5, 0.5) = 1, but f(x1, x2) is undefined whenever x1x2 > 0.25; in particular f(0.5, 1)
and f(1, 0.5) (the values of red points in Figure 8 for the case n = 2) are undefined.

5.2.3. Computing an Upper-Bound: General Case. The binary case discussed above can
be easily extended to handle the general case, where the goal is to estimate the value of
f1(c1, . . . , c`1) for the least solution of the fixpoint equations:

f1(x1, . . . , x`1) = e1 · · · fk(x1, . . . , x`k) = ek.

Here, the formal arguments x1, . . . , x`i of each function fi are partitioned to several groups
(x1, . . . , xdi,1), (xdi,1+1, . . . , xdi,2), . . . , (xdgi−1+1, . . . , x`i), so that the sum of the values of the

variables in each group ranges over [0, 1]. Following the binary case, we discretize the
domain so that each variable ranges over {0, 1

n , . . . ,
n−1
n , 1}, where the variables in each

group (xdi,j−1+1, . . . , xdi,j ) are constrained by xdi,j−1+1 + · · · + xdi,j ≤ n+2
n . Note that we

choose n+2
n instead of 1 as the upper-bound of the sum, to include the points ♦ and 4 in

Figure 8. We write Di for the discretized domain of function fi, and D′i for the subset of
Di where the variables in each group are constrained by xdi,j−1+1 + · · · + xdi,j ≤ 1; note
that fi(x1, . . . , x`i) ∈ [0, 1] for (x1, . . . , x`i) ∈ D′i, but fi(x1, . . . , x`i) may be greater than

1 or undefined for (x1, . . . , x`i) ∈ Di \ D′i. We also write Di for the set {(x1, . . . , x`i) |
(dnx1e/n, . . . , dnx`ie/n) ∈ Di} (i.e., the set of points for which the value of fi can be
approximated by using values at points in Di).

The pseudo code for computing an upper-bound of f1(c1, . . . , c`1) is given in Figure 9. On
the 9th line (“if ~v ∈ D′i then ...”), we also make use of the constraint that Σf ′∈fgrp(fi)f

′(ṽ)
ranges over [0, 1] if ṽ belongs to the valid domain D′i (recall the 3rd property in Section 5.1).
We assume that the procedure lb(f ′, ṽ) returns a sound lower-bound of f ′(ṽ), e.g., by using
Kleene iteration. See Remark 5.1 to understand the need for this additional twist.

The function αh takes a real value (or ∞) x, and returns the least element in
{0, 1

n , . . . ,
mh−1
m , h,∞} that is no less than x. The function apply in the figure takes

the current approximations of values of fi at the points Di and the arguments ~v ∈ Di, and
returns an approximation of fi(~v). It is given by f̂(~v), where:

f̂i(x1, . . . , x`i) =
∑

b1,...,b`i∈{0,1}
pb11 (1− p1)1−b1 · · · pb`i`i (1− p`i)

1−b`i f̂i

(
i1+b1
n , . . . ,

i`i+b`i
n

)
Here, ij = bnxjc, pj = nx− ij , and f̂i(

i1+b1
n , . . . , im+bm

n ) is the current approximation of the

value of fi at ( i1+b1
n , . . . , im+bm

n ) ∈ Di. The function f̂ above is obtained by applying linear
interpolations coordinate-wise.

Remark 5.1. To see the motivation for the 9th line in Figure 9, consider the following
fixpoint equations:

S = f1()

f1() = 0.5 · (f1() · f1() + f2() · f2())

f2() = 0.5 + f1() · f2().

They are obtained from the following order-1 PHORS Gtreeeven:
S z = F zΩ

F x1 x2 = x2 ⊕p F (F x1 x2) (F x2 x1),
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main(e1, . . . , ek, ~c){
ρ := [f1 7→ [~0], . . . , fk 7→ [~0]]; (* ρ(fi) is an array indexed by each element of Di *)

ρ′ := [f1 7→ [~1], . . . , fk 7→ [~1]]; (* dummy *)

while not(ρ=ρ′) do {
ρ′ := ρ; (* copy the contents *)

for each i ∈ {0, . . . , k} do

for each ~v ∈ Di do

let r = eval(ei, ρ{~x 7→ ~v}, ~v
?
∈ D′i) in

if ~v ∈ D′i then ρ′(fi)[~v] := αh(min(r, 1− Σf ′∈fgrp(fi)\{f} lb(f ′, ~v)))
else ρ′(fi)[~v] := αh(r);

return apply(ρ(f1), ~c); }

eval(e, ρ, b){
(* b represents whether we are computing for the value of fi in the valid domain;

in that case, the value of e should range over [0, 1]. *)

let r =

match e with

x → ρ(x) | c → c

| fi(~e′) → let ~v = eval(~e′,ρ,b) in if ~v 6∈ Di then ∞ else apply(ρ(fi), ~v)
| e1 + e2 → eval(e1, ρ, b)+eval(e2, ρ, b)
| e1 · e2 → eval(e1, ρ, b)·eval(e2, ρ, b)

in if b then return min(r,1) else return r }

Figure 9. Pseudo code for computing an upper-bound for the general case

where p = 0.5, and f1() (f2(), resp.) represent the probabilities that x1 and x2 are used by
F . This PHORS is actually a variation of G6 from Example 2.5 (with manual optimization),
whose termination probability represents the probability that a program that randomly
generates binary trees (instead of lists, unlike in the case of Example 2.5) contains an even
number of trees. Since the events that F uses the first and second arguments are mutually
exclusive, we have the constraint f1()+f2() ≤ 1. The exact solutions for the equations above
is f1() = 1− 1√

2
and f2() = 1√

2
. Since lower-bounds of them can be computed with arbitrary

precision, thanks to the part 1− Σf ′∈fgrp(fi)\{f} lb(f ′, ~v) of the 9th line of Figure 9, we
can also compute upper-bounds with arbitrary precision (as upper-bounds of f1() and f2()
are respectively provided by 1− lb(f2, ()) and 1− lb(f1, ())).

If the then-clause were the same as the else-clause on the 10th line, then we would not
get a precise upper-bound for the following reason. When the main loop in Figure 9 stops,
upper-bounds f1() and f2() must either have reached the maximal value 1, or satisfy:

f1() ≥ 0.5 · (f1() · f1() + f2() · f2())

f2() ≥ 0.5 + f1() · f2().

These conditions imply that:

f1() + f2() ≥ 0.5 · (f1() · f1() + f2() · f2()) + 0.5 + f1() · f2(),

i.e.,
0 ≥ (f1() + f2()− 1)2,
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which is equivalent to f1() + f2() = 1. Thus, unless the co-domain of αh contains the
exact values 1− 1√

2
and 1√

2
, the main loop would only return the imprecise upper-bound

f1() = f2() = 1.

5.3. Order-n Case. We now briefly discuss how to extend the method discussed above to
obtain a sound (but incomplete) method for overapproximating the termination probability
of PHORS of order greater than 2. Recall that by the fixpoint characterization given in

Section 4.3, it suffices to overapproximate the least solution of equations of the form ~f = F(~f)

where ~f is a tuple of order-(n− 1) functions on reals.
The abstract interpretation framework [15] provides a sound but incomplete methodology:

the reason why we decided to slightly divert from it in Section 5.2 is that this allows us
to use piecewise linear functions, which are more precise. We first recall a basic principle
of abstract interpretation. Let (C,vC ,⊥C) and (A,vA,⊥A) be ω-cpos. Suppose that α :
(C,vC)→ (A,vA) and γ : (A,vA)→ (C,vC) are continuous (hence also monotonic) such
that α(γ(a)) = a for every a ∈ A, and c vC γ(α(c)) for every c ∈ C. Suppose also that F is

a continuous function from (C,vC ,⊥C) to (C,vC ,⊥C). Let F̂ : (A,vA,⊥A)→ (A,vA,⊥A)

be λx ∈ A.α(F(γ(x))), which is an “abstract version” of F . Note that F̂ is also continuous.
Then, we have:

Proposition 5.3. lfp(F) vC γ(lfp(F̂)).

This result is standard (see, e.g., [15], Proposition 18) but we provide a proof for the
convenience of the reader.

Proof of Proposition 5.3. By the monotonicity of F and F̂ , we have: ⊥C vC F(⊥C) vC
F2(⊥C) vC · · · and ⊥A vA F̂(⊥A) vA F̂2(⊥A) vA · · ·; hence both

⊔
C{F i(⊥C) | i ∈ ω}

and
⊔
A{F̂ i(⊥A) | i ∈ ω} exist, and by the ω-continuity of F and F̂ , they are the least

fixpoints of F and F̂ respectively. Therefore, it suffices to show that F i(⊥C) vC γ(F̂ i(⊥C)).
The proof proceeds by induction on i. The base case i = 0 is trivial. If i > 0, we have:

γ(F̂ i(⊥C)) = γ(α(F(γ(F̂ i−1(⊥C))))) (by the definition of F̂)

wC F(γ(F̂ i−1(⊥C))) (by γ(α(x)) wC x)
wC F(F i−1(⊥C)) (by induction hypothesis)
= F i(⊥C).

By the proposition above, to overapproximate the least fixpoint of F , it suffices to find
an appropriate abstract domain (A,vA,⊥A) and α, γ that satisfy the conditions above,

so that the least fixpoint of F̂ is easily computable. In the case of overapproximation
of the termination probability of order-n PHORS, we need to set up an abstract domain
(A,vA,⊥A) for a tuple of order-(n−1) functions on reals. A simple solution (that is probably
too naive in practice) is to use the abstract domain consisting of higher-order step functions,
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inductively defined by:

AR = { 0
m ,

1
m , . . . ,

m−1
m , mm ,∞}

vAR= {( i
m ,

j
m) | 0 ≤ i ≤ j ≤ m} ∪ {( i

m ,∞) | 0 ≤ i ≤ m}

αR(x) =

{
i
m if i−1

m ≤ x ≤
i
m

∞ if x > 1
γR(x) = x

Aτ1→τ2 = {f ∈ Aτ1 → Aτ2 | f is monotonic}
vAτ1→τ2= {(f1, f2) ∈ Aτ1→τ2 ×Aτ1→τ2 | ∀x ∈ Aτ1→τ2 .f1 x vAτ2 f2 x}
ατ1→τ2(f) = {(y, ατ2(f(γτ1(y)))) | y ∈ Aτ1}
γτ1→τ2(f ′) = {(x, γτ2(f ′(ατ1(x)))) | x ∈ Cτ1}.

Here, the concrete domain Cτ denotes JτK in Section 4.1. Then, ατ and βτ satisfy the
required conditions (α(γ(a)) = a and c vC γ(α(c))). Since Aτ is finite, we can effectively

compute lfp(F̂).
We note, however, that the above approach has the following shortcomings. First,

although Aτ is finite, its size is too large: k-fold exponential for order-k type τ . As in the
case of non-probabilistic HORS model checking [44, 10, 60], therefore, we need a practical
algorithm that avoids eager enumeration of abstract elements. Second, due to the use of
step functions, the obtained upper-bound will be too imprecise. To see why step functions
suffer from the incompleteness, consider the equations: s = f(1

2) and f(x) = 1
2x+ f(1

2x).

The exact least solution is s = 1
2 and f(x) = x. With step functions (where 1

n is the size of

each interval), however, the abstract value f̂( 1
n) must be no less than 1

2
1
n + f(1

2 ·
1
n), but

f(1
2 ·

1
n) is overapproximated as f̂( 1

n) (because 1
2n belongs to the interval (0, 1

n ]). Therefore,

f̂( 1
n) should be no less than 1

2n + f̂( 1
n), which is impossible. Thus, the computation diverges

and 1 is obtained as an obvious upper bound.
The step functions make use of only monotonicity of the least solution of fixpoint

equations. As in the use of stepwise multilinear functions in the case of order-1 equations
(for order-2 PHORS), exploiting an additional property like convexity would be important
for obtaining a more precise method; it is left for future work.

6. Experiments

We have implemented a prototype tool to compute lower/upper bounds of the least solution
of order-1 fixpoint equations (that are supposed to have been obtained from order-2 or
order-1 PHORS by using the translations in Section 4 modulo some simplifications; we have
not yet implemented the translators from PHORS to fixpoint equations, which is easy but
tedious). The computation of a lower bound is based on naive Kleene iterations, and that
of an upper-bound is based on the method discussed in Section 5.2. The tool uses floating
point arithmetic, and ignores rounding errors.

We have tested the tool on several small but tricky examples. The experimental results
are summarized in Table 2. The column “equations” lists the names of systems of equations.
The column “#iter” shows the number of Kleene iterations used for computing a lower-bound.
The columns “#dom” and “#codom” show the numbers of partitions of the interval [0, 1]
for the domain and codomain of a function respectively. The default values for them were
set to 12, 16, and 512, respectively in the experiment; they were, however, adjusted for some
of the equations. The columns “l.b.” and “u.b.” are lower/upper bounds computed by the
tool. The lower (upper, resp.) bounds shown in the table have been obtained by rounding
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equations #iter #dom #codom l.b. u.b. u.b.(step) exact time

Ex2.3-1 12 16 512 0.333 0.336 1.0 1
3 0.010

Ex2.3-0 12 16 512 0.333 0.334 0.334 1
3 0.008

Ex2.3-v1 12 16 512 0.312 0.315 0.365 - 0.005
Ex2.3-v2 12 16 512 0.262 0.266 0.321 - 0.022
Ex2.3-v3 12 16 512 0.263 0.266 0.309 - 0.01
Ex2.4 12 16 512 0.320 0.323 0.329 - 0.011
Double 12 16 512 0.649 0.653 1.0 - 0.010
Listgen 15 16 512 0.999 1.0 1.0 1.0 0.009

Treegen 15 64 4096 0.618 0.619 1.0
√

5−1
2 0.471

Treegenp 12 16 512 1.0 1.0 1.0 1.0 0.011

ListEven 12 32 1024 0.666 0.667 0.667 2
3 0.009

ListEven2 12 16 512 0.749 0.75 0.75 3
4 0.013

Determinize 12 16 512 0.993 1.0 1.0 1.0 9.64

TreeEven(0.5) 15 64 4096 0.286 0.299 0.300 1− 1√
2

0.050

TreeEven(0.49) 15 64 4096 0.276 0.280 0.280 0.2774· · · 0.052
TreeEven(0.51) 15 64 4096 0.287 0.290 0.290 0.2887· · · 0.055
Ex5.4(0,0) 12 16 512 0.0 0.0 0.0 0 0.008

Ex5.4(0.3,0.3) 12 16 512 0.333 0.336 0.35 1
3 0.007

Ex5.4(0.5,0.5) 10000 16 512 0.999 1.0 1.0 1 0.010
Discont(0,1) 12 16 512 0.0 0.0 0.0 0 0.006
Discont(0.01,0.99) 1000 16 512 0.999 1.0 1.0 1 0.006
Incomp 10000 16 512 0.299 1.0 1.0 0.3 0.003
Incomp 10000 10 100 0.299 0.3 0.3 0.3 0.003
Incomp2 12 16 512 0.249 1.0 1.0 0.25 0.003
Incomp2 12 256 65536 0.249 1.0 1.0 0.25 2.87

Table 2. Experimental results (times are in seconds).

down (up, resp.) the outputs of the tool to 3-decimal places. The column “u.b.(step)” shows
the upper-bounds obtained by using step functions instead of piecewise linear functions; this
column has been prepared to confirm the advantage of piecewise linear functions over step
functions. The column “exact” shows the exact value of the least solution when we know
it. The column “time” shows the total time for computing both lower and upper bounds
(excluding the time for “u.b.(step)”).

The equations “Ex2.3-1” and “Ex2.3-0” are order-1 and order-0 equations obtained
from the PHORS in Example 2.1 (see also Examples 4.3 and 4.5) by using the translations
in Sections 4.2 and 4.3 respectively; specifically, “Ex2.3-1” consists of s = f(1) and f(x) =
0.25x+ 0.75f(f(x)). The equations “Ex2.3-v1”, “Ex2.3-v2”, and “Ex2.3-v3” are variations
of them, where the equation on f is replaced by f(x) = 0.25x + 0.75f(f(x2)), f(x) =
0.25x + 0.75f(f(f(x2))), and f(x) = 0.25x + 0.75(f(x))2, respectively. “Ex2.4” is the
equations obtained from the order-2 PHORS in Example 2.2 (see also Example 4.6). The
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equations “Double” are those obtained from the following order-2 PHORS:

S = F H

H xy = x ⊕ 1
2
y

F g = g e (F (Dg))

Dg x y = g (g x y) y,

with manual simplifications. The equations “Listgen”, “Treegen”, and “Treegenp” are from
Example 2.3, corresponding to G3, G4 and G5, respectively. The equations “ListEven” and
“ListEven2” are from Example 2.5, and “Determinize” is from Example 2.6. “TreeGen(p)”
(for p ∈ {0.5, 0.49, 0.51}) is from Remark 5.1. If we disable the trick (the one on line 9 in
Figure 7) we discussed in the remark, the tool returns an imprecise upper-bound of 1.0 for
p = 0.5 (for p = 0.49 and p = 0.51, however, the tool can compute a precise upper-bound
even without the trick). The equations “Ex5.4(x,y)” (for (x, y) ∈ {(0, 0), (0.3, 0.3), (0.5, 0.5)})
are from Example 5.2. The equations “Discont(p,1 − p)” consist of: s = f(p, 1 − p) and
f(x0, x1) = x0 + x1f(x0, x1), which is obtained from PHORS:

S = F G F g = g e (F g) Gx0 x1 = x0 ⊕p x1.

Interestingly, f is discontinuous at (0, 1) (in the usual sense of analysis in mathematics; it is
still ω-continuous as functions on ω-cpo’s): the exact value of f is given by:

f(x0, x1) =

{
0 if x0 = 0
x0

1−x1 if x0 > 0.

The equations “Incomp” and “Incomp2” consist of:

s = f(s) f x = x2 + 0.4x+ 0.09,

and
s = f(s) f x = 0.5x2 + 2f(0.5x)

respectively. They do not correspond to any PHORS — in fact, the value of f(1) for Incomp
is 1.49, which does not make sense as a probability. We have included them since they show
a source of the possible incompleteness of our method. Indeed, the tool fails to find precise
upper bounds. To see why the tool does not work for Incomp1 (with the the default values
of #dom and #codom), note that since s = f(s) = s2 + 0.4s+ 0.09, ŝ ≥ ŝ2 + 0.4ŝ+ 0.09
must be satisfied for any valid upper-bound ŝ. However, ŝ ≥ ŝ2 + 0.4ŝ+ 0.09 is equivalent
to 0 ≥ (ŝ− 0.3)2, which is satisfied only by ŝ = 0.3. So, the only valid upper-bound for s

is actually the exact one 0.3. But then an upper-bound f̂ of f must satisfy f̂(0.3) = 0.3,
which can be found only if the set of discrete values (used for abstracting the domain and
codomain) contains 0.3. That is why the tool returns 1 (which is the largest value, assuming
that s represents a probability) for the default values of #dom and #codom. When we
adjust them to 10 and 100 (so that 0.3 belongs to the sets of abstract values of domains and
codomains), the precise upper-bound (i.e., 0.3) is obtained; this is, however, impossible in
general, without knowing the exact solution a priori.

The reason for “Incomp2” is more subtle. Notice that the least solution for

s = f(s) f x = 0.5x2 + 2f(0.5x)

is f(x) = x2. Let 1
n be the size of each interval used for abstracting the domain. Suppose that,

at some point, an upper-bound of f( 1
n) becomes c

n2 . Due to the linear interpolation (and
since the value at x = 0 converges to 0), the value of f at 0.5r (which belongs to the domain
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(0, 1
n)) is overapproximated by 0.5 · c

n2 . Thus, at the next iteration, the upper-bound at 1
n is

further updated to a value greater than 0.5 1
n2 + 2 · 0.5 · c

n2 = c+0.5
n2 . Thus, the computation of

an upper-bound for the value at x = 1
n never converges. In this case, changing the parameters

#dom and #codom does not help. We do not know, however, whether such situations
occur in the fixpoint equations that arise from actual order-2 PHORS; it is left for future
work to see whether our method (or a minor modification of it) is actually complete (in the
sense that upper-bounds can always be computed with arbitrary precision by increasing the
parameters #dom and #codom).

To summarize, for all the valid inputs (i.e., except “Incomp” and “Incomp2”, which
are invalid in the sense that they do not correspond to PHORS), our tool (with piecewise
linear functions) could properly compute lower/upper bounds. In contrast, from the column
“u.b.(step)”, we can observe that the replacement of piecewise (multi)linear functions with
step functions not only worsens the precision (as in “Ex2.3-v1”, “Ex2.3-v2”, and “Ex2.3-v3”)
significantly, but also makes the procedure obviously incomplete,4 as in “Ex2.3-1” and
“Double” (recall the discussion on the incompleteness of step functions in Section 5.3).

7. Related Work

As already mentioned in Section 1, this work is intimately related to both probabilistic
model checking, and higher-order model checking. Let us give some hints on how our work
is related to the two aforementioned research areas, without any hope to be exhaustive.

Model checking of probabilistic recursive systems. Model checking of probabilistic
systems with recursion (but not higher-order functions), such as recursive Markov chains
and probabilistic pushdown systems, has been actively studied [24, 26, 6]. Our PHORS
are strictly more expressive than those models, as witnessed by the undecidability result
from Section 3, and the encoding of recursive Markov chains into order-1 PHORSs given in
Appendix A.1. Our fixpoint characterization of the termination probability of PHORS is a
generalization of the fixpoint characterization of the termination probability for recursive
Markov models [24] to arbitrary orders.

Termination of probabilistic infinite-data programs. Methods for computing the
termination probabilities of infinite-data programs (with real-valued variables, but without
higher-order recursion) have also been actively studied, mainly in the realm of imperative
programs (see, as an example, [5, 23, 27, 13, 54, 1, 12]); to the best of our knowledge, none
of those methods deal with higher-order programs, at least directly. All these pieces of
work present sound but incomplete methodologies for checking almost sure termination of
programs. Incompleteness is of course inevitable due to the Turing completeness of the
underlying language considered. In fact, Kaminsiki and Katoen [41] have shown that almost
sure termination of probabilistic imperative programs is Π0

2-complete. Since their proof
relies on Turing completeness of the underlying language, it does not apply to the setting
of our model PHORS, which is a probabilistic extension of a Turing-incomplete language,
namely that of HORS.

Model checking of higher-order programs. Model checking of (non-probabilistic)
higher-order programs has been an active topic of research in the last fifteen years, with
many positive results [43, 58, 33, 46, 49, 51, 32, 31, 67, 62]. Strikingly, not only termination,

4As already mentioned, our method with piecewise linear functions may also be incomplete, but that does
not show up in the current benchmark set.
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but also a much larger class of properties (those expressible in the modal µ-calculus) are
known to be decidable for ordinary (i.e. non-probabilistic) HORS. This is in stark contrast
with our undecidability result from Section 3: already at order-2 and for a very simple
property like termination, verification cannot be effectively solved.

Probabilistic functional programs. Probabilistic functional programs have recently
attracted the attention of the programming language community, although probabilistic λ-
calculi have been known for forty years now [61, 39]. Most of the work in this field is concerned
with operational semantics [19], denotational semantics (see, e.g., [40, 20, 22, 66, 2]), or
program equivalence (see, e.g., [18, 16, 63]), which sometime becomes decidable (e.g. [57]),
but only when higher-order recursion is forbidden. The interest in probabilistic higher-order
functional languages stems from their use as a way of writing probabilistic graphical models,
as in languages like Church [30] or Anglican [68]. There are some studies to analyze the
termination behavior of probabilistic higher-order programs (with infinite data) by using
types. Dal Lago and Grellois [17] generalized sized types [36, 4] to obtain a sound but
highly incomplete technique. Breuvart and Dal Lago [9] developed systems of intersection
types from which the termination probability of higher-order programs can be inferred from
(infinitely many) type derivations. This however does not lead to any practical verification
methodology.

Relevant proof techniques. Our technique (of using the undecidability of Hilbert’s 10th
problem) for proving the undecidability of almost sure termination of order-2 PHORS
has been inspired by Kobayashi’s proof of undecidability of the inclusion between order-
2 (non-probabilistic) word languages and the Dyck language [47]. Other undecidability
results on probabilistic systems include the undecidability of the emptiness of probabilistic
automata [28]. Their proof is based on the reduction from Post correspondence problem.
The technique does not seem applicable to our context.

8. Conclusion

We have introduced PHORS, a probabilistic extension of higher-order recursion schemes,
and studied the problem of computing their termination probability. We have shown that
almost sure termination is undecidable. As positive results, we have also shown that the
termination probability of order-n PHORS can be characterized by order-(n− 1) fixpoint
equations, which immediately yields a method for computing a precise lower-bound of the
termination probability. Based on the fixpoint characterization, we have proposed a sound
procedure for computing an upper-bound of the termination probability, which worked well
on preliminary experiments.

It is left for future work to settle the question of whether it is possible to compute
the termination probability with arbitrary precision, which seems to be a difficult problem.
Another direction of future work is to develop a (sound but incomplete) model checking
procedure for PHORS, using the procedure for computing the termination probability as a
backend.
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Appendix

Appendix A. Relationship between PHORS and Recursive Markov Chains

In this section, we provide mutual translations between order-1 PHORS and recursive
Markov chains.

A.1. Encoding Recursive Markov Chains into Order-1 PHORS. In this section, we
will give a sketch of a proof that any recursive Markov chain (RMC in the following) can be
faithfully encoded as an order-1 PHORS. In doing that, we will closely follow the notational
conventions and definitions from [24], Section 2.

Let us first of all fix a RMC A = (A1, . . . , Ak), where each component graph is Ai =
(Ni, Bi, Yi,Eni,Ex i, δi). We fix a reachability problem, given in the form of a triple (iI , sI , qI)
where iI ∈ {1, . . . , k}, sI is a vertex of AiI , and qI ∈ Ex iI , where a vertex of each Ai is
defined as an element of

Ni ∪
⋃
b∈Bi

Call b ∪
⋃
b∈Bi

Returnb.

Here, Call b = {(b, en) | en ∈ EnYi(b)} and Returnb = {(b, ex ) | ex ∈ ExYi(b)} The reach-
ability problem (iI , sI , qI) specifies 〈ε, sI〉 as the initial state, where sI is a vertex of the
component graph iI , and 〈ε, qI〉 as the reachability target (cf. Section 2.2 of [24]). The
PHORS GA = (NA,RA, SA) is defined as follows:
• Nonterminals are defined as symbols of the form Fi,s where i ∈ {1, . . . , k}, and s is a

vertex Ai. The type NA(Fi,s) is o|Ex i| → o. There is also a nonterminal SA of type o,
which is taken to be (iI , sI , qI). The start symbol is SA.
• Rules in RA are of four kinds:
• There is a rule

(iI , sI , qI) = SA = FiI ,sI ( Ω, . . . ,Ω︸ ︷︷ ︸
j − 1 times

, e,Ω, . . . ,Ω)

where Exi = {s1, . . . , s|Exi |} and qI = sj .
• For every i and for every exit node sj ∈ Exi = {s1, . . . , s|Exi |}, there is a rule

Fi,sj (x1, . . . , x|Ex i|) = xj

• For each i and for each non-exit node or return port s of Ai, there is a rule

Fi,s(x1, . . . , x) =
⊕
j

pqsFi,q(x1, . . . , x)

where pqs is the probability to go from s to q, as given by the transition function δi.
• For every i and for every call port s = (b, en) of Ai which is in Call b, there is a rule

Fi,s(~x) = FYi(b),en(Fi,(b,ex1)(~x), . . . , Fi,(b,exv)(~x))

and ExYi(b) = {ex 1, . . . , ex v}.
The next step is to put any global state in MA in correspondence to a term of GA. This is
actually quite easy, once one realizes that:
• GA is designed so that every term to which SA reduces can be seen as a complete ordered

tree.
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• The rules in RA have been designed so as to closely mimick the four inductive clauses by
which the transition relation ∆ of the Markov chain MA is defined. In particular, any
such pair 〈β, u〉 is such that the length of β corresponds to the height of the corresponding
term to which SA reduces. The only caveat is that the first such inductive clause needs
to be restricted, because in PHORS, contrarily to Markov chains, one needs to fix one
initial state.
• (〈β, u〉, p, 〈β′, u′〉) ∈ ∆ if and only if the term corresponding to 〈β, u〉 rewrites to the term

corresponding to 〈β′, u′〉 with probability p in one step.
As a consequence, one easily derive that P(GA) is precisely the probability, in MA, to reach
〈ε, qI〉 starting from 〈ε, sI〉.

A.2. Encoding Order-1 PHORS into Recursive Markov Chains. In this section, we
show that any order-1 PHORS can be encoded into a recursive Markov chain that has the
same termination probability.

First, we can normalize any order-1 PHORS to the one consisting of the rewriting rules
of the form:

S = F1 e · · · e
F1 x1 · · · xk = t1,L ⊕p1 t1,R
· · ·
Fm x1 · · · xk = tm,L ⊕p1 tm,R,

where each ti,d (i ∈ {1, . . . ,m}, d ∈ {L,R}) is a variable xj (j ∈ {1, . . . , k}), or is of the
form:

Fi (Fj1 x1 · · · xk) · · · (Fjk x1 · · · xk).
Note that Ω on the righthand side can be replaced by F x1 · · · xk where F is defined by

F x1, · · · xk = F (F x1, · · · xk) · · · (F x1, · · · xk).
Given the normalized order-1 HORS above, let M be a recursive Markov chain consisting

of a single component A1 = (N1, B1, Y1,En1,Ex 1, δ1) where:

• B1 is the set of terms of the form Fi (Fj1 x1 · · · xk) · · · (Fjk x1 · · · xk) on the righthand
side.
• Y1(b) = 1 for every b ∈ B1.
• En1 = {F1, . . . , Fm}.
• Ex 1 = {x1, . . . , xk}.
• N1 = En1 ∪ Ex 1.
• δ1 is the least set of the transitions that satisfies:

– (Fi, p, xj) ∈ δ1 for each transition rule Fi x1, · · · xk
d,p−−→ xj

(recall that we write F x1, · · · xk
L,p−−→ tL and F x1, · · · xk

R,1−p−−−−→ tR if there is a rule
F x1, · · · xk = tL ⊕p tR).

– (Fi, p, (t, Fj)) ∈ δ1 if Fi x1, · · · xk
d,p−−→ t and t is of the form

Fj (Fj1 x1 · · · xk) · · · (Fjk x1 · · · xk).
– ((t, xi), p, x`) ∈ δ1

if t = Fj (Fj1 x1 · · · xk) · · · (Fjk x1 · · · xk), and Fji x1 · · · xk
d,p−−→ x`.

– ((t, xi), p, (t
′, Fj′)) ∈ δ1

if t = Fj (Fj1 x1 · · · xk) · · · (Fjk x1 · · · xk), and Fji x1 · · · xk
d,p−−→ t′, and t′ =

Fj′ (Fj′1 x1 · · · xk) · · · (Fj′k x1 · · · xk),
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Intuitively, a PHORS term of the form Fj (Fj1 x1 · · · xk) · · · (Fjk x1 · · · xk) is modeled
as a call of Fj , where Fji is executed when the call exists from the exit port xi. That is why,
in the third and fourth kinds of transition rules above, the next node is determined by the
rule for Fji . From this intuition, it should be trivial that the termination probabilities of
the RMC and the original PHORS coincide.

Appendix B. Proofs for Section 4

B.1. Proofs for Section 4.2.

B.1.1. Proof of Lemma 4.1. We first prove the following lemma:

Lemma B.1. If K ` t : κ, then K# ` t# : κ#.

Proof. This follows by straightforward induction on the derivation of K ` t : κ.

Proof of Lemma 4.1. N# ` S : R follows immediately from N (S) = o, Lemma B.1, and
o# = R. Let R be {Fi x1 · · · , x`i = ti | i ∈ {1, . . . ,m}}. Then, by the definition of PHORS,
we have N , x1 : κi,1, . . . , x`i : κi,`i ` ti : o, with N (F ) = κi,1 → · · · → κi,`i → o. We need to
show that

N#, x1 : κ#
i,1, . . . , xi : κ#

i,`i
` t#i : R

for each i, but this follows immediately from the typing of ti above and Lemma B.1.

B.1.2. Proof of Theorem 4.2. We call a PHORS G recursion-free if there is no cyclic
dependency on its non-terminals. More precisely, given a PHORS G, we define the relation
�G on its non-terminals by: Fi �G Fj iff Fj occurs on the righthand side of the rule for Fi.
A PHORS G is defined to be recursion-free if the transitive closure of �G is irreflexive.

Below we write t#ρ for Jt#Kρ.

Lemma B.2. Let G = (N ,R, S) be a recursion-free PHORS, and ρ be the least solution of

EG. If N ` t : o, then P(G, t) = t#ρ .

Proof. Since G is recursion-free, it follows from the strong normalization of the simply-typed
λ-calculus that t does not have any infinite reduction sequence. Because the reduction
relation is finitely branching, by König’s lemma, there are only finitely many reduction
sequences from t; thus a longest reduction sequence from t exists, and we write ](t) for its
length. The proof proceeds by induction on ](t). If ](t) = 0, then t is either e (in which
case, both sides of the equation are 1) or Ω (in which case, both sides of the equation are
0); thus, the result follows immediately. Otherwise, t must be of the form F s1 · · · sk where
F x1 · · ·xk = t1 ⊕p t2. Then

P(G, t) = pP(G, [s1/x1, . . . , sk/xk]t1)
+(1− p)P(G, [s1/x1, . . . , sk/xk]t2).
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Since ](t) > ]([s1/x1, . . . , sk/xk]ti), by the induction hypothesis, the righthand side equals:

p([s1/x1, . . . , sk/xk]t1)#
ρ + (1− p)([s1/x1, . . . , sk/xk]t2)#

ρ

= p(t1)#

ρ{x̃ 7→s̃#ρ }
+ (1− p)(t2)#

ρ{x̃ 7→s̃#ρ }
= (F s1 · · · sk)#

ρ = t#ρ ,

as required.

For a PHORS G = (N ,R, S) with dom(N ) = {F1, . . . , Fm}, we define its k-th approxi-

mation G(k) = (N (k),R(k), S(k)) by:

N (k) = {F (i)
j 7→ N (Fj) | j ∈ {1, . . . ,m}, 0 ≤ i ≤ k}

R(k)(F
(i)
j ) = [F

(i−1)
1 /F1, . . . , F

(i−1)
m /Fm]R(Fj)

for each i ∈ {1, . . . , k}
R(k)(F

(0)
j ) = λx̃.Ω ⊕1 Ω.

The following properties follow immediately from the construction of G(k). (Recall that FE
denotes the function associated with the fixpoint equations E , as defined in Section 4.1.)

Lemma B.3. (1) G(k) is recursion-free.

(2) P(G) =
⊔
k∈ω P(G(k)).

(3) FkEG (⊥JN K)(F ) = FkEG(k) (⊥JN (k)K)(F
(k)) = lfp(FEG(k) )(F

(k)) for each non-terminal F of

G.

Proof. (1) This follows immediately from the fact that F
(i)
` �G(k) F

(j)
`′ only if j = i− 1.

(2) Let P be the set {(π, p) | S π,p
==⇒G e} and P (k) be {(π, p) | S(k) π,p

==⇒G(k) e}. Then

P(G) =
∑

(π,p)∈P p and P(G(k)) =
∑

(π,p)∈P (k) p. Note that for any reduction s
d,p−−→G(k) t

with t 6= Ω, there exists a corresponding reduction s! d,p−−→G t! where s! and t! are the terms
of G obtained from s and t respectively, by removing indices, i.e. by replacing each F i with

F . Thus, P (k) ⊆ P for any k. Conversely, if S
π,p−−→G e, then S(|π|) π,p−−→G(|π|) e, because

non-terminals are unfolded at most |π| times in S
π,p−−→G e. Therefore, P =

⋃
k P

(k), from
which the result follows.

(3) We show that FkEG (⊥JN K)(F ) = FkEG(`) (⊥JN (`)K)(F
(k)) holds for any ` ≥ k, by induction

on k, from which the first equality follows. The base case k = 0 is trivial. For k > 0, By
the definition of the rule for F (k) and the induction hypothesis, we have:

FkEG(`) (⊥JN (`)K)(F
(k))

= J([F (k−1)
1 /F1, . . . , F

(k−1)
m /Fm]R(F ))#KFk−1

E
G(`)

(⊥
JN (`)K

)

= JR(F )#K{Fi 7→Fk−1
E
G(`)

(⊥
JN (`)K

)(F
(k−1)
i )|i∈{1,...,m}}

= JR(F )#KFk−1
EG

(⊥JNK) (by the induction hypothesis)

= FkEG (⊥JN K)(F ),

as required. (Here, we have extended (·)# and JtKρ for λ-terms in the obvious manner.)

For the second equality, we can show that FkEG(`) (⊥JN (`)K)(F
(k)) = lfp(FEG(`) )(F

(k))

holds for any ` ≥ k, by straightforward induction on k.



50 N. KOBAYASHI, U. DAL LAGO, AND C. GRELLOIS

Theorem 4.2 follows as a corollary of the above lemmas.

Proof of Theorem 4.2. By Lemmas B.2 and B.3, we have

P(G) =
⊔
k P(G(k)) =

⊔
k lfp(FEG(k) )(S

(k))

=
⊔
k FkEG (⊥)(S) = lfp(FEG )(S)

as required.

B.2. Proofs for Section 4.3.

B.2.1. Proof of Lemma 4.3. We define the translation for a type environment on variables
(other than non-terminals; note that the translation is different from the one for N ) by:

(y1 : κ1, . . . , yk : κk)
† = (y1,0, . . . , y1,ar(κ1)+1) : κ†1, . . . , (yk,0, . . . , yk,ar(κk)+1) : κ†k.

Lemma B.4. If N ∪K, x̃ : õ ` t : κ and K; x̃ `N t : κ e, then N † ∪ K† ` e : κ†+|x̃|.

Proof. This follows by straightforward induction on the derivation of K, x̃ : õ ` t : κ.

We also prepare the following lemma on the syntactic property of the translation result,
which is important for Lemma 4.3 and the substitution lemma (Lemma B.10 below) proved
later.

Lemma B.5. Suppose:

K; z̃ `N t : κ (t0, . . . , tar(κ), tar(κ)+1, . . . , tar(κ)+|z̃|+1).

Then, for each yi ∈ dom(K), yi,0 does not occur in only in t1, . . . , tar(κ)+|z̃|+1.

Proof. This follows by straightforward induction on the structure of t.

Proof of Lemma 4.3. N †(S1) = R follows immediately from N (S) = o→ o and the definition
of N †. To prove N † ` E , let F y1 · · · y` x1 · · · xk = tL ⊕p tR ∈ R, with N (F ) = κ1 →
· · ·κ` ⇒ ok → o. Suppose also

y1 : κ1, . . . , y` : κ`;x1, . . . , xk `N td : o (td,0, . . . , td,k+1).

We need to prove that
N †, (ỹ1) : κ1

†, . . . , (ỹ`) : κ`
† ` td,0 : R

and that
N †, (ỹ1

′) : κ1
†′ , . . . , (ỹ`

′) : κ`
†′ ` td,i : R

for i ∈ {1, . . . , k}, where ỹi and ỹi
′ are as given in the premises of the rule Tr-Rule. The

former follows immediately from Lemma B.4. For the latter, by Lemma B.4, we have

N †, (ỹ1) : κ1
†, . . . , (ỹ`) : κ`

† ` td,i : R.

By Lemma B.5, yi,0 does not occur in td,i. Thus we can remove the type bindings on them
and obtain

N †, (ỹ1
′) : κ1

†′ , . . . , (ỹ`
′) : κ`

†′ ` td,i : R

as required.
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B.2.2. Proof of Theorem 4.4. Given two expressions e1, e2 and fixpoint equations ErefG , we
write e1

∼=ErefG e2 if Je1KρErefG
= JeeKρErefG

. We often omit the subscript.

As sketched in Section 4.3, we first prove the theorem for recursion-free PHORS. A
key property used for showing it is that the translation relation is preserved by reductions,

roughly in the sense that if t
L,p−−→ tL and t

R,1−p−−−−→ tR, then t e (i.e., t is translated to e)
implies that there exist eL and eR such that tL  eL, tR  eR and e ∼= p · eL + (1− p) · eR
(where + and · are pointwise extended to operations on tuples). Thus, the property that
e represents the termination probability of t follows from the corresponding properties
of eL and eR; by induction (note that since we are considering recursion-free PHORS,
[(t) > [(tL), [(tR), where [(t) denotes the length of the longest reduction sequence from
t), it follows that if the initial term is translated to e0, then e0 represents the termination
probability of the initial term.

Unfortunately, however, the translation relation is not necessarily preserved by the

standard reduction relation
d,p−−→G defined in Section 2. We thus introduce another reduction

relation that uses explicit substitutions on order-0 variables. To this end, we extend the
syntax of terms as follows.

t (extended terms) ::= Ω | x | t1t2 | {t1/x1, . . . , tk/xk}t0
Here, {t1/x1, . . . , tk/xk}t0 an explicit substitution; the intended meaning is the same as the
ordinary substitution [t̃1/x̃]t2 (which represents the simultaneous substitutions of t̃1 for x̃),
but the substitution is delayed until one of the variables in x̃ becomes necessary. We often
abbreviate {t1/x1, . . . , tk/xk} as {t̃/x̃}. Note that we have omitted e; we consider an open
term S x as the initial term instead of S e. The type judgment relation for terms is extended
by adding the following rule:

K ` si : o (for each i ∈ {1, . . . , k}) K, x1 : o, . . . , xk : o ` t : o

K ` {s1/x1, . . . , sk/xk}t : o

Thus, explicit substitutions are allowed only for order-0 variables.
Reductions with explicit substitutions:
We now define a reduction relation for extended terms. The set of evaluation contexts,
ranged over by E, is defined by:

E ::= [ ] | {t̃/x̃}E.

The new reduction relation t
d,p−−→es,G t

′ (where d ∈ {L,R, ε}) is defined as follows.

z /∈ {x1, . . . , xk}

E[{t1/x1, . . . , tk/xk}z]
ε,1−→es,G E[z]

E[{t1/x1, . . . , tk/xk}xi]
ε,1−→es,G E[ti]

R(F ) = λỹ.λz̃.uL ⊕p uR
N (F ) = κ̃⇒ o` → o ` = |z̃| = |t̃| |ỹ| = |s̃|

z̃ do not occur in E[F s̃ t̃]

E[F s̃ t̃]
L,p−−→es,G E[{t̃/z̃}[s̃/ỹ]uL]
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R(F ) = λỹ.λz̃.uL ⊕p uR
N (F ) = κ̃⇒ o` → o ` = |z̃| = |t̃| |ỹ| = |s̃|

z̃ do not occur in E[F s̃ t̃]

E[F s̃ t̃]
R,1−p−−−−→es,G E[{t̃/z̃}[s̃/ỹ]uR]

We call reductions using the first two rules (i.e., reductions labeled by
ε,p−→es,G) adminis-

trative reductions. In the last two rules, we assume that α-conversion is implicitly applied so
that z̃ do not clash with variables that are already used in E[F s̃ t̃]. In those rules, recall also
our notational convention that when we write F s̃ t̃, the second sequence t̃ is the maximal
sequence of order-0 terms (that condition is made explicit in the above rules, but below we
often omit to state it). As before, we often omit the subscript G.

For an extended term t, we write t∗ for the term obtained by replacing explicit substitu-
tions with ordinary substitutions. For example, ({t/x}(F x))∗ = F t. The following lemma
states that the new reduction relation is essentially equivalent to the original reduction
relation:

Lemma B.6. Let s be an extended term.

(1) If s
ε,1−→es t, then s∗ = t∗.

(2) If s
d,p−−→es t with d ∈ {L,R}, then s∗

d,p−−→ t∗.

(3) If s∗
d,p−−→ u, then there exists t such that s(

ε,1−→es)
∗ d,p−−→es t and t∗ = u.

Proof. Immediate from the definitions of
d,p−−→ and

d,p−−→es .

We define
π,p
=⇒es,G in an analogous manner to

π,p
==⇒G , where the label ε is treated as an

empty word. For an extended term t that may contain an order-0 free variable x, we write

Pes(G, t, x) for the set {(π, p) | t π,p
=⇒es,G x}, and write Pes(G, t, x) for

∑
(π,p)∈Pes(G,t,x) p,

based on the new reduction relation. The following lemma follows immediately from the
above definitions and Lemma B.6.

Lemma B.7. Let t be a term of PHORS G = (N ,R, S) such that N , x : o ` t : o and t does
not contain e. Then P(G, [e/x]t) = Pes(G, t, x).

Proof. By Lemma B.6, t
π,p
==⇒es x if and only if t∗

π,p
==⇒ x, if and only if [e/x]t∗

π,p
==⇒ e (for the

second “if and only if”, recall the assumption that e does not occur in R), from which the
result follows.

We extend the translation relation for terms with the following rule.

K;x1, . . . , xk `N si : o (si,0, . . . , si,k+1) (for each i ∈ {1, . . . , `})
K; z1, . . . , z`, x1, . . . , xk `N t : o (t0, . . . , tk+`+1)

K;x1, . . . , xk `N {s1/z1, . . . , s`/z`}t : o 
(t0 + Σ`

i=1ti · si,0, t2 + Σ`
i=1ti · si,1, . . . , tk+`+1 + Σ`

i=1ti · si,k+1)

(Tr-Sub)

We shall prove that the translation relation is preserved by the new reduction relation
(Lemmas B.11, B.12, and B.13 below).

Lemma B.8 (Weakening). (1) If K;x1, . . . , xk `N t : κ  e, then K, y : κy;x1, . . . , xk `N
t : κ e.
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(2) If K;x1, . . . , xk `N t : κ  (t0, . . . , t`), then K;x1, . . . , xk, xk+1 `N t : κ  
(t0, . . . , t`, t`).

Proof. This follows by straightforward induction on the structure of t.

Lemma B.9 (Exchange).
If K;x1, . . . , xi, xi+1, . . . , xk `N t : κ  (t0, . . . , tar(κ)+i, tar(κ)+i+1, . . . , tar(κ)+k+1), then
K;x1, . . . , xi+1, xi, . . . , xk `N t : κ (t0, . . . , tar(κ)+i+1, tar(κ)+i, . . . , tar(κ)+k+1).

Proof. This follows by straightforward induction on the structure of t.

As usual, the substitution lemma, stated below, is a critical lemma for proving subject
reduction. The statement of our substitution lemma is, however, quite delicate, due to a
special treatment of order-0 variables.

Lemma B.10 (Substitution). Suppose t does not contain any explicit substitutions (i.e.,
any subterms of the form {ũ/x̃}s). If ỹ : κ̃y; z̃ `N t : κ (t̃, tm+1) and ·;x1, . . . , xk `N si :
κy,i  (s̃i, si,`i+1, . . . , si,`i+k+1) with {x1, . . . , xk} ∩ {z̃} = ∅ and `i = ar(κy,i), then:

·; z̃, x1, . . . , xk `N [s̃/ỹ]t : κ (θ0t̃, θ1t0, . . . , θkt0, θ0tm+1),

where the substitutions θj(j ∈ {0, . . . , k}) are defined by:

θj = θ1,j · · · θ|s̃|,j for j ∈ {1, . . . , k}
θi,0 = [si,0/yi,0, . . . , si,`i/yi,`i , si,`i+k+1/yi,`i+1] for i ∈ {1, . . . , |s̃|}
θi,j = [si,`i+j/yi,0, si,1/yi,1, . . . , si,`i/yi,`i , si,`i+k+1/yi,`i+1]

for i ∈ {1, . . . , |s̃|}, j ∈ {1, . . . , k}.

Here, the part θ1t0, . . . , θkt0 accounts for information about reachability to the newly
introduced variables x1, . . . , xk.

Proof. Induction on the derivation of ỹ : κ̃y; z̃ `N t : κ (t̃, tm+1).

• Case Tr-Omega: In this case, t = Ω with t̃ = 0̃ and tm+1 = 0. Thus, the result follows
immediately from the rule Tr-Omega.
• Case Tr-GVar: In this case, t = zi and κ = o, with t̃ = 0i, 1, 0|z|−i and tm+1 = 0. By

using Tr-GVar, we obtain

·; z̃, x1, . . . , xk `N [s̃/ỹ]t(= zi) : κ (0i, 1, 0|z̃|+k−i+1).

Since

(θ0t̃, θ1t0, . . . , θkt0, θ0tm+1) = (t̃, t0, . . . , t0︸ ︷︷ ︸
k

, tm+1) = (0i, 1, 0|z̃|+k−i+1),

we have the required result.

• Case Tr-Var: In this case, t = yi, with t̃ = yi,0, . . . , yi,`i , y
|z̃|
i,`i+1, and tm+1 = yi,`i+1. By

applying Lemmas B.8 and B.9 to ·;x1, . . . , xk `N si : κy,i  (s̃i, si,`i+1, . . . , si,`i+k+1), we
obtain:

·; z̃, x1, . . . , xk `N si : κy,i  (s̃i, s
|z̃|
i,`i+k+1, si,`i+1, . . . , si,`i+k+1).

Since t̃ = yi,0, . . . , yi,`i , y
|z̃|
i,`i+1, and tm+1 = yi,`i+1, we have

(θ0t̃, θ1t0, . . . , θkt0, θ0tm+1) = (s̃i, s
|z̃|
i,`i+k+1, si,`i+1, . . . , si,`i+k+1).

Thus we have the required result.
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• Case Tr-App: In this case, we have t = uv and

ỹ : κ̃y; z̃ `N u : κv → κ (u0, ũ, u`′+1, . . . , u`′+|z̃|+1)
ỹ : κ̃y; z̃ `N v : κv  (v0, ṽ, v`′′+1, . . . , v`′′+|z̃|+1)

t̃ = u0(v0, ṽ, v`′′+|z̃|+1), ũ(ṽ, v`′′+|z̃|+1),
u`′+1(v`′′+1, ṽ, v`′′+|z̃|+1), . . . , u`′+|z̃|(v`′′+|z̃|, ṽ, v`′′+|z̃|+1)

tm+1 = u`′+|z̃|+1(v`′′+|z̃|+1, ṽ, v`′′+|z̃|+1)
`′ = |ũ| = ar(κ) m = `′ + |z̃| `′′ = ar(κv) = |ṽ|.

By the induction hypothesis, we have:

·; z̃, x1, . . . , xk `N [s̃/ỹ]u : κv → κ 
(θ0(u0, ũ, u`′+1, . . . , u`′+|z̃|), θ1u0 . . . , θku0, θ0u`′+|z̃|+1)

·; z̃, x1, . . . , xk `N [s̃/ỹ]v : κv  
(θ0(v0, ṽ, v`′′+1, . . . , v`′′+|z̃|), θ1v0, . . . , θkv0, θ0v`′′+|z̃|+1)

By applying Tr-App, we obtain:

·; z̃, x1, . . . , xk `N ([s̃/ỹ]u)([s̃/ỹ]v) : κ 
((θ0u0)(θ0v0, θ0ṽ, θ0v`′′+|z̃|+1), (θ0ũ)(θ0ṽ, θ0v`′′+|z̃|+1),
(θ0u`′+1)(θ0v`′′+1, θ0ṽ, θ0v`′′+|z̃|+1), . . . , (θ0u`′+|z̃|)(θ0v`′′+|z̃|, θ0ṽ, θ0v`′′+|z̃|+1),
(θ1u0)(θ1v0, θ0ṽ, θ0v`′′+|z̃|+1), . . . , (θku0)(θkv0, θ0ṽ, θ0v`′′+|z̃|+1)
(θ0u`′+|z̃|+1)(θ0v`′+|z̃|+1, θ0ṽ, θ0v`′′+|z̃|+1).

Since yi,0 does not occur in ṽ and v`′′+|z̃|+1 (Lemma B.5), θ0ṽ and θ0u`′+|z̃|+1 are equivalent
to θj ṽ and θju`′+|z̃|+1 respectively for any j ∈ {1, . . . , k}. Therefore, the whole output of
transformation is equivalent to:

(θ0(u0(v0, ṽ, v`′′+|z̃|+1)), θ0(ũ(ṽ, v`′′+|z̃|)),
θ0(u`′+1(v`′′+1, ṽ, v`′′+|z̃|+1)), . . . , θ0(u`′+|z̃|(v`′′+|z̃|, ṽ, v`′′+|z̃|+1)),
θ1(u0(v0, ṽ, v`′′+|z̃|+1)), . . . , θk(u0(v0, ṽ, v`′′+|z̃|+1)),
θ0(u`′+|z̃|+1(v`′+|z̃|+1, ṽ, v`′′+|z̃|+1)))

Thus, we have the required result.
• Case Tr-NT: The result follows immediately from Tr-NT.
• Case Tr-AppG: In this case, we have t = uv and:

ỹ : κ̃y; z̃ `N u : o`
′+1 → o (u0, . . . , u`′+|z̃|+2)

ỹ : κ̃y; z̃ `N v : o (v0, . . . , v|z̃|+1)

(t̃, tm+1) = (u0 + u1 · v0, u2, . . . , u`′+1, u`′+2 + u1 · v1, . . . , u`′+|z̃|+2 + u1 · v|z̃|+1)

κ = o`
′ → o.

By the induction hypothesis, we have:

·; z̃, x1, . . . , xk `N [s̃/ỹ]u : o`
′+1 → o (θ0u0, . . . , θ0u`′+|z̃|+1, θ1u0, . . . , θku0, θ0u`′+|z̃|+k+2)

·; z̃, x1, . . . , xk `N [s̃/ỹ]v : o (θ0v0, . . . , θ0v|z̃|, θ1v0, . . . , θkv0, θ0v|z̃|+1).

By applying Tr-AppG, we obtain:

·; z̃, x1, . . . , xk `N ([s̃/ỹ]u)([s̃/ỹ]v) : o`
′ → o 

(θ0u0 + θ0u1 · θ0v0, θ0u2, . . . , θ0u`′+1,
θ0u`′+2 + θ0u1 · θ0v1, . . . , θ0u`′+|z̃|+1 + θ0u1 · θ0v|z̃|,
θ1u0 + θ0u1 · θ1v0, . . . , θku0 + θ0u1 · θkv0, θ0u`′+|z̃|+2 + θ0u1 · θ0v|z̃|+1)
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Since u1 does not contain any occurrence of yi,0 (Lemma B.5), θ0u1 = θju1 for any
j ∈ {1, . . . , k}. Therefore, the output of the translation is equivalent to:

(θ0(u0 + u1 · v0), θ0u2, . . . , θ0u`′+1,
θ0(u`′+2 + u1 · v1), . . . , θ0(u`′+|z̃|+1 + u1 · v|z̃|),
θ1(u0 + u1 · v0), . . . , θk(u0 + u1 · v0), θ0(u`′+|z̃|+2 + u1 · v|z̃|+1)).

Thus, we have the required result.

We are now ready to prove that the translation relation is preserved by reductions
(Lemmas B.11, B.12, and B.13 below).

Lemma B.11 (Subject Reduction). If ·; x̃ `N F s̃ t̃ : o  (v0, . . . , v|x̃|+1) and R(F ) =
λỹ.λz̃.uL ⊕p uR (where {x̃} ∩ {z̃} = ∅), then there exist wL,i, wR,i (i ∈ {0, . . . , |x̃| + 1})
such that ·; x̃ `N {t̃/z̃}[s̃/ỹ]ud  (wd,0, . . . , wd,|x̃|+1) and vi ∼= pwL,i + (1− p)wR,i for each
i ∈ {0, . . . , |x̃|+ 1}.

Proof. By the assumptions, we have:

·; x̃ ` si : κi  (si,0, . . . , si,ar(κi)+|x̃|+1) for each i ∈ {1, . . . , |s̃|}
·; x̃ ` ti : o (ti,0, . . . , ti,|x̃|+1) for each i ∈ {1, . . . , |z̃|}
v′0 = F0(s1,0, . . . , s1,ar(κ1), s1,ar(κ1)+|x̃|+1) · · · (s|s̃|,0, . . . , s|s̃|,ar(κ|s̃|), s|s̃|,ar(κ|s̃|)+|x̃|+1)

v′j = Fj(s1,1, . . . , s1,ar(κ1), s1,ar(κ1)+|x̃|+1) · · · (s|s̃|,1, . . . , s|s̃|,ar(κ|s̃|), s|s̃|,ar(κ|s̃|)+|x̃|+1)

for each j ∈ {1, . . . , |z̃|}
v′|z̃|+j = F0(s1,ar(κ1)+j , s1,1, . . . , s1,ar(κ1), s1,ar(κ1)+|x̃|+1) · · ·

(s|s̃|,ar(κ1)+j , s|s̃|,1, . . . , s|s̃|,ar(κ|s̃|), s|s̃|,ar(κ|s̃|)+|x̃|+1)

for each j ∈ {1, . . . , |x̃|}
v′|z̃|+|x̃|+1 = F0(s1,ar(κ1)+|x̃|+1, s1,1, . . . , s1,ar(κ1), s1,ar(κ1)+|x̃|+1) · · ·

(s|s̃|,ar(κ|s̃|)+|x̃|+1, s|s̃|,1 . . . , s|s̃|,ar(κ|s̃|), s|s̃|,ar(κ|s̃|)+|x̃|+1)

v0
∼= v′0 + v′1 · t1,0 + · · ·+ v′|z̃| · t|z̃|,0

v|z̃|+i ∼= v′|z̃|+i + v′1 · t1,i + · · ·+ v′|z̃| · t|z̃|,i for each i ∈ {1, . . . , |x̃|+ 1}
·, ỹ : κ̃; z̃ ` ud : o (ud,0, . . . , ud,|z̃|+1) for d ∈ {L,R}

By applying the substitution lemma (Lemma B.10) to the last condition, we obtain:

·; z̃, x̃ ` [s̃/ỹ]ud : o (w′d,0, . . . , w
′
d,|z̃|+|x̃|+1)

where

(w′d,0, . . . , w
′
d,|z̃|+|x̃|+1) = (θ0ud,0, . . . , θ0ud,|z̃|, θ1ud,0, . . . , θ|x̃|ud,0, θ0ud,|z̃|+1)

θj = θ1,j · · · θ|s̃|,j for j ∈ {0, . . . , |x̃|}
θi,0 = [si,0/yi,0, . . . , si,ar(κi)/yi,ar(κi), si,ar(κi)+|x̃|+1/yi,ar(κi)+1] for i ∈ {1, . . . , |s̃|}
θi,j = [si,ar(κi)+j/yi,0, . . . , si,ar(κi)/yi,ar(κi), si,ar(κi)+|x̃|+1/yi,ar(κi)+1]

for i ∈ {1, . . . , |s̃|}, j ∈ {1, . . . , |x̃|}.
Then, we have v′j

∼= pw′L,j′ + (1 − p)w′R,j′ . (Here, the only non-trivial case is for j =

|z̃|+ |x̃|+ 1, where we need to show that v′j
∼= pθ|x̃|+1uL,0 + (1− p)θ|x̃|+1uR,0 is equivalent

to pw′L,j′ + (1 − p)w′R,j′ ; in this case, by induction on the structure of ud, it follows that



56 N. KOBAYASHI, U. DAL LAGO, AND C. GRELLOIS

θ|x̃|+1ud,0 = θ0ud,|z̃|+1, which implies the required property) Let w̃d be (wd,0, . . . , wd,|x̃|+1),
where:

wd,0 = w′d,0 + w′d,1 · t1,0 + · · ·+ w′d,|z̃| · t|z̃|,0
wd,i = w′d,|z̃|+i + w′d,1 · t1,i + · · ·+ w′d,|z̃| · t|z̃|,i

for i ∈ {1, . . . , |x̃|+ 1}.
Then, the required result is obtained by applying Tr-Sub to

·; z̃, x̃ ` [s̃/ỹ]ud : o (w′d,0, . . . , w
′
d,|z̃|+|x̃|+1).

Lemma B.12 (Subject Reduction (for administrative steps)). If ·; x̃ ` {s̃/z̃}xi : o  
(t0, . . . , t|x̃|+1) with xi /∈ {z̃}, then ·; x̃ ` xi : o (u0, . . . , u|x̃|+1) for some uj (j ∈ {0, . . . , |x̃|+
1}) such that tj ∼= uj for each j ∈ {0, . . . , |x̃|+ 1}.

Proof. By the assumption ·; x̃ ` {s̃/z̃}xi : o (t0, . . . , t|x̃|+1), we have:

·; z̃, x̃ ` xi : o (0i+|z̃|+1, 1, 0|x̃|−i+1)
·; x̃ ` sj : o (sj,0, . . . , sj,|x̃|+1) (for each j ∈ {1, . . . , |s̃|})
ti = 1 + Σ

|s̃|
j=10 · sj,i ∼= 1 ti′ ∼= 0 for i′ 6= i

Since ·; x̃ ` xi : o (0i, 1, 0|x̃|−i+1), we have the required condition for: ui = 1 and uj = 0
for j 6= i.

Lemma B.13 (Subject Reduction (for administrative steps (ii))). If ·; x̃ ` {s̃/z̃}zi : o  
(t0, . . . , t|x̃|+1), then ·; x̃ ` si : o  (u0, . . . , u|x̃|+1) for some uj (j ∈ {0, . . . , |x̃| + 1}) such
that tj ∼= uj for each j ∈ {0, . . . , |x̃|+ 1}.

Proof. By the assumption ·; x̃ ` {s̃/z̃}zi : o (t0, . . . , t|x̃|+1), we have:

·; z̃, x̃ ` zi : o (0i, 1, 0|z̃|−i+|x̃|+1)
·; x̃ ` s : o (s0, . . . , s|x̃|+1)
tj ∼= 0 + 1 · sj ∼= sj for each j ∈ {0, . . . , |x̃|+ 1}.

Thus, the result holds for uj = sj .

We are now ready to prove Theorem 4.4, restricted to recursion-free PHORS (the
definition of recursion-free PHORS is found in Section B.1).

Lemma B.14. Let G = (N ,R, S) be a recursion-free PHORS, and ρ be the least solution
of ErefG . Then, P(G, S e) = ρ(S1).

Proof. By Lemma B.7, it suffices to show that ·;x `N t (t0, t1, t2) implies Pes(G, t, x) ∼= t1.
This follows by induction on [(t), the length of the longest reduction sequence from t by
d,p−−→es ; note that [(t) is well defined because t is finitely branching and strongly normalizing

with respect to
d,p−−→es ; the strong normalization follows from Lemma B.6 and the fact that

there can be no infinite sequence of consecutive administrative reductions (in fact, each
administrative reduction consumes one explicit substitution).

Suppose [(t) = 0. Then, t is either x (in which case, t1 = 1) or Ω (in which case, t1 = 0).
Thus, the result follows immediately.

If [(t) > 0, we perform a case analysis on a reduction of t. If t
ε,1−→es t

′, then by
Lemmas B.12 and B.13, ·;x `N t  (t′0, t

′
1, t
′
2) and t1 ∼= t′1 for some (t′0, t

′
1, t
′
2). By the
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induction hypothesis, Pes(G, t′, x) ∼= t′1. Therefore, we have Pes(G, t, x) = Pes(G, t′, x) ∼=
t′1
∼= t1 as required.

If t
d,p−−→es t

′ for d ∈ {L,R}, then t must be of the form E[F s̃ t̃], R(F ) = λỹ.λz̃.uL ⊕p
uR, t

L,p−−→es tL, and t
R,1−p−−−−→es tR with tL = E[{t̃/z̃}[s̃/ỹ]uL] and tR = E[{t̃/z̃}[s̃/ỹ]uR].

By Lemma B.11, there exist (tL,0, tL,1, tL,2) and (tR,0, tR,1, tR,2) such that ·;x `N tL  
(tL,0, tL,1, tL,2) and ·;x `N tR  (tR,0, tR,1, tR,2) with t1 ∼= ptL,1 + (1− p)tR,1. Thus, we have
Pes(G, t, x) = pPes(G, tL, x) + (1− p)Pes(G, tR, x) ∼= ptL,1 + (1− p)tR,1 ∼= t1 as required.

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. Consider the finite approximation G(k) (defined in Section B.1). Then,
we have

P(G, S e) =
⊔
k P(G(k), S(k) e) =

⊔
k lfp(FG(k))(S

(k)
1 )

=
⊔
k FkG(⊥)(S1) = lfp(FG)(S1) = ρErefG (S1)

as required. Here FG is the functional associated with fixpoint equations ErefG , as defined in
Section 4.1, and we can use essentially the same reasoning as in the proofs of Lemma B.3
and Theorem 4.2.
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The rest of the material will not appear in the submission.

Appendix C. Discounted Probability, Average Length of Reduction Sequence,
etc.

[I am not sure whether we would like to keep this discounted version in the paper. Since
the observation (that the discounted version can be precisely computed) straightforward,
we should probably omit it. -nk] Given a PHORS G, let pG,i(i ∈ Nat) be the probability
that reductions from the start symbol of G terminates in i steps. Henceforth we omit the
subscript G. Let us define f(z) by:

f(z) = Σi∈Nat piz
i.

Clearly, f(1) = Σi∈Nat pi = Pr(G). For d(0 ≤ d < 1), we call f(d) as the discounted
termination probability (with the discount factor d). For probablistic pushdown systems,
discounted properties have already been considered in [7].

Interestingly, the discounted probability f(d) can be computed with arbitrary precision,
for any 0 ≤ d < 1. It is obvious from the facts that pi is computable for each i, and that

Σn
i=0 pid

i ≤ f(d) ≤ (Σn
i=0 pid

i) + (1− Σn
i=0pi)d

n+1,

holds for any n, and dn+1 converges to 0 when n→∞.
Let us consider related functions:

F (z) =
∫ z

0 f(x)dx = Σi∈Nat
pi
i+1z

i+1

f ′(z) = Σi∈Nat (i+ 1)pi+1z
i

Note that f ′(1) gives the average length of reduction sequences when Pr(G) = f(1) = 1. We
have the following computability result:

• The value of f ′(d) (exists and) can be computed with arbitrary precision, for any 0 ≤ d < 1
(or more generally, for any complex number d with |d| < 1), for the same reason as the
computability of f(d).
• The value of F (d) can be computed with arbitrary precision, for any 0 ≤ d≤1. For d < 1,
F (d) can be computed for the same reason as for f(d). For d = 1, note that the value of
F (1) can be bounded by:

F (1− ε) ≤ F (1) ≤ F (1− ε) + ε · F ′(1) = F (1− ε) + ε · f(1) ≤ F (1− ε) + ε,

for arbitrary ε > 0.
• For the same reason as above, when the value of f ′(1) is finite and we know an upper-bound
M of f ′(1), the value of Pr(G) = f(1) can be computed with arbitrary precision using the
inequalities:

f(1− ε) ≤ f(1) ≤ f(1− ε) + ε ·M.

Note that f ′(1) may be infinite in general; for example, consider the PHORS G1 consisting
of the rules:

S → F (Twice Nop)
F f → (f e) ⊕ 1

2
(F (Twice f))

Nop x→ x
Twice f x→ f(f x).

Then, the length of the i-th leftmost terminating sequence is at least 2i, so that f ′(1) ≥
Σi≥12i · (1

2)i =∞.
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We can apply the same argument for the number of unfoldings instead of the length
of terminating reduction sequences. Let qi be the i-th approximation of the termination
probability of G, obtained by the iterative approximation of the least fixpoint, as discussed
in Section 4.3. For each i > 0, let ri = qi − qi−1. Let g(z) be:

g(z) = Σi>0riz
i.

Then g(1) = Pr(G). By the same argument as above, if g′(1) = Σi>0iri is finite and an
upper-bound of it can be computed, then we can also compute g(1) with arbitrary precision.

For G1 above, ri = (1
2)i. So, g′(1) = Σi>0i(

1
2)i is finite (in fact, Σi>0i(

1
2)i = 1

2 +

Σi≥2i(
1
2)i < 1

2 + Σi≥2(3
2)i(1

2)i = 1
2 + Σi≥2(3

4)i = 1
2 + (3

4)2 1
1− 3

4

= 1
2 + 9

4) although f ′(1) is

infinite. [Question: Is there any case where g′(1) is infinite? qi+1 = 1
2 + 1

2qi, ri = qi − qi−1

may be such an example. -nk]

C.1. Generating Functions on the Number of Probabilistic Choices. For a PHORS
G, let fn,G be the probability that G terminates after exactly n probabilistic choices (where
we do not count deterministic branches, by ⊕1 or ⊕0 ). Then we can define a generating
function:

fG(z) = Σnfn,Gz
n.

We often omit the subscript G below. fG(1) gives the termination probability P(G). Note
that, for each n, fn,G is computable. (In contrast, fn,G is not computable if G were a program
of a Turing-complete language.5)

The fixpoint characterizations in Section 4 can be lifted to obtain equations on the
generating function. For example, for:

S = F x F x = x ⊕p F (F x),

the order-n characterization yields:

S(z) = F z 1 F z x = z(p x+ (1− p)(F z (F z x))),

and the order-(n− 1) characterization yields:

S(z) = F z F z = z(p+ (1− p)(F z)2).

The latter yields:

f z =
1−

√
1− 4p(1− p)z2

2(1− p)z
The radius of convergence is 1

2
√
p(1−p)

. When p = 1
2 ,

f2n = 0 f2n−1 =
2

4n(n+ 1)

(
2n

n

)
∼ 2

n
3
2
√
π
.

When p 6= 1
2 , fn = O(cn) for 2

√
p(1− p) < c < 1, hence f ′(1) (which represents the average

number of choices) is finite; if we compute it, we can also obtain a precise upper-bound of
f(1) (see the discussion above on the estimation of f).

fn eventually converges to 0, but only very slowly. To speed up the convergence (and
make the point z = 1 non-singular), one may be tempted to choose a different measure as

5However, the fact that fn,G is computable alone does not help us compute an upper-bound of f(1)
because, even for a Turing-complete language, fn,G is computable if we replace every deterministic rule
F x̃ = t with F x̃ = t ⊕ 1

2
t.
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n. Choosing the “depth” of recursive calls does not help much, however. If we choose the
depth of recursive calls for the example above where n = 1

2 , we have:

fn = gn − gn−1 g0 = 0 gn =
1

2
+

1

2
g2
n−1.

We have

gn+1 − gn = (
1

2
+

1

2
g2
n)− (

1

2
+

1

2
g2
n−1) =

1

2
(gn + gn−1)(gn − gn−1),

so fn+1 = 1
2(gn + gn−1)fn. As gn → 1, the factor 1

2(gn + gn−1)fn tends to 1. Thus, fn does
NOT decrease exponentially fast.

Instead of changing the measure n, we may instead wish to consider:

gG(z) = Σn≥1fnz
blognc = Σk(f2k + · · · f2k+1−1)zk.

(b·c is applied to ensure that gG is analytic at z = 0.) Then P(G) = f0 + g(1), and

g′(1) = Σn≥1fnblog nc is more likely to be finite. In fact, if fn = O(n−(1+c)) for c > 06,

then gk = [zk]g = f2k + · · · f2k+1−1 = 2k × O((2k)−(1+c)) = O(2−kc) = O((2−c)k). So, gk
descreases exponentially with respect to k. Alternatively, one may consider

gG(z) = Σn≥2fnz
blog lognc

of

gG(z) = Σn≥0fnz
bn

1
k c.

A problem is that, simple fixpoint characterization is no longer available for the functions
above (though every coefficient is computable by iteratively solving higher-order model
checking problems for HORS).

Appendix D. Further Notes

D.1. Encoding Post Correspondence Problem. It seems possible to encode Post cor-
respondence problem instead of Diophantine equations, using the same idea as the encoding
of Diophantine equations. Note that each string a1 · · · ak may be represented as a number by

#ε = 0 #(a1 · · · ak) = #(a1 · · · ak−1)× n+ code(ak),

where n is the size of the alphabet, and code is an injective map from the alphabet to
{0, . . . , n− 1}. The code for the concatenations of two strings can be calculated from those
for the strings:

#(w1w2) = #w1 × n|w2| + #w2.

Thus, in order-3 PHORS, we can test all the candidates of solutions for the Post correspon-
dence problem {(v1, w1), . . . , (vm, wm)} by:

S = (Testall #v1 #w1)⊕ · · · ⊕ (Testall #vm #wm)
Testall x y =

(Test x y)⊕ (Testall (x× |v1|+ #v1) (y × |w1|+ #w1))⊕ · · ·
⊕(Testall (x× |vm|+ #vm) (y × |wm|+ #wm))

Test x y = Lt (x× x+ y × y) (2xy + 1)

6if it were Θ(n−1), Σnfn would diverge, contradicting Σnfn = 1.
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We can decrease the order by one by using the same trick as we used for Diophantine
equations.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany
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