Naoki Kobayashi

Ugo Dal Lago

Charles Grellois

ON THE TERMINATION PROBLEM FOR PROBABILISTIC HIGHER-ORDER RECURSIVE PROGRAMS

Keywords: model checking, probabilistic programs, higher-order programs, termination probabilities

In the last two decades, there has been much progress on model checking of both probabilistic systems and higher-order programs. In spite of the emergence of higher-order probabilistic programming languages, not much has been done to combine those two approaches. In this paper, we initiate a study on the probabilistic higher-order model checking problem, by giving some first theoretical and experimental results. As a first step towards our goal, we introduce PHORS, a probabilistic extension of higher-order recursion schemes (HORS), as a model of probabilistic higher-order programs. The model of PHORS may alternatively be viewed as a higher-order extension of recursive Markov chains. We then investigate the probabilistic termination problem -or, equivalently, the probabilistic reachability problem. We prove that almost sure termination of order-2 PHORS is undecidable. We also provide a fixpoint characterization of the termination probability of PHORS, and develop a sound (although possibly incomplete) procedure for approximately computing the termination probability. We have implemented the procedure for order-2 PHORSs, and confirmed that the procedure works well through preliminary experiments.

Introduction

Computer science has interacted with probability theory in many fruitful ways, since the very early days [START_REF] De Leeuw | Computability by probabilistic machines[END_REF]. Probability theory enables state abstraction, reducing in this way the state space's cardinality. It has also led to a new model of computation, used for instance in randomized computation [START_REF] Motwani | Randomized Algorithms[END_REF] or in cryptography [START_REF] Goldwasser | Probabilistic encryption[END_REF]. The trend of a rise of probability theory's importance in computer science has been followed by the programming language community, up to the point that probabilistic programming is nowadays a very active research area. Probabilistic choice can be modeled in various ways in programming, and fair binary probabilistic choice is for instance perfectly sufficient to obtain universality if the underlying programming language is universal itself [START_REF] Santos | Probabilistic Turing machines and computability[END_REF][START_REF] Lago | Probabilistic operational semantics for the lambda calculus[END_REF]. This has been the path followed in probabilistic λ-calculi [START_REF] Saheb-Djahromi | Probabilistic LCF[END_REF][START_REF] Jones | A probabilistic powerdomain of evaluations[END_REF][START_REF] Danos | Probabilistic game semantics[END_REF][START_REF] Lago | Probabilistic operational semantics for the lambda calculus[END_REF][START_REF] Ehrhard | Probabilistic coherence spaces are fully abstract for probabilistic PCF[END_REF][START_REF] Lago | On coinductive equivalences for higher-order probabilistic functional programs[END_REF][START_REF] Heunen | A convenient category for higher-order probability theory[END_REF].

In the present paper, we are interested in analysis of probabilistic, higher-order recursive programs. Model checking of probabilistic finite state systems has been a very active research field (see [START_REF] Baier | Principles of Model Checking[END_REF][START_REF]Handbook of Model Checking[END_REF] for a survey). Over the last two decades, there has also been much interest and progress in model checking of probabilistic recursive programs [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF][START_REF] Etessami | Recursive Markov decision processes and recursive stochastic games[END_REF][START_REF] Brázdil | Analyzing probabilistic pushdown automata[END_REF][START_REF] Brázdil | Branching-time model-checking of probabilistic pushdown automata[END_REF], which cannot be modeled as finite state systems, and thus escape the classic model checking framework and algorithms. None of the proposals in the literature on probabilistic model checking, however, is capable of handling higher-order functions, which are a natural feature in functional languages. This is in sharp contrast to what happens for non-probabilistic higher-order programs, for which model checking techniques can be fruitfully employed for proving both reachability and safety properties, as shown in the extensive literature on the subject (e.g. [START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF][START_REF] Hague | Collapsible pushdown automata and recursion schemes[END_REF][START_REF] Kobayashi | Model checking higher-order programs[END_REF][START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF][START_REF] Kobayashi | Predicate abstraction and CEGAR for higher-order model checking[END_REF][START_REF] Grellois | Relational semantics of linear logic and higher-order model checking[END_REF][START_REF] Grellois | Finitary semantics of linear logic and higher-order model-checking[END_REF][START_REF] Tsukada | Compositional higher-order model checking via ω-regular games over Böhm trees[END_REF][START_REF] Salvati | Krivine machines and higher-order schemes[END_REF]). There have been some studies on the termination of probabilistic higher-order programs [START_REF] Lago | Probabilistic termination by monadic affine sized typing[END_REF], but to our knowledge, they have not provided a procedure for precisely computing the termination probability, nor discussed whether it is possible at all: see Section 7 for more details. Summing up, little has been known about the decidability and complexity of model checking of probabilistic higher-order programs, and even less about the existence of practical procedures for approximately solving model checking problems.

One may think that probabilistic and higher-order computation is rather an exotic research topic, but it is important for precisely modeling and verifying any higher-order functional programs that interact with a probabilistic environment. As a simple example, consider the following (non-higher-order) OCaml-like program, which uses a primitive flip for generating true or false with probability 1 2 .

let rec f () = if flip () then () else f () in f ()

The program almost surely terminates (i.e., terminates with probability 1), but if we ignore the probabilistic aspect and model flip() as a non-deterministic (rather than probabilistic) primitive, then we would conclude that the program may not terminate. The following program makes use of an interesting combination of probabilistic choice and higher-order functions:

let boolgen () = flip () let rec listgen f () = if flip () then [] else f ():: listgen f () in listgen (listgen boolgen) ()

The function listgen above takes a generator f of elements as an argument, and creates a list of elements, each of them obtained by calling f . Thus, the whole program generates a list of lists of Booleans. The length of such a list of lists is randomized, and distributed according to the geometric distribution. We may then wish to ask, for example, (i) whether it almost surely terminates, and (ii) what is the probability that a list of even length is generated. Generating random data structures like the one listgen produces, by the way, is not at all an artificial task, being central to, e.g., random test generation [START_REF] Poulding | Automated random testing in multiple dispatch languages[END_REF][START_REF] Mista | Branching processes for quickcheck generators[END_REF].

As a model of probabilistic higher-order programs, we first introduce PHORS, a probabilistic extension of higher-order recursion schemes (HORS) [START_REF] Knapik | Higher-order pushdown trees are easy[END_REF][START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF]. Our model of PHORS is expressive enough to accurately model probabilistic higher-order functions, but the underlying non-probabilistic language (i.e., HORS, obtained by removing probabilistic choice) is not Turing-complete; thus, we can hope for the existence of algorithmic solutions to some of the verification problems. As an example, we can decide indeed whether the termination probability of PHORS is 0, by reduction to a model checking problem for non-probabilistic HORS.

Through the well-known correspondence between HORS and (collapsible) higher-order pushdown automata [START_REF] Knapik | Higher-order pushdown trees are easy[END_REF][START_REF] Hague | Collapsible pushdown automata and recursion schemes[END_REF], PHORS can be considered a higher-order extension of probabilistic pushdown systems [START_REF] Brázdil | Analyzing probabilistic pushdown automata[END_REF][START_REF] Brázdil | Branching-time model-checking of probabilistic pushdown automata[END_REF] and of recursive Markov chains [START_REF] Yannakakis | Checking LTL properties of recursive Markov chains[END_REF], the computation models used in previous work on model checking of probabilistic recursive programs. We can also view PHORS as an extension of the λY -calculus [START_REF] Statman | On the lambdaY calculus[END_REF] with probabilities, just like HORS can be viewed as an alternative presentation of the λY -calculus. The correspondence between HORS and the λY -calculus has been useful for transferring techniques for typed λ-calculi (most notably, game semantics [START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF], intersection types [START_REF] Kobayashi | Types and higher-order recursion schemes for verification of higher-order programs[END_REF][START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF] and Krivine machines [START_REF] Salvati | Krivine machines and higher-order schemes[END_REF]) to HORS; thus, we expect similar benefits in using PHORS (rather than probabilistic higher-order pushdown automata) as models of probabilistic higher-order programs.

As a first step towards understanding the nature of the model checking problem for probabilistic higher-order programs, the present paper studies the problem of computing the termination (or equivalently, reachability) probabilities of PHORS. Note that, as in a non-probabilistic setting, one can easily reduce a safety property verification problem to a may-termination problem (i.e. the problem of checking whether a program may terminate), by encoding safety violation as termination. We can also verify certain liveness properties, by encoding a good event as a termination and checking that the termination probability is 1. As we will see in Section 2, the two questions (i) and (ii) mentioned earlier on the listgen program can also be reduced to the problem of computing the termination probability of a PHORS. Note also that computing the termination (or equivalently, reachability) probability has been a key to solving more general model checking problems (such as LTL/CTL model checking) for recursive programs [START_REF] Yannakakis | Checking LTL properties of recursive Markov chains[END_REF][START_REF] Brázdil | Branching-time model-checking of probabilistic pushdown automata[END_REF].

As the first result on the problem of computing termination probabilities, we prove that the almost sure termination problem, i.e., whether a given PHORS terminates with probability 1, is undecidable for order-2 or higher. This contrasts with the case of recursive Markov chains, for which the almost sure termination problem can be decided in PSPACE [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF]. The proof of undecidability is based on a reduction from the undecidability of Hilbert's tenth problem (i.e. unsolvability of Diophantine equations) [START_REF] Matiyasevich | Hilbert's Tenth Problem[END_REF]. The undecidability result also implies that it is not possible to compute the exact termination probability. More precisely, for any rational number r ∈ (0, 1], the set {G | Pr(G) ≥ r} (where Pr(G) denotes the termination probability of G) is not recursively enumerable (in other words, the set is Π 0 1 -hard in the arithmetical hierarchy). Note, however, that this negative result does not preclude the possibility to compute the termination probability with arbitrary precision; there may exist an algorithm that, given a PHORS G and > 0 as inputs, finds r such that the termination probability of G belongs to (r, r +). A definite result on the existence of such an approximation algorithm remains open.

As a positive result towards approximately computing the termination probability, we show that the termination probability of order-n PHORS can be characterized by fixpoint equations on order-(n -1) functions on real numbers. The fixpoint characterization of the termination probability of recursive Markov chains [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF] can be viewed as a special case of our result where n = 1. The fixpoint characterization immediately provides a semi-algorithm for the lower-bound problem: "Given a PHORS G and a rational number r ∈ [0, 1], does Pr(G) > r hold?" Recall, however, that {G | Pr(G) ≥ r} is not recursively enumerable, so there is no semi-algorithm for the variation: "Given a PHORS G and a rational number r ∈ [0, 1], does Pr(G) ≥ r hold?"

The remaining question is whether an upper-bound on the termination probability can be computed with arbitrary precision. We have not settled this question yet, but propose a procedure for soundly estimating an upper-bound of the termination probability of order-2 PHORS by using the fixpoint characterization above, à la FEM (finite element method). We have implemented the procedure, and conducted preliminary experiments to confirm that the procedure works fairly well in practice: combined with the lower-bound computation based on the fixpoint characterization, the procedure was able to instantly compute the termination probabilities of (small but) non-trivial examples with precision 10 -2 . We also briefly discuss how to generalize the procedure to deal with PHORS of arbitrary orders. This paper's contributions can thus be summarized as follows: (i) A formalization of probabilistic higher-order recursion schemes (PHORS) and their termination probabilities. This is in Section 2. (ii) A proof of undecidability of the almost sure termination problem for PHORS (of order 2 or higher), which can be found in Section 3. (iii) A fixpoint characterization of the termination probability of PHORS, which immediately yields the semi-decidability of the lower-bound problem. This is in Section 4 (iv) A sound procedure for computing an upper-bound to the termination probability of order-2 PHORS (which is described in Section 5) accompanied by an implementation and preliminary experiments with promising results, reported in Section 6. The paper also includes Section 7, which discusses related work, and Section 8, which concludes the article. A preliminary summary of this article appeared in Proceedings of LICS 2019 [START_REF] Kobayashi | On the termination problem for probabilistic higher-order recursive programs[END_REF].

Probabilistic Higher-Order Recursion Schemes (PHORS) and Termination Probabilities

This section introduces probabilistic higher-order recursion schemes (PHORS 1), an extension of higher-order recursion schemes [START_REF] Knapik | Higher-order pushdown trees are easy[END_REF][START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF] in which programs can at any evaluation step perform a discrete probabilistic choice, then proceeding according to its outcome. Higherorder recursion schemes are usually treated as generators of infinite trees, but as we are only interested in the termination probability, we consider nullary tree constructors e and Ω, which represent termination and divergence respectively. We first define types and applicative terms. The set of types, ranged over by κ, is given by: κ

::= o | κ 1 → κ 2 .
Intuitively, o describes the unit value, and κ 1 → κ 2 describes functions from κ 1 to κ 2 . As usual, the order of a type κ is defined by:

order (o) = 0 order (κ 1 → κ 2) = max(order (κ 1) + 1, order (κ 2)). We often write o → o for o → • • • → o → o, and abbreviate κ 1 → • • • → κ k → κ to κ → κ .
The set of applicative terms, ranged over by t, is given by:

t ::= e | Ω | x | t 1 t 2 ,
1 We write PHORS for both singular and plural forms.

where e and Ω are (the only) constants of type o and x ranges over a set of variables.

Intuitively, e and Ω denote termination and divergence respectively (the latter can be defined as a derived form, but assuming it as a primitive is convenient for Section 4). We consider the following standard simple type system for applicative terms, where K, called a type environment, is a map from a finite set of variables to the set of types.

K e : o K Ω : o K(x) = κ K x : κ K t 1 : κ 2 → κ K t 2 : κ 2 K t 1 t 2 : κ Definition 2.

(PHORS).

A probabilistic higher-order recursion scheme (PHORS) is a triple G = (N , R, S), where:

(1) N is a map from a finite set of variables (called non-terminals and typically denoted F, G, . . .) to the set of types.

(2) R is a map from dom(N) to terms of the form λx 1 . • • • λx k .t L ⊕ p t R , where p ∈ [0, 1]
is a rational, and t L , t R are applicative terms. If

N (F) = κ 1 → • • • → κ k → o, R(F) must be of the form λx 1 . • • • λx k .t L ⊕ p t R , where N , x 1 : κ 1 , . . . , x k : κ k t L : o and N , x 1 : κ 1 , . . . , x k : κ k t R : o. (3) S ∈ dom(N), called the start symbol, is a distinguished non-terminal that satisfies N (S) = o. The order of a PHORS (N , R, S) is max F ∈dom(N) order (N (F)), i.e.
, the highest order of the types of its non-terminals. We write P k for the set of order-k PHORS.

When R(F) = λx 1 . • • • λx k .t L ⊕ p t R , we often write F x 1 • • • x k = t L ⊕ p t R ,
and specify R as a set of such equations. The rule

F x 1 • • • x k = t L ⊕ p t R intuitively means that F t 1 • • • t k is reduced to [t 1 /x 1 , . . . , t k /x k]t L and [t 1 /x 1 , . . . , t k /x k]t R
with probabilities p and 1 -p, respectively. We often write just

F x 1 • • • x k = t L for F x 1 • • • x k = t L ⊕ 1 t R .
F) = λx 1 . • • • λx k .t L ⊕ p t R F t 1 • • • t k L,p --→ G [t 1 /x 1 , . . . , t k /x k]t L R(F) = λx 1 . • • • λx k .t L ⊕ p t R F t 1 • • • t k R,1-p ----→ G [t 1 /x 1 , . . . , t k /x k]t R We write π,p = = ⇒ G for the relational composition of d 1 ,p 1 ---→ G , . . . , dn,pn ---→ G , when π = d 1 • • • d n and p = n i=1 p i .
Note that n may be 0, so that we have t 1

,1 =⇒ G t 2 iff t 1 = t 2 .
By definition, for each π ∈ {L, R} * , there exists at most one p such that S π,p = = ⇒ G e. For an applicative term t, we define P(G, t, π) by:

P(G, t, π) = p if t π,p = = ⇒ G e 0 if t π,p = = ⇒ G e
does not hold for any p .

The partial and full termination probabilities, written P(G, t, n) and P(G, t), are defined by:

P(G, t, n) = π∈{L,R} ≤n P(G, t, π) and P(G, t) = π∈{L,R} * P(G, t, π).
Finally, we set P(G, n) = P(G, S, n) and P(G) = P(G, S).

We often omit the subscript G below and just write Example 2.1. Let G 1 be the order-1 PHORS (N 1 , R 1 , S), where:

N 1 = {S → o, F → o → o} R 1 = {S = F e ⊕ 1 Ω, F x = x ⊕ p F (F x)}.
The start symbol S can be reduced, for example, as follows.

S L,1 --→ F (e) R,1-p ----→ F (F e) L,p --→ F e L,p --→ e.
Thus, we have S LRLL,p 2 (1-p) = ======== ⇒ e. As we will see in Section 4, the termination probability P(G 1) is the least solution for r of the fixpoint equation:

r = p + (1 -p)r 2 . Therefore, P(G 1) = p 1-p if 0 ≤ p < 1 2 and P(G 1) = 1 if 1 2 ≤ p.
The corresponding example of a recursive Markov chain is reported in Figure 1, using the notational conventions from [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF]. By the way, G 1 can be seen as realizing a binary, random walk on the natural numbers, starting from 1.

As the previous example suggests, there is a mutual translation between recursive Markov chains and order-1 PHORS; see the Appendix A.1 for details.

Example 2.2. Let G 2 be the order-2 PHORS (N 2 , R 2 , S) where:

N 2 = {S → o, H → o → o, F → (o → o) → o, D → (o → o) → o → o} R 2 = {S = (F H) ⊕ 1 e, H x = x ⊕ 1 2 Ω, F g = (g e) ⊕ 1 2 (F (D g)), D g x = (g (g x)) ⊕ 1 Ω}.
The start symbol S can be reduced, for example, as follows.

S L,1 --→ F H R, 1 2 --→ F (D H) L, 1 2 --→ D H e L,1 --→ H(H e) L, 1 2 --→ H e L, 1 2 --→ e.
Contrary to G 1 , it is quite hard to find an RMC which models the behavior of G 2 . In fact, this happens for very good reasons, as we will see in Section 3.

The following result is obvious from the definition of P(G).

Theorem 2.1. For any rational number r ∈ [0, 1], the set {G | P(G) > r} is recursively enumerable.

Proof. This follows immediately from the facts that P(G) > r if and only if P(G, n) = π∈{L,R} ≤n P(G, S, π) > r for some n, and that P(G, n) is computable. In other words, whether P(G) > r is semi-decidable, i.e., there exists a procedure that eventually answers "yes" whenever P(G) > r. As we will see in Section 3, however, for every r ∈ (0, 1], {G | P(G) ≥ r} is not recursively enumerable.

Remark 2.1. Given a PHORS G, replacing each probabilistic operator ⊕ p s.t. 0 < p < 1 with a binary tree constructor br and replacing t L ⊕ 1 t R (t L ⊕ 0 t R , resp.) with t L (t R , resp.), we obtain an ordinary HORS G ND . Then P(G) = 0 if and only if the tree generated by G ND has no finite path to e. Thus, by [START_REF] Kobayashi | Complexity of model checking recursion schemes for fragments of the modal mu-calculus[END_REF] (see the paragraph below the proof of Theorem 4.5 about the complexity of the reachability problem), whether P(G) = 0 is decidable, and (n -1)-EXPTIME complete. Note, on the other hand, that there is no clear correspondence between the almost sure termination problem P(G) ? = 1 and a model checking problem for G ND . If the tree of G ND has neither Ω nor infinite path (which is decidable), then P(G)=1, but the converse does not hold.

Remark 2.2. The restriction that a probabilistic choice may occur only at the top-level of each rule is not a genuine restriction. Indeed, whenever we wish to write a rule of the form

F x = C[t L ⊕ p t R], we can normalize it to F x = C[G x],
where G is defined by G x = t L ⊕ p t R . Keeping this in mind, we sometimes allow probabilistic choices to occur inside terms. In fact, a PHORS can be considered as a term (of type o) of a probabilistic extension of the (call-by-name) λY -calculus [START_REF] Statman | On the lambdaY calculus[END_REF]. We define the set of probabilistic λY terms by: s

::= e | Ω | x | λx.s | s 1 s 2 | Y (λf.λx.s) | s 1 ⊕ p s 2 .
Here, ⊕ p is a probabilistic choice operator of type o → o → o, and other terms are simply-typed in the usual way. Then, PHORS and probabilistic λY terms can be converted to each other. We use PHORS in the present paper for the convenience of the fixpoint characterizations discussed in Section 4.

Remark 2.3. We adopt the call-by-name semantics, and allow probabilistic choices only on terms of type o. The call-by-value semantics, as well as probabilistic choices at higher-order types can be modeled by applying a standard CPS transformation. Moreover, a PHORS does not have data other than functions, but as in ordinary HORS [START_REF] Kobayashi | Model checking higher-order programs[END_REF], elements of a finite set (such as Booleans) can be modeled by using Church encoding.

We provide a few more examples of PHORS below.

Example 2.3. Recall the list generator example in Section 1, whose termination is equivalent to that of the following program, obtained by replacing the output of each function with the unit value (). let boolgen () = flip () in let rec listgen f ()= if flip () then () else (f (); listgen f ()) in listgen (listgen boolgen) () With a kind of CPS transformation, termination of the above program is reduced to that of the following PHORS G 3 :

S = Listgen (Listgen Boolgen) e Boolgen k = k Listgen f k = k ⊕ 1 2 f (Listgen f k)
It is not difficult to confirm that P(G 3) = 1 (using the fixpoint characterization given in Section 4). The following PHORS G 4 captures the termination probability of the aforementioned program:

S = Treegen Boolgen e Boolgen k = k Treegen f k = k ⊕ 1 2 (f (Treegen f (Treegen f (Treegen f k))))
Interestingly, G 4 is not almost surely terminating, since P(G 4) = f) in treegen 1 2 boolgen where flipp is the natural generalization of flip. Here, treegen is parameterized with probability p, which is increased upon each recursive call. We assume that flipp(p) returns true with probability p and false with 1p. The corresponding PHORS G 5 is:

S = Treegen H Boolgen e Boolgen k = k H x y = x ⊕ 1 2 y G p x y = x ⊕ 1 2 (p x y) Treegen p f k = p k (f (Treegen (G p) f (Treegen (G p) f (Treegen (G p) f k))))
The function Treegen is parameterized by a probabilistic choice function p, which is initially set to the function H (that chooses the first argument with probability 1 2). The function G takes a probabilistic choice function, and returns a probabilistic function λx.λy.x ⊕ 1 2 (p x y), which chooses the first argument with probability p+1 2 . As expected, G 5 is almost surely terminating.

Example 2.5. Recall the list generator example again. Suppose that we wish to compute the probability that listgen(boolgen) generates a list of even length. It can be reduced to the problem of computing the termination probability of the following program: let boolgen () = flip () in let rec loop () = loop () in let rec listgenE f () = if flip () then () else (f (); listgenO f ()) and listgenO f () = if flip () then loop () else (f (); listgenE f ()) in listgenE boolgen () Here, we have duplicated listgen to listgenE and listgenO, which are expected to simulate the generation of even and odd lists respectively. Thus, the then-branches of listgenE and listgenO have been replaced by termination and divergence respectively. As in the previous example, the above program can further be translated to the following PHORS G 6 :

S = ListgenE Boolgen e Boolgen k = k ListgenE f k = k ⊕ 1 2 (f (ListgenO f k)) ListgenO f k = Ω ⊕ 1 2 (f (ListgenE f k)).
The termination probability of the PHORS is

1 2 + 1 2 • 1 4 + 1 2 • 1 4 2 + • • • = 1 2 • ∞ i=0 1 4 i = 2 3 .
Thus, the probability that the original program generates an even list is also 2 3 . Let us also consider the problem of computing the probability that listgen(boolgen) generates a list containing an even number of true's. It can be reduced to the termination probability of the following PHORS.

S = ListgenE Boolgen e Boolgen k 1 k 2 = k 1 ⊕ 1 2 k 2 ListgenE f k = k ⊕ 1 2 (f (ListgenO f k)(ListgenE f k)) ListgenO f k = Ω ⊕ 1 2 (f (ListgenE f k)(ListgenO f k)).
The function Boolgen now takes two continuations k 1 and k 2 as arguments, and calls k 1 or k 2 according to whether true or false is generated in the original program. The function ListgenE (ListgenO, resp.) is called when the number of true's generated so far is even (odd, resp.). The termination probability of the PHORS above is 3 4 . In the following example, a standard program transformation for randomized algorithms is captured as a PHORS. More specifically, a higher-order function is defined, which turns any Las-Vegas algorithm that sometimes declares not to be able to provide the correct answer into one that always produces the correct answer. (For more details about the use of the scheme above, please refer to [START_REF] Hromkovic | Design and Analysis of Randomized Algorithms -Introduction to Design Paradigms[END_REF]). To confirm that determinize f almost surely terminates and returns a value of type B, it suffices to check that the PHORS term Determinize g almost surely terminates for g = λy.λz.y ⊕ p z, where Determinize is defined by: Determinize g = g e (Determinize g).

Here, the first argument of g corresponds to the body of the clause Ans(r)-> • • •, while the second argument corresponds to that of the clause Unknown-> • • •. Almost sure termination of Determinize(λy.λz.y ⊕ p z) for any p > 0 can further be encoded as that of the following PHORS G 7 :

S = (Determinize One) ⊕ 1 2 (ForallP Zero One) One y z = y Zero y z = z Avg p q y z = (p y z) ⊕ 1 2 (q y z) ForallP p q = (Determinize (Avg p q)) ⊕ 1 2 ((ForallP p (Avg p q)) ⊕ 1 2 (ForallP (Avg p q) q))
It runs Determinize (λy.λz.y ⊕ p z) for every p(0 < p ≤ 1) of the form k 2 n with nonzero probability. Thus, P(G 7) = 1 if Determinize(λy.λz.y ⊕ p z) almost surely terminates for every p > 0. Conversely, by the continuity of the termination probability of Determinize (λy.λz.y ⊕ p z) except at p = 0 (which we omit to discuss formally), P(G 7) = 1 implies that Determinize(λy.λz.y ⊕ p z) almost surely terminates for every p > 0. 2 . The multiplication p 1 p 2 can be represented by Mult p 1 p 2 , where Mult p 1 p 2 x y = p 1 (p 2 x y) y.

Undecidability of Almost Sure Termination of Order-2 PHORS

We prove in this section that the almost sure termination problem, i.e., whether the termination probability P(G) of a given PHORS G is 1, is undecidable even for order-2 PHORS. The proof is by reduction from the undecidability of Hilbert's 10th problem [START_REF] Matiyasevich | Hilbert's Tenth Problem[END_REF] (i.e. unsolvability of Diophantine equations). Note that almost sure termination of an order-1 PHORS is decidable, as order-1 PHORS are essentially equi-expressive with probabilistic pushdown systems and recursive Markov chains [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF][START_REF] Etessami | Recursive Markov decision processes and recursive stochastic games[END_REF][START_REF] Brázdil | Analyzing probabilistic pushdown automata[END_REF][START_REF] Brázdil | Branching-time model-checking of probabilistic pushdown automata[END_REF]. In fact, by the fixpoint characterization given in Section 4.3, the termination probability of an order-1 PHORS can be expressed as the least solution of fixpoint equations over reals, which can be solved as discussed in [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF]. Thus, our undecidability result for order-2 PHORS is optimal.

We start by giving an easy reformulation of the unsolvability of Diophantine equations in terms of polynomials with non-negative coefficients, which follows immediately from the original result. Lemma 3.1. Given two polynomials P (x 1 , . . . , x k) and Q(x 1 , . . . , x k) with non-negative integer coefficients, whether P (x 1 , . . . , x k) < Q(x 1 , . . . , x k) for some x 1 , . . . , x k ∈ Nat is undecidable. More precisely, the set of pairs of polynomials:

{(P (x 1 , . . . , x k), Q(x 1 , . . . , x k)) | ∃x 1 , . . . , x k ∈ Nat.P (x 1 , . . . , x k) < Q(x 1 , . . . , x k)} is Σ 0 1 -complete in the arithmetical hierar- chy.
Proof. Let D(x 1 , . . . , x k) be a multivariate polynomial with integer coefficients. Then, for all natural numbers x 1 , . . . , x k ∈ Nat, D(x 1 , . . . , x k) = 0 if and only if (D(x 1 , . . . , x k)) 2 -1 < 0. Any such polynomial (D(x 1 , . . . , x k)) 2 -1 may be rewritten as P (x 1 , . . . , x k) -Q(x 1 , . . . , x k), where P (x 1 , . . . , x k) and Q(x 1 , . . . , x k) have only non-negative integer coefficients. Then, D(x 1 , . . . , x k) = 0 if and only if P (x 1 , . . . , x k) < Q(x 1 , . . . , x k). Since whether D(x 1 , . . . , x k) = 0 for some x 1 , . . . , x k ∈ Nat is undecidable [START_REF] Matiyasevich | Hilbert's Tenth Problem[END_REF], it is also undecidable whether P (x 1 , . . . , x k) < Q(x 1 , . . . , x k) for some x 1 , . . . , x k ∈ Nat. Furthermore, since the set of sastisfiable Diophantine equations is Σ 0 1 -complete, the set

{(P (x 1 , . . . , x k), Q(x 1 , . . . , x k)) | ∃x 1 , . . . , x k ∈ Nat.P (x 1 , . . . , x k) < Q(x 1 , . . . , x k)} is Σ 0 1 - hard.
The set is also obviously recursively enumerable, hence belongs to Σ 0 1 . Roughly, the idea of our undecidability proof is to show that for every P and Q as above, one can effectively construct an order-2 PHORS that does not almost surely terminate if and only if P (x 1 , . . . , x k) < Q(x 1 , . . . , x k) for some x 1 , . . . , x k . Henceforth, we say t is non-AST if t is not almost surely terminating. For ease of understanding, we first construct an order-3 PHORS G P,Q 3 that satisfies the property above in Section 3.1 and then refine the construction to obtain an order-2 PHORS G P,Q 2 with the same property in Section 3.2.

3.1. Construction of the Order-3 PHORS G P,Q 3 . Let P (x 1 , . . . , x k) and Q(x 1 , . . . , x k) be, as above, polynomials with non-negative coefficients. We give the construction of G P,Q 3 in a top-down manner. We let G P,Q 3 enumerate all the tuples of natural numbers (n 1 , . . . , n k), and for each tuple, spawn a process Lt (P (n 1 , . . . , n k)) (Q(n 1 , . . . , n k)) with non-zero probability, where Lt m 1 m 2 is a process that is non-AST if and only if m 1 < m 2 . Thus, we define the start symbol S of G P,Q 3 by:

S = Loop Zero • • • Zero. Loop x 1 • • • x k = (Lt (P x 1 • • • x k) (Q x 1 • • • x k)) ⊕ 1 2 (Loop (Succ x 1) • • • x k) ⊕ 1 2 • • • ⊕ 1 2 (Loop x 1 • • • (Succ x k)).
Here, for readability, we have extended the righthand sides of rules to n-ary probabilistic choices:

t 1 ⊕ p 1 t 2 ⊕ p 2 • • • ⊕ p n-1 t n . These can be expressed as t 1 ⊕ p 1 (F 2 x 1 • • • x k)
, where auxiliary non-terminals are defined by:

F 2 x 1 • • • x k = t 2 ⊕ p 2 (F 3 x 1 • • • x k) • • • F n-1 x 1 • • • x k = t n-1 ⊕ p n-1 t n .
We can express natural numbers and operations on them by using Church encoding:

Zero s z = z Succ n s z = s (n s z) Add n m s z = n s (m s z) Mult n m s z = n (m s) z.
Here, the types of the non-terminals above are given by:

N (Zero) = CT N (Succ) = CT → CT N (Add) = N (Mult) = CT → CT → CT, where CT = (o → o) → o → o
is the usual type of Church numerals. Note that the order of CT is 2, while that of N (Succ), N (Add), and N (Mult) is 3. By using the just introduced operators, we can easily define P and Q as order-3 non-terminals. By abuse of notation, we often use symbols P and Q to denote both polynomials and the representations of them as non-terminals; similarly for natural numbers.

It remains to define an order-3 non-terminal Lt, so that Lt

m 1 m 2 is non-AST if and only if m 1 < m 2 . Since G P,Q 3 runs Lt (P n 1 • • • n k) (Q n 1 • • • n k) for each tuple of Church numerals (n 1 , . . . , n k) with non-zero probability, G P,Q 3 is non-AST if and only if P (n 1 , . . . , n k) < Q(n 1 , . . . , n k) for some natural numbers n 1 , . . . , n k . The key ingredient used for the construction of Lt is the function CheckHalf of type (o → o → o) → o, defined as follows: CheckHalf g = F g e F g x = g x (F g (F g x))
. Here, F above is a parameterized version of F from Example 2.1: F ⊕ p (where ⊕ p is treated as a function of type o → o → o, which chooses the first argument with probability p and the second one with 1 -p) corresponds to F . As discussed in Example 2.1, F e is non-AST if and only if p < 1 2 . Thus, CheckHalf g = F g e (which is equivalent to F e when g = ⊕ p) is non-AST if and only if the probability that g chooses the first argument is smaller than 1 2 . Let CheckLt (which will be defined shortly) be a function which takes Church numerals m 1 and m 2 , and returns a function of type o → o → o that chooses the first argument with probability smaller than 1 2 if and only if m 1 < m 2 . Then, Lt can be defined by: Lt m 1 m 2 = CheckHalf (CheckLt m 1 m 2). Finally, CheckLt can be defined by:

CheckLt m 1 m 2 x y = (NatToPr m 1 x y) ⊕ 1 2 (NatToPr m 2 y x). NatToPr m x y = m (H x) y. H x y = x ⊕ 1 2 y.
Let us write [m] for the natural number represented by a Church numeral m. For a Church numeral m, NatToPr m x y (which is equivalent to (H x) [m] y) chooses x with probability 1 -1 2 [m] and y with probability 1 2 [m] . Thus, the probability that CheckLt m 1 m 2 x y chooses

x is 1 2 • 1 - 1 2 [m 1] + 1 2 • 1 2 [m 2] = 1 2 + 1 2 • 1 2 [m 2] - 1 2 [m 1] , which is smaller than 1 2 if and only if [m 1] < [m 2],
as required. This completes the construction of G P,Q 3 . See Figure 2 for the whole rules of G P,Q 3 . From the discussion above, it should be trivial that G P,Q

3 is non-AST if and only if P (x 1 , . . . , x k) < Q(x 1 , . . . , x k) holds for some x 1 , . . . , x k ∈ Nat.
S = Loop Zero • • • Zero. Loop x 1 • • • x k = (Lt (P x 1 • • • x k) (Q x 1 • • • x k)) ⊕ 1 2 (T estAll (Succ x 1) • • • x k) ⊕ 1 2 • • • ⊕ 1 2 (T estAll x 1 • • • (Succ x k)). Lt m 1 m 2 = CheckHalf (CheckLt m 1 m 2). CheckHalf y = F y e. F g x = g x (F g (F g x)). CheckLt m 1 m 2 x y = (NatToPr m 1 x y) ⊕ 1 2 (NatToPr m 2 y x). NatToPr m x y = m (H x) y. H x y = x ⊕ 1 2 y.
Zero s z = z.

Succ n s z = s(n s z).

Add n m s z = n s(m s z). Based on the idea above, we replace Lt with LtPr , which now takes probabilistic functions of type o → o → o as arguments:

Mult n m s z = n (m s) z. P x 1 • • • x k = • • • (* constructed using Zero, Succ, Add , Mult *). Q x 1 • • • x k = • • • (* constructed using Zero, Succ, Add , Mult *).
LtPr g 1 g 2 = CheckHalf (CheckLtPr g 1 g 2). CheckLtPr g 1 g 2 x y = (g 1 x y) ⊕ 1 2 (g 2 y x).
Here, CheckLtPr is an analogous version of CheckLt, and CheckHalf is as before: CheckHalf g is non-AST if and only if the probability that g chooses the first argument is smaller than 1 2 . Then, LtPr (NatToPr (P

n 1 • • • n k)) (NatToPr (Q n 1 • • • n k)) is non-AST if and only if P (n 1 , . . . , n k) < Q(n 1 , . . . , n k).
It remains to modify the top-level loop Loop, so that we can enumerate (terms equivalent to) LtPr (NatToPr (P

n 1 • • • n k)) (NatToPr (Q n 1 • • • n k)) for all n 1 , . . . , n k ∈ Nat,
without explicitly constructing Church numerals. Instead of using Church encodings, we can encode natural numbers and operations on them (except multiplication) into probabilistic functions as follows.

ZeroPr x y = y SuccPr g x y = x ⊕ 1 2 (g x y) OnePr x y = x ⊕ 1 2 y AddPr g 1 g 2 x y = g 1 x (g 2 x y).
Basically, a natural number m is encoded as a probabilistic function of type o → o → o, which chooses the first and second arguments with probabilities 1 -1 2 m and 1 2 m respectively. Notice that AddPr (NatToPr m 1) (NatToPr m 2) is equivalent to NatToPr (Add m 1 m 2), because the probability that AddPr (NatToPr

m 1) (NatToPr m 2) x y chooses y is 1 2 [m 1] • 1 2 [m 2] = 1 2 [m 1]+[m 2]
. We call this encoding the probabilistic function encoding, or PF encoding for short.

The multiplication cannot, however, be directly encoded. To compensate for the lack of the multiplication operator, instead of passing around just n 1 , . . . , n k in the top-level loop, we pass around the PF encodings of the values of

n i 1 1 • • • n i k k for each i 1 ≤ d 1 , . . . , i k ≤ d k , where d 1 , . . . , d k respectively are the largest degrees of P (x 1 , . . . , x k) + Q(x 1 , . . . , x k) in x 1 , . . . , x k . We thus define the start symbol S of G P,Q 2 by: S = LoopPr OnePr ZeroPr • • • ZeroPr (d 1 +1)•••(d k +1)-1 times . LoopPr x = (LtPr (P x) (Q x)) ⊕ 1 2 (LoopPr (Inc 1,(0,...,0) x) • • • (Inc 1,(d 1 ,...,d k) x)) ⊕ 1 2 • • • ⊕ 1 2 (LoopPr (Inc k,(0,...,0) x) • • • (Inc k,(d 1 ,...,d k) x)).
Here, x denotes the sequence of (

d 1 +1) • • • (d k +1) variables x (0,...,0) , . . . , x (d 1 ,...,d k) , consisting of x (i 1 ,...,i k) for each i 1 ∈ {0, . . . , d 1 }, . . . , i k ∈ {0, . . . , d k }. Each variable x (i 1 ,...,i k) holds (the PF encoding of) the value of n i 1 1 • • • n i k k .
Moreover, the functions P and Q are the PF encodings of the polynomials P and Q. Since P and Q can be represented as linear combinations of monomials

x i 1 1 • • • x i k k for i 1 ≤ d 1 , . . . , i k ≤ d k , P and
Q can be defined using ZeroPr and AddPr . For example, if P (x 1 , x 2) = x 2 1 + 2x 1 x 2 , then P is defined by: P x y z = AddPr x (2,0) (AddPr x (1,1) x (1,1)) y z.

The function Inc j,(i 1 ,...,i k) x represents the PF encoding of

n i 1 1 • • • (n j + 1) i j • • • n i k k , as- suming that x represents (the PF encoding of) the values n 0 1 • • • n 0 k , . . . , n d 1 1 • • • n d k k .
Note that Inc j,(i 1 ,...,i k) can also be defined by using ZeroPr and AddPr , since

x i 1 1 • • • (x j + 1) i j • • • x i k
k can be expressed as a linear combination of monomials

x 0 1 • • • x 0 k , . . . , x d 1 1 • • • x d k k . For example, if k = 2, then Inc 2,(1,2) can be defined by Inc 2,(1,2) x y z = AddPr x (1,2) (AddPr x (1,1) (AddPr x (1,1) x (1,0))) y z, because x 1 (x 2 + 1) 2 = x 1 x 2 2 + 2x 1 x 2 + x 1 .
This completes the construction of G P,Q 2 . See Figure 3 for the list of all rules of G P,Q 2 . By the discussion above, we have:

Theorem 3.2. The almost sure termination of order-2 PHORS is undecidable. More precisely, the set {G | P(G) = 1, G is an order-2 PHORS} is Π 0 1 -hard. Proof. By the construction of G P,Q 2 above, P(G P,Q 2) = 1 if and only if P (x 1 , . . . , x k) ≥ Q(x 1 , . . . , x k) holds for all x 1 , . . . , x k ∈ Nat. By Lemma 3.1, the set of pairs (P, Q) that satisfy the latter is Π 0 1 -complete, hence the set {G | P(G) = 1, G is an order-2 PHORS} is Π 0 1 -hard.
As a corollary, we also have:

Theorem 3.3.
For any rational number r ∈ (0, 1], the followings are undecidable:

(1) whether a given order-2 PHORS G satisfies Pr(G)≥r.

(2) whether a given order-2 PHORS G satisfies Pr(G)=r.

More precisely, the sets

{G ∈ P 2 | Pr(G)≥r} and {G ∈ P 2 | Pr(G)=r} are Π 0 1 -hard. S = LoopPr OnePr ZeroPr • • • ZeroPr (d 1 +1)•••(d k +1)-1
.

LoopPr x = (LtPr (P x) (Q x)) ⊕ 1 2 (LoopPr (Inc 1,(0,...,0) x) • • • (Inc 1,(d 1 ,...,d k) x)) ⊕ 1 2 • • • ⊕ 1 2 (LoopPr (Inc k,(0,...,0) x) • • • (Inc k,(d 1 ,...,d k) x)).
LtPr

g 1 g 2 = CheckHalf (CheckLtPr g 1 g 2).
CheckLtPr

g 1 g 2 x y = (g 1 x y) ⊕ 1 2 (g 2 y x).
CheckHalf y = F y e.

F g x = g x (F g (F g x)). ZeroPr x y = y. OnePr x y = x ⊕ 1 2 y. SuccPr g x y = x ⊕ 1 2 (g x y).
AddPr g 1 g 2 x y = g 1 x (g 2 x y). P x = • • • (* PF encoding of P , defined using ZeroPr and AddPr *) (i) For any rational number r ∈ [0, 1], Ψ >r is recursively enumerable (or, belongs to Σ 0 1). (ii) For any rational number r

Q x = • • • (* PF encoding of Q, defined using ZeroPr and AddPr *) Inc j,(i 1 ,...,i k) = • • • (* for each j ∈ {1, . . . , k}, i 1 ≤ d 1 , . . . , i k ≤ d k *)
∈ (0, 1], Ψ ≥r is Π 0 1 -hard (whereas Ψ ≥0 is obviously recur- sive). (iii) For any rational number r ∈ (0, 1], Ψ =r is Π 0 1 -hard (whereas Ψ =0 is recursive; recall Remark 2.

1).

It is open whether the following propositions hold or not.

(iv) Ψ <r is recursively enumerable for every rational number r.

(v) Ψ ≤r is recursively enumerable for every rational number r.

(vi) There exists an algorithm that takes an order-2 PHORS G and a rational number > 0 as inputs, and returns a rational number r such that | Pr(G) -r| < . Statements (iv) and (vi) are equivalent. In fact, if (iv) is true, we can construct an algorithm for (vi) as follows. First, test whether Pr(G) = 0 (which is decidable). If so, output r = 0. Otherwise, pick a natural number m such that 1 m < 1 2 , and divide the interval (0, 1 + 1 2) to m (overlapping) intervals

0, 1 m + 1 2 , 1 m , 2 m + 1 2 , . . . , m-2 m , m-1 m + 1 2 , m-1 m , 1 + 1 2 .
Table 1. Hardness of the termination problems in terms of the arithmetical hierarchy. For recursive sets (i.e. those in ∆ 0 1 = Σ 0 1 ∩ Π 0 1), more precise computational complexities of the membership problems are given. "PHORS" means order-k PHORS where k ≥ 2.

Models

Ψ >0 Ψ >r (r ∈ (0, 1))

Ψ <r (r ∈ (0, 1]) RMC P PSPACE PSPACE PHORS lower bound (k -1)-EXPTIME- complete (k -1)-EXPTIME Σ 0 1 upper bound Σ 0 1 Σ 0 2 Turing-complete language Σ 0 1 -complete Σ 0 1 -complete Σ 0 2 -complete
By using procedures for (i) and (iv), one can enumerate all the order-2 PHORS whose termination probabilities belong to each interval. Thus, G is eventually enumerated for one of the intervals (i m , i+1 m + 1 2); one can then output i m as r. Conversely, suppose that we have an algorithm for (vi). For each order-2 PHORS G, repeatedly run the algorithm for = 1 2 , 1 4 , 1 8 , . . ., and output G if the output r for (G,) satisfies r + < r. Then, G is eventually output just if Pr(G) < r (note that if Pr(G) < r, then eventually becomes smaller than 1 2 (r -Pr(G)); at that point, the output r satisfies r + < (Pr(G) +) + < r). Proposition (v) implies (iv) (and hence also (vi)). If there is a procedure for (v), one can enumerate all the elements of Ψ <r by running the procedure for enumerating Ψ ≤r-for = 1 2 , 1 4 , 1 8 , . . . Remark 3.2. Table 1 summarizes the hardness of termination problems in terms of the arithmetical hierarchy for recursive Markov chains (RMC), PHORS, and a probabilistic language whose underlying (non-probabilistic) language is Turing-complete. The results for RMC and the Turing-complete language come from [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF] and [START_REF] Mciver | A new proof rule for almost-sure termination[END_REF]. As seen in the table, the results on PHORS are not tight, except for the problem P(G) > 0. Since the expressive power of PHORS is between those of RMC and the Turing complete language, the hardness of each problem is between those of the two models. Theorem 3.3 shows Σ 0 1 -hardness of P(G) < r, but we do not know yet whether the problem is Σ 0 1 -complete or Σ 0 2 -complete, or lies between the two classes. Remark 3.3. Theorem 3.2 implies that, in contrast to the decidability of LTL model checking of recursive Markov chains [START_REF] Brázdil | Analyzing probabilistic pushdown automata[END_REF][START_REF] Etessami | Model checking of recursive probabilistic systems[END_REF], the corresponding problem for order-2 PHORS (of computing the probability that an infinite transition sequence satisfies a given LTL property) is undecidable and there are even no precise approximation algorithms. Let us extend terms with events: t ::= • • • | event a; t where event a; t raises an event a and evaluates t. Consider the problem of, given an order-2 PHORS G, computing the probability P a ω (G) that a occurs infinitely often. Then there is no algorithm to compute P a ω (G) with arbitrary precision, in the sense of (vi) of Remark 3.1. To see this, notice that by parametric G P,Q 2 with e, we can define a nonterminal F : o → o such that F x almost surely reduces to x if and only if there exist no n 1 , . . . , n k such that P (n 1 , . . . , n k) < Q(n 1 , . . . , n k). Consider the (extended) PHORS G P,Q,a ω whose start symbol S is defined by: S = event a; F (S).

Then

P a ω (G 1) = 0 if there exists n 1 , . . . , n k such that P (n 1 , . . . , n k) < Q(n 1 , . . . , n k) 1 otherwise.
Thus, there is no algorithm to approximately compute G P,Q,a ω even within the precision of = 1 2 . Remark 3.4. The PHORS G 2 obtained above satisfies the so called "safety" restriction [START_REF] Knapik | Deciding monadic theories of hyperalgebraic trees[END_REF][START_REF] Kobele | The IO and OI hierarchies revisited[END_REF]. Thus, based on the correspondence between safe grammars and pushdown systems [START_REF] Knapik | Deciding monadic theories of hyperalgebraic trees[END_REF], the undecidability result above would also hold for probabilistic second-order pushdown systems (without collapse operations [START_REF] Hague | Collapsible pushdown automata and recursion schemes[END_REF]).

Fixpoint Characterization of Termination Probability

Although, as observed in the previous section, there is no general algorithm for exactly computing the termination probability of PHORS, there is still hope that we can approximately compute the termination probability. As a possible route towards this goal, this section shows that the termination probability of any PHORS G can be characterized as the least solution of fixpoint equations on higher-order functions over [0, 1]. As mentioned in Section 1, the fixpoint characterization immediately yields a procedure for computing lower-bounds of termination probabilities, and also serves as a justification for the method for computing upper-bounds discussed in Section 5. We first introduce higher-order fixpoint equations in Section 4.1. We then characterize the termination probability of an order-n PHORS in terms of fixpoint equations on order-n functions over [0, 1] (Section 4.2), and then improve the result by characterizing the same probability in terms of order-(n -1) fixpoint equations for the case n ≥ 1 (Section 4.3). The latter characterization can be seen as a generalization of the characterization of termination probabilities of recursive Markov chains as polynomial equations [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF], which served as a key step in the analysis of recursive Markov chains (or probabilistic pushdown systems) [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF][START_REF] Etessami | Recursive Markov decision processes and recursive stochastic games[END_REF][START_REF] Brázdil | Analyzing probabilistic pushdown automata[END_REF][START_REF] Brázdil | Branching-time model-checking of probabilistic pushdown automata[END_REF].

4.1. Higher-order Fixpoint Equations. We define the syntax and semantics of fixpoint equations that are commonly used in Sections 4.2 and 4.3. We first define the syntax of fixpoint equations.

E (equations) ::= {f 1 (x 1,1) • • • (x 1, 1) = e 1 , . . . , f m (x m,1) • • • (x m, m) = e m }; e (expressions) ::= r | x | f | e 1 + e 2 | e 1 • e 2 | e 1 e 2 | (e 1 , . . . , e k).
Here, r ranges over the set of real numbers in [0, 1], and (x) represents a tuple of variables (x 1 , . . . , x k). In the set E of equations, we require that each function symbol occurs at most once on the lefthand side. The expression e 1 • e 2 represents the multiplication of the values of e 1 and e 2 , whereas e 1 e 2 represents a function application; however, we sometimes omit • when there is no confusion (e.g., we write 0.5x for 0.5 • x). Expressions must be well-typed under the type system given in Figure 4. The order of a system of fixpoint equations E is the largest order of the types of functions in E, where the order of the type R of reals is 0, and the order of a function type is defined analogously to the order of types for PHORS in Section 2.

Γ e 1 : τ 2 → τ Γ e 2 : τ 2 Γ e 1 e 2 : τ Γ e i : τ i for each i ∈ {1, . . . , k} Γ (e 1 , . . . , e k) :

τ 1 × • • • × τ k Γ, (x i,1) : τ i,1 , . . . , (x i, i) : τ i, i i e i Γ(f i) = τ i,1 → • • • → τ i, i → R (for each i ∈ {1, . . . , m}) Γ {f i (x i,1) • • • (x i, i) = e i | i ∈ {1, . . . , m}}
τ k where τ = τ 1 × • • • × τ k . Example 4.1.
The following is a system of order-2 fixpoint equations:

{f 1 = f 2 f 3 (0.5, 0.5), f 2 g (x 1 , x 2) = g(x 1 + x 2), f 3 x = 0.3 x + 0.7f 3 (f 3 x)}. It is well-typed under f 1 : R, f 2 : (R → R) → (R × R) → R, f 3 : R → R.
The semantics of fixpoint equations is defined in an obvious manner. Let R ∞ be the set consisting of non-negative real numbers and ∞. We extend addition and multiplication by:

x + ∞ = ∞ + x = ∞, 0 • ∞ = ∞ • 0 = 0, and x • ∞ = ∞ • x = ∞ if x = 0. Note that (R ∞ , ≤, 0
) forms an ω-cpo, where ≤ is the extension of the usual inequality on reals with x ≤ ∞ for every x ∈ R ∞ . For each type τ , we interpret τ as the cpo τ = (X τ , τ , ⊥ τ), defined by induction on τ :

X R = R ∞ R =≤ ⊥ R = 0 X τ 1 →τ 2 = {f ∈ X τ 1 → X τ 2 | f is monotonic and ω-continuous} τ 1 →τ 2 = {(f 1 , f 2) ∈ X τ 1 →τ 2 × X τ 1 →τ 2 | ∀x ∈ X τ 1 .f 1 (x) τ 2 f 2 (x)} ⊥ τ 1 →τ 2 = λ λ x ∈ X τ 1 .⊥ τ 2 X τ 1 ו••×τ k = X τ 1 × • • • X τ k τ 1 ו••×τ k = {((x 1 , . . . , x k), (y 1 , . . . , y k)) | x i τ i y i for each i ∈ {1, . . . , k}} ⊥ τ 1 ו••×τ k = (⊥ τ 1 , . . . , ⊥ τ k).
By abuse of notation, we often write τ also for X τ . We also often omit the subscript τ and just write and ⊥ for τ and ⊥ τ respectively. The interpretation of base type R can actually be restricted to [0, 1], but for technical convenience (to make the existence of a fixpoint trivial) we have defined X R as R ∞ .

For a type environment Γ, we write Γ for the set of functions that map each x ∈ dom(Γ) to an element of Γ(x) . Given ρ ∈ Γ and e such that Γ e : τ , its semantics e ρ ∈ τ is defined by: Given E such that Γ E, we write ρ E for the least solution of E, i.e., the least ρ ∈ Γ such that

r ρ = r x ρ = ρ(x) f ρ = ρ(f)
f (x 1) • • • (x) ρ{ x 1 → y 1 ,..., x → y } = e ρ{ x 1 → y 1 ,..., x → y } for every equation f (x 1) • • • (x) = e ∈ E and (y 1) ∈ τ 1 , . . . , (y) ∈ τ with Γ(f) = τ 1 → • • • → τ → R.
Note that ρ E always exists, and is given by: ρ

E = lfp(F E) = i∈ω F i E (⊥ Γ),
where F E ∈ Γ → Γ is defined as the map such that

F E (ρ)(f) = λ λ (y 1) ∈ τ 1 λ λ (y) ∈ τ . e ρ{ x 1 → y 1 ,..., x → y } for each f (x 1) • • • (x) = e ∈ E with Γ(f) = τ 1 → • • • → τ → R. Note that F E is continuous in the ω-cpo Γ .
Example 4.2. Let E be the system of equations in Example 4.1. Then, ρ E is:

f 1 → 3 7 , f 2 → λ λ g ∈ R → R. λ λ (x 1 , x 2) ∈ R × R.g(x 1 + x 2), f 3 → λ λ x ∈ R. 3 7 x .
4.2. Order-n Fixpoint Characterization. We now give a translation from an order-n PHORS G to a system of order-n fixpoint equations E, so that P(G, S) = ρ E (S). The translation is actually straightforward: we just need to replace e and Ω with the termination probabilities 1 and 0, and probabilistic choices with summation and multiplication of probabilities. The translation function (•) # is defined by:

(N , R, S) # = (R # , S) R # = {F x = p • (t L) # + (1 -p) • (t R) # | R(F) = λ x.t L ⊕ p t R } e # = 1 Ω # = 0 x # = x (st) # = s # t # .
We write E G for R # . We define the translation of types and type environments by:

o # = R (κ 1 → κ 2) # = κ # 1 → κ # 2 (x 1 : κ 1 , . . . , x n : κ n) # = x 1 : κ # 1 , . . . , x n : κ # n .
The following lemma states that the output of the translation is well-typed. Lemma 4.1. Let G = (N , R, S) be an order-n PHORS. Then N # E G and N # S : R.

By the above lemma and the definition of the translation of type environments, it follows that for an order-n PHORS G, the order of E G is also n. The following theorem states the correctness of the translation (see Appendix B.1 for a proof).

N 1 = {S → o, F → o → o}; R 1 = {S = F e ⊕ 1 Ω, F x = x ⊕ p F (F x)}. N # 1 = {S → R, F → R → R}, and E G 1 consists of: S = 1 • F (1) and F x = p • x + (1 -p) • F (F x). The least solution ρ E G 1 is S = p 1-p if 0 ≤ p < 1 2 1 if 1 2 ≤ p ≤ 1 F = λ λ x. p 1-p • x if 0 ≤ p < 1 2 x if 1 2 ≤ p ≤ 1.
Example 4.4. Recall G 3 from Example 2.3:

S = Listgen (Listgen Boolgen) e Boolgen k = k Listgen f k = k ⊕ 1 2 (f (Listgen f k)).
The corresponding fixpoint equations are:

S = Listgen (Listgen Boolgen) 1 Boolgen k = k Listgen f k = 1 2 k + 1 2 (f (Listgen f k)).
By specializing Listgen for the cases f = Listgen Boolgen and f = Boolgen, we obtain:

S = ListgenList 1 Boolgen k = k ListgenList k = 1 2 k + 1 2 (ListgenBool(ListgenList k)) ListgenBool k = 1 2 k + 1 2 (Boolgen(ListgenBool k)).
The least solution is:

S = 1 Boolgen k = ListgenList k = ListgenBool k = k.

4.3.

Order-(n -1) Fixpoint Characterization. We now characterize the termination probability of order-n PHORS (where n > 0) in terms of order-(n -1) equations, so that the fixpoint equations are easier to solve. When n = 1, the characterization yields polynomial equations on probabilities; thus the result below may be considered as a generalization of the now classic result on the reachability problem for recursive Markov chains [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF]. The basic observation (that is also behind the fixpoint characterization for recursive Markov chains [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF]) is that the termination behavior of an order-1 function of type o → o can be represented by a tuple of probabilities (p 0 , p 1 , . . . , p), where (i) p 0 is the probability that the function terminates without using any of its arguments, and (ii) p i is the probability that the function uses the i-th argument. To see why, consider a term f t 1 • • • t of type o, where f is an order-1 function of type o → o. In order for f t 1 • • • t to terminate, the only possibilities are: (i) f terminates without calling any of the arguments, or (ii) f calls t i for some i ∈ {1, . . . , }, and t i terminates (notice, in this case, that none of the other t j 's are called: since t i is of type o, once t i is called from f , the control cannot go back to f). Thus, the probability that f t 1 • • • t terminates can be calculated by p 0 + p 1 q 1 + • • • p q , where each q i denotes the probability that t i terminates. The termination probability is, therefore, independent of the precise internal behavior of f ; only (p 0 , p 1 , . . . , p) matters. Thus, information about an order-1 function can be represented as a tuple of real numbers, which is order 0. By generalizing this observation, we can represent information about an order-n function as an order-(n -1) function on (tuples of) real numbers. Since the general translation is quite subtle and requires a further insight, however, let us first confirm the above idea by revisiting Example 2.1. Here, we have two functions: S of type o and F of type o → o. Based on the observation above, their behaviors can be represented by S 0 and (F 0 , F 1) respectively, where S 0 (F 0 , resp.) denotes the probability that S (F , resp.) terminates, and F 1 represents the probability that F uses the argument. Those values are obtained as the least solutions for the following system of equations.

S 0 = F 0 + F 1 • 1 F 0 = p • 0 + (1 -p)(F 0 + F 1 • F 0) F 1 = p • 1 + (1 -p)(F 1 • F 1 • 1).
To understand the last equation, note that the possibilities that x is used are: (i) F chooses the left branch (with probability p) and then uses x with probability 1, or (ii) F chooses the right branch (with probability 1 -p), the outer call of F uses the argument F x (with probability F 1), and the inner call of F uses the argument x. By simplifying the equations, we obtain:

S 0 = F 0 + F 1 F 0 = (1 -p)(F 0 + F 1 F 0) F 1 = p + (1 -p)F 2 1 .
The least solution is the following:

F 0 = 0 S 0 = F 1 = p 1-p if 0 ≤ p < 1 2 1 if 1 2 ≤ p ≤ 1.
The translation for general orders is more involved. For technical convenience in formalizing the translation, we assume below that the rules of PHORS do not contain e; instead, the start symbol S (which is now a non-terminal of type o → o) takes e from the environment. Thus, the termination probability we consider is P(G, S e), where e does not occur in R. This is without any loss of generality, since e can be passed around as an argument without increasing the order of the underlying PHORS, if it is higher than 0.

To see how we can generalize the idea above to deal with higher-order functions, let us now consider the following example of an order-2 PHORS:

S x = F (H x) x F f y = f (f y) H x y = x ⊕ 1 2 (y ⊕ 1 2 Ω).
Suppose we wish to characterize the termination probability of S e, i.e., the probability that S uses the first argument. (In this particular case, one can easily compute the termination probability by unfolding all the functions, but we wish to find a compositional translation so that it can work in the presence of recursion.) We need to compute the probability that F (H x) x reaches (i.e., reduces to) x, which is the probability p 1 that F (H x (1)) x (2) reaches x (1) , plus the probability p 2 that F (H x (1)) x (2) reaches x (2) ; we have added annotations to distinguish between the two occurrences of x. What information on F is required for computing it? To compute p 2 , we need to obtain the probability that F uses the formal argument y. Since it depends on f , we represent it as a function F 1 defined by:

F 1 f 1 = f 1 • f 1 .
Here, f 1 represents the probability that the original argument f uses its first argument. We can thus represent p 2 as F 1 (H 2), where H 2 is 1 4 , the probability that f = H x uses the first argument, i.e., the probability that H uses the second argument. Now let us consider how to represent p 1 , the probability that F (H x (1)) x (2) reaches x (1) . We construct another function F 0 from the definition of F for this purpose. A challenge is that the variable x is not visible in (the definition of) F ; only the caller of F knows the reachability target x. Thus, we pass to F 0 , in addition to f 1 above, another argument f 0 , which represents the probability that the argument f reaches the current target (which is x in this case). Therefore, p 1 is represented as F 0 (H 1 , H 2), where

F 0 (f 0 , f 1) = f 0 + f 1 • f 0 H 1 = 1 2 .
In f 0 + f 1 • f 0 , the occurrence of f 0 on the lefthand side represents the probability that the outer call of f in f (f x) reaches the target (without using (f x)), and f 1 • f 0 represents the probability that the outer call of f uses the argument f x, and then the inner call of f reaches the target. Now, the whole probability that S uses its argument is represented as S 1 , where

S 1 = F 0 (H 1 , H 2) + F 1 (H 2)
, with F i 's and H i 's being as defined above. Note that the order of the resulting equations is one. In summary, as information about an order-1 argument f of arity k, we pass around a tuple of real numbers (f 0 , f 1 , . . . , f k) where f i (i > 0) represents the probability that the i-th argument is reached, and f 0 represents the probability that the "current target" (which is chosen by a caller) is reached.

A further twist is required in the case of order-3 or higher. Consider an order-3 function G defined by:

G h z = h (H z) z where G : ((o → o) → o → o) → o → o,
and H is as defined above. Following the definition of F 1 above, one may be tempted to define G 1 (for computing the reachability probability to z) as G 1 h 1 = • • •, where h 1 is a function to be used for computing the probability that h uses its order-0 argument. However, h 1 is not sufficient for computing the reachability probability to z; passing the reachability probability to the current target (like f 0 above) does not help either, since a caller of G does not know the current target z. We thus need to add an additional argument h 2 for computing the probability to a target that is yet to be set by a caller of h. Thus, the definition of G 1 is:

2 G 1 (h 1 , h 2) = h 2 (H 1 , H 2) + h 1 (1).
Here, h 2 (H 1 , H 2) and h 1 (1) respectively represent the probabilities that G (H z (1)) z (2) reaches z (1) , and z (2) . The first argument of h 2 (i.e., H 1) represents the probability that H z reaches z, and H 2 represents the probability that H z reaches its argument (the second argument of H).

We can now formalize the general translation based on the intuitions above. We often write

κ 1 → • • • → κ k ⇒ o → o for κ 1 → • • • → κ k → o → o
when either order (κ k) > 0 or k = 0. We define ar(κ) as the number of the last order-0 arguments, i.e., ar(κ

1 → • • • → κ k ⇒ o → o) = .
Given a rule F z 1 . . . z m = t L ⊕ p t R of PHORS, we uniquely decompose z 1 , . . . , z m into two (possibly empty) subsequences z 1 , . . . , z and z +1 , . . . , z m so that the order of z is greater than 0 if > 0 (note, however, that the orders of z 1 , . . . , z -1 may be 0), and z +1 , . . . , z m are order-0 variables (in other words, z +1 , . . . , z m is the maximal postfix of z 1 , . . . , z m consisting of only order-0 variables). Since (the last consecutive occurrences of) order-0 arguments will be treated in a special manner, as a notational convenience, when we write F y x = t L ⊕ p t R for a rule of PHORS, we implicitly assume that x is the maximal postfix of the sequence y x consisting of only order-0 variables. Similarly, when we write F s t for a fully-applied term (of order 0), we implicitly assume that t is the maximal postfix of the sequence of arguments, consisting of only order-0 terms.

Consider a function definition of the form:

F y 1 • • • y m x 1 • • • x k = t L ⊕ p t R
where (following the notational convention above) the sequence x 1 , . . . , x k is the maximal postfix of y 1 , . . . , y m , x 1 , . . . , x k consisting of only order-0 variables. We transform each subterm t of the righthand side t L ⊕ p t R by using the translation relation of the form: K; x 1 , . . . , x k N t : κ (e 0 , e 1 , . . . , e +k+1)

where N and K are type environments for the underlying non-terminals and y 1 , . . . , y m respectively, and κ is the type of t with ar(κ) = . We often omit the subscript N . The output of the translation, (e 0 , e 1 , . . . , e +k+1), can be interepreted as capturing the following information.

• e 0 : the reachability probability (or a function that returns the probability, given appropriate arguments; similarly for the other e i 's below) to the current target (set by a caller of F). • e i (i ∈ {1, . . . , }): the reachability probability to t's i-th argument.

• e +i (i ∈ {1, . . . , k}): the reachability probability to x i .

• e +k+1 : the reachability probability to a "fresh" target (that can be set by a caller of t);

this is the component that should be passed as h 2 in the discussion above. In a sense, this component represents the reachability probability to a variable x k+1 that is "fresh" for t (in that it does not occur in t). In the translation, each variable y (including non-terminals) of type κ ⇒ o m → o is replaced by (y 0 , y 1 , . . . , y m , y m+1), which represents information analogous to (e 0 , e 1 , . . . , e , e +k+1): y 0 represents (a function for computing) the reachability probability to the current target, y i (i ∈ {1, . . . , m}) represents the reachability probability to the i-th order-0 argument) for each d ∈ {L, R} y i = (y i,0 , . . . , y i,ar(κi)+1) y i = (y i,1 , . . . , y i,ar(κi)+1) (among the last m argument), and y m+1 (which corresponds to h 2 in the explanation above) represents the reachability probability to a fresh target (to be set later). In contrast, the variables x 1 , . . . , x k will be removed by the translation. The translation rules are given in Figure 5. In the rules, to clarify the correspondence between source terms and target expressions, we use metavariables s, t, . . . (with subscripts) also for target expressions (instead of e). We write e k for the k repetitions of e.

K; x 1 , . . . , x k N Ω : o (0 k+2) (Tr-Omega) K; x 1 , . . . , x k N x i : o (0 i , 1, 0 k-i+1) (Tr-GVar) K(y) = κ ⇒ o → o K; x 1 , . . . , x k N y : κ ⇒ o → o (y 0 , y 1 , . . . , y , (y +1) k+1) (Tr-Var) N (F) = κ ⇒ o → o K; x 1 , . . . , x k N F : κ ⇒ o → o (F 0 , F 1 , . . . , F , (F 0) k+1) (Tr-NT) K; x 1 , . . . , x k N s : κ 1 → κ ⇒ o → o (s 0 , . . . , s +k+1) K; x 1 , . . . ,
N (F y x 1 • • • x k = t L ⊕ p t R) {F i y 1 • • • y = pt L,i + (1 -p)t R,i | i ∈ {1, . . . , k}} ∪ {F 0 y 1 • • • y = pt L,0 + (1 -p)t R,0 } (Tr-Rule) E = {E i | N (F y x 1 • • • x k = t L ⊕ p t R) E i , (F y x 1 • • • x k = t L ⊕ p t R) ∈ R} (N , R, S) (E, S 1) (Tr-Gram)
We now explain the translation rules. In rule Tr-Omega for the constant Ω, all the components are 0 because Ω represents divergence. There is no rule for e; this is due to the assumption that e never occurs in the rules. Rule Tr-GVar is for order-0 variables, for which only one component is 1 and all the others are 0. The (i + 1)-th component is 1, because it represents the probability that x i is reached. In rule Tr-Var for variables, the first + 1 components are provided by the environment. Since y (that is provided by the environment) does not "know" the local variables x 1 , . . . , x k (in other words, y cannot be instantiated to a term that contains x i), the default parameter y +1 (for computing the reachability probability to a "fresh" target are fresh) is used for all of those components. The rule Tr-NT for non-terminals is almost the same as Tr-Var, except that F 0 is used instead of F +1 ; this is because F does not contain any free variables, the reachability target for F is not set yet, hence F 0 can be used for computing the reachability probability to a fresh target. Rule Tr-App is for applications. Basically, the output of the translation of t is passed to s i ; note however that t 0 is passed only to s 0 ; since s 1 , . . . , s +k should provide the reachability probability to order-0 arguments of s or local variables, the reachability probability to the current target (that is represented by t 0) is irrelevant for them. For s +1 , . . . , s +k , the reachability targets are x 1 , . . . , x k ; thus, information about how t reaches those variables is passed as the first argument of s +1 , . . . , s +k . For the last component, s +k+1 and t +k+1 are used so that the reachability target can be set later. In rule Tr-AppG, the reachability probability to the current target (expressed by the first component) is computed by s 0 +s 1 •t 0 , because the current target is reached without using t (as represented by s 0), or t is used (as represented by s 1) and t reaches the current target (as represented by t 0); similarly for the reachability probability to local variables. Tr-Rule is the rule for translating a function definition. From the definition for F , we generate definitions for functions F 0 , . . . , F k . For i ∈ {1, . . . , k}, t d,i is chosen as the body of F i , since it represents the reachability probability to x i . Rule Tr-Gram is the translation for the whole PHORS; we just collect the output of the translation for each rule.

S = F H H x = x ⊕ 1 2 Ω F g = (g e) ⊕ 1 2 (F (D g)) D g x = g (g x).
It can be modified to the following rules so that e does not occur.

S z = F H z H x = x ⊕ 1 2 Ω F g z = (g z) ⊕ 1 2 (F (D g) z) D g x = g (g x).
Here, e can be passed around through the variable z. Consider the body F H z of S. F and H are translated as follows.

N ; z F :

(o → o) → o → o (F 0 , F 1 , F 0 , F 0) N ; z H : o → o (H 0 , H 1 , H 0 , H 0)
By applying Tr-App, we obtain:

N ; z F H : o → o (F 0 (H 0 , H 1 , H 0), F 1 (H 1 , H 0), F 0 (H 0 , H 1 , H 0), F 0 (H 0 , H 1 , H 0)).
Using Tr-GVar, z can be translated as follows.

N ; z z : o (0, 1, 0). Thus, by applying Tr-AppG, we obtain:

N ; z F H z : o (F 0 (H 0 , H 1 , H 0) + F 1 (H 1 , H 0) • 0, F 0 (H 0 , H 1 , H 0) + F 1 (H 1 , H 0) • 1, F 0 (H 0 , H 1 , H 0) + F 1 (H 1 , H 0) • 0).
By simplifying the output, we obtain:

N ; z F H z : o (F 0 (H 0 , H 1 , H 0), F 0 (H 0 , H 1 , H 0) + F 1 (H 1 , H 0), F 0 (H 0 , H 1 , H 0)).
Thus, we have the following equations for S 0 and S 1 .

S 0 = F 0 (H 0 , H 1 , H 0) S 1 = F 0 (H 0 , H 1 , H 0) + F 1 (H 1 , H 0).
The following equations are obtained for the other non-terminals.

H 0 = 0 H 1 = 1 2 F 0 (g 0 , g 1 , g 2) = 1 2 g 0 + F 0 (D 0 (g 0 , g 1 , g 2), D 1 (g 1 , g 2), D 0 (g 2 , g 1 , g 2)) F 1 (g 1 , g 2) = 1 2 (g 1 + g 2) + 1 2 (F 0 (D 0 (g 2 , g 1 , g 2), D 1 (g 1 , g 2), D 0 (g 2 , g 1 , g 2)) + F 1 (D 1 (g 1 , g 2), D 0 (g 2 , g 1 , g 2)) D 0 (g 0 , g 1 , g 2) = g 0 + g 1 g 0 D 1 (g 1 , g 2) = g 2 + g 1 (g 1 + g 2).
We can observe that the values of the variables g 0 and g 2 are always 0. Thus, by removing redundant arguments, we obtain:

S 0 = F 0 (1 2
)

S 1 = F 0 (1 2) + F 1 (1 2
)

F 0 (g 1) = F 0 (D 1 (g 1)) F 1 (g 1) = 1 2 g 1 + 1 2 (F 0 (D 1 (g 1)) + F 1 (D 1 (g 1))) D 0 (g 1) = 0 D 1 (g 1) = g 2 1 .
By further simplification (noting that the least solution for F 0 is λg 1 .0), we obtain:

S 1 = F 1 (1 2) F 1 (g 1) = 1 2 g 1 + 1 2 F (g 2 1). The least solution of S 1 is Σ i≥0 1 2 2 i +i+1 = 0.3205 • • •. Example 4.7.
Consider the following order-3 PHORS:

S x = F (C x) F g = g H C x f = f x H x = x ⊕ 1 2 Ω, where S : o → o, F : ((o → o) → o) → o, C : o → (o → o) → o, H : o → o.
This is a tricky example, where in the body of S, x is embedded into the closure C x and passed to another function F ; so, in order to compute how S uses x, we have to take into account how F uses the closure passed as the argument. The PHORS is translated to:

S 0 = F 0 (C 0 (0, 0), C 0 (0, 0)) S 1 = F 0 (C 0 (1, 0), C 0 (0, 0)) F 0 (g 0 , g 1) = g 0 (H 0 , H 1 , H 0) C 0 (x 0 , x 1) (f 0 , f 1 , f 2) = f 0 + f 1 • x 0 H 0 = 0 H 1 = 1 2 ,
where S 0 : R, S 1 : R,

F 0 : (R × R × R → R) × (R × R × R → R) → R, C 0 : (R × R) → (R × R × R) → R, H 0 : R, H 1 : R.
The order of the equations is 2 (where the largest order is that of the type of F 0). We have:

S 1 = F 0 (C 0 (1, 0), C 0 (0, 0)) = C 0 (1, 0)(H 0 , H 1 , H 0) = H 0 + H 1 • 1 = 1 2 .
In fact, the probability that S e reaches e is 1 2 . Example 4.8. Recall PHORS G 5 from Example 2.3:

S x = Treegen H Boolgen x Boolgen k = k ⊕ 1 2 k H x y = x ⊕ 1 2 y G p x y = x ⊕ 1 2 (p x y) Treegen p f k = p k(f (Treegen (G p) f (Treegen (G p) f (Treegen (G p) f k)))).
(Here, we have slightly modified the original PHORS so that S is parameterized with e.) As the output of the translation as defined above is too complex, we show below a hand-optimized version of the fixpoint equations.

S 1 = Treegen 1 (H 1 , H 2) H 1 = H 2 = 1 2 G 1 (p 1 , p 2) = 1 2 + 1 2 p 1 G 2 (p 1 , p 2) = 1 2 p 2 Treegen 1 (p 1 , p 2) = p 1 + p 2 • (Treegen 1 (G 1 (p 1 , p 2), G 2 (p 1 , p 2))) 3 .
Here, Treegen 1 is the function that returns the probability that Treegen p Boolgen x reaches x, where the parameters p 1 and p 2 represent the probability that p chooses the first and second branches respectively. Let ρ be the least solution of the fixpoint equations above. We can find ρ(S 1) = 1 based on the following reasoning (which is also confirmed by the As a corollary, it follows that for any order-n PHORS G (where n > 0), the order of

E ref G is n -1.
The following result is the main theorem of this section, which states the correctness of the translation. Theorem 4.4. Let G = (N , R, S) be an order-n PHORS, Then, P(G, S e) = ρ E ref G (S 1). A proof of the theorem is found in Appendix B.2. Here we only sketch the proof. We first prove the theorem for recursion-free PHORS (so that any term is strongly normalizing; see Appendix B.1 for the precise definition), and extend it to general PHORS G by using finite approximations of G, obtained by unfolding each non-terminal a finite number of times. To show the theorem for recursion-free PHORS, we prove that the translation relation is preserved by reductions in a certain sense; this is, however, much more involved than the corresponding proof for Section 4.2: we introduce an alternative operational semantics for PHORS that uses explicit substitutions. See Appendix B.2 for details.

Computing Upper-Bounds of Termination Probability

Theorems 4.2 and 4.4 immediately provide procedures for computing lower -bounds of the termination probability as precisely as we need (cf. Theorem 2.1). The termination probability, in other words, is a recursively enumerable real number (see, e.g. [START_REF] Calude | Information and Randomness: An Algorithmic Perspective[END_REF]), but it is still open whether it is a recursive one. Indeed, computing good upper-bounds is non-trivial. For example, an upper-bound for the greatest solution of E ref G can be easily computed, but it does not provide a good upper-bound for the least solution of E ref G , unless the solution is unique. Take, as an example, the trivial PHORS consisting of a single equation S = S: the greatest solution is 1, while the least is 0.

In this section, we will describe how upper approximations to the termination probability can be computed in practice. We focus our attention mainly on order-2 PHORS, which yield equations over first-order functions on real numbers. Order-n case is only briefly discussed in Section 5.3.

5.1.

Properties of the Fixpoint Equations Obtained from PHORS. Before discussing how to compute an upper-bound of the termination probability, we first summarize several important properties of the (order-1) fixpoint equations obtained from an order-2 PHORS (by the translation in Section 4.3), which are exploited in computing upper-bounds.

(1) The fixpoint equations are of the form:

f 1 (x 1 , . . . , x 1) = e 1 , • • • f k (x 1 , . . . , x k) = e k , (5.1)
where each e i consists of (i) non-negative constants, (ii) additions, (iii) multiplications, and (iv) function applications. Each variable x i ranges over [0, 1]. (2) The formal arguments x 1 , . . . , x i of each function f i can be partitioned into several groups of variables (x 1 , . . . , x d i,1), (x d i,1 +1 , . . . , x d i,2), . . . , (x d g i -1 +1 , . . . , x i), so that the relevant input values are those such that the sum of the values of the variables in each group ranges over [0,[START_REF] Avanzini | On probabilistic term rewriting[END_REF]. This is because each group of variables (x d i,j-1 +1 , . . . , x d i,h) either corresponds to an order-0 argument (and has thus length 1) or to an order-1 argument of an order-2 function F i of the original PHORS, where one of the variables represents the probability that F i terminates without using any arguments, and each of the other variables represents the probability that F i uses each argument of F i . Since these events are mutually exclusive, the sum of those values ranges over [0, 1]. (3) The functions f 1 , . . . , f k can also be partitioned into several groups of functions (f 1 , . . . , f j 1), (f j 1 +1 , . . . , f j 2), . . . , (f j -1 +1 , . . . , f j), so that the sum (f j m-1 +1 (x)

+ • • • + f jm (x)
of the return values of the functions in each group ranges over [0, 1] (assuming that the arguments x are in the valid domain, i.e., the sum of x ranges over [0, 1]). This is because an order-2 function F i is translated to a tuple of order-1 functions (F i,0 , . . . , F i,j), and the components of the tuple return the probabilities to reach mutually different targets. 3 We write fgrp(f) for the partition that f belongs to, i.e., fgrp

(f i) = {f j m-1 +1 , . . . , f jm } if j m-1 + 1 ≤ i ≤ j m . (4
) Suppose that (x 1 , . . . , x i) ranges over the valid domain of f i . Then, the value of each subexpression of e i ranges over [0, 1]; this is because each subexpression represents some probability. This invariant is not necessarily preserved by simplifications like

1 2
x + 1 2 y = 1 2 (x + y); the value of x + y may not belong to [0, 1]. We apply simplifications only so that the invariant is maintained. The properties above can be easily verified by inspecting the translations from Section 4.3.

Finally, another important property is pointwise convexity. The least solution f of the fixpoint equations, as well as any finite approximations obtained from ⊥ by Kleene iterations, are pointwise convex, i.e., convex on each variable, i.e., f (x 1 , . . . , (1 -p)x + py, . . . , x n) ≤ (1 -p)f (x 1 , . . . , x, . . . , x n) + pf (x 1 , . . . , y, . . . , x n) whenever 0 ≤ p ≤ 1 and 0 ≤ x, y. Note, however, that f is not necessarily convex in the usual sense: f ((1 -p) x + p y) ≤ (1 -p)f (x) + pf (y) may not hold for some 0 ≤ x, y and 0 ≤ p ≤ 1. For example, let f (x 1 , x 2) be Lemma 5.1. F m (⊥) and lfp(F) are both pointwise convex. They are also monotonic.

x 1 • x 2 . Then, 1 4 = f (1 2 , 1 2) = f (1 2 (0, 1) + 1 2 (1, 0)) > 1 2 f (0, 1) + 1 2 f (1, 0) = 0. Recall that F E ref
Proof. The pointwise convexity and monotonicity of F m (⊥) follow from the fact that, following our first observation, it is (a tuple of) multi-variate polynomials with non-negative integer coefficients. The pointwise convexity of lfp(F) follows from the fact that, for every m, when x and y differ by at most one coordinate,

(1 -p)lfp(F)(x) + plfp(F)(y) ≥ (1 -p)F m (⊥)(x) + pF m (⊥)(y) ≥ F m (⊥)((1 -p) x + p y)
and we can then take the supremum to conclude. The monotonicity of lfp(F) also follows from a similar argument.

5.2.

Computing an Upper-Bound by Discretization. Given fixpoint equations as in (5.1), we can compute an upper-bound of the least solution of the equations, by overapproximating the values of f 1 , . . . , f k at a finite number of discrete points, à la "Finite Element Method". To clarify the idea, we first describe a method for the simplest case of a single equation f (x) = e on a unary function in Section 5.2.1. We then extend it to deal with a 3 According to the translation in Section 4.3, the first element Fi,0 takes one more argument than the other elements; for the sake of simplicity, we assume in this section that all the functions in each partition take the same number of arguments, by adding dummy arguments as necessary.

binary function in Section 5.2.2, and discuss the general case (where we need to deal with multiple equations on multi-variate functions) in Section 5.2.3.

5.2.1.

Computing an Upper-Bound for a Unary Function. Suppose that we are given a PHORS G and that E ref G consists of a single equation f (x) = e, where f is a function f from [0, 1] to [0, 1], and where e consists of non-negative real constants x, additions, multiplications, and applications of f . We abstract f to a sequence of real numbers (r 0 , . . . , r n) ∈ [0, 1] n+1 , where r i represents the value of f (i n). Thus, the abstraction function α mapping any function

f : [0, 1] → [0, 1] to its abstract form [0, 1] n+1 is defined by α(f) = f 0 n , f 1 n , . . . , f n n .
We write γ for any concretization function γ, mapping any element of [0, 1] n+1 back to a function in [0, 1] → [0, 1]. The idea here is that if γ satisfies certain axioms, to be discussed later, then we can obtain an upper-bound of the least solution of f = F(f) by solving the following system of inequalities on the real numbers r = (r 0 , . . . , r n):

r ≥ α(F(γ(r))). (5.2)
Let F be the functional λ λ s.α(F(γ(s))). Notice that solutions to (5.2) are precisely the pre-fixpoints of F, and we will thus call them abstract pre-fixpoints of F. There are at least two degrees of freedom here: (1) How could we define the concretization function? Here we have at least two choices (see Figure 6): (a) γ(r) could be the step function f such that f (0) = r 0 and f (x

) = r i if x ∈ (i-1 n , i n]. (b) γ(r) could be the piecewise linear function f such that f (x) = r i + x-i n 1 n (r i+1 -r i)(= (i + 1 -nx)r i + (nx -i)r i+1) if x ∈ [i n , i+1 n].
The first choice turns (α, γ) into a Galois insertion. The second choice is itself valid despite not being a Galois insertion: if an abstraction r majorizes α(f) for some pointwise convex function f , we immediately have γ(r) ≥ f . This way, γ satisfies the assumption of Lemma 5.2 below.

(2) How could we solve inequalities? Again, we have at least two choices.

(c) Use the decidability of theories of real arithmetic (e.g., minimize i r i so that all the inequalities are satisfied). (d) Abstract also the values of r so that they can take only finitely many discrete values, say, 0, 1 m , . . . , m-1 m , 1. The inequality (5.2) is then replaced by:

s ≥ α h (α(F(γ(s)))),
where every s i is the "discretized version" of r i , and the abstraction function α h , given a tuple of reals as an input, replaces each element r ∈ [0, 1] with rm m . Since they are now inequalities over a finite domain, we can obtain the least solution by a finite number of Kleene iterations, starting from s = 0. The following lemma ensures that the inequality (5.2) is indeed a sufficient condition for γ(r) to be an upper-bound on lfp(F). Note that both step functions and stepwise linear functions satisfy the assumption of the lemma below. Lemma 5.2. Suppose that the concretization function γ is monotonic, and that r ≥ α(f) implies γ(r) ≥ f for every pointwise convex f . Then, any abstract pre-fixpoint of F is an upper bound of lfp(F).

Proof. First, we show that γ(F m (⊥)) ≥ F m (⊥) holds for every m, by induction on m. The base case m = 0 is trivial, since F 0 (⊥) = ⊥. If m > 0, then we have

F m (⊥) = α(F(γ(F m-1 (⊥)))) ≥ α(F(F m-1 (⊥))) = α(F m (⊥)).
Since, by hypothesis, r ≥ α(F m (⊥)) implies that γ(r) ≥ F m (⊥) (since F m (⊥) is pointwise convex), we can conclude that γ(F m (⊥)) ≥ F m (⊥). Now, suppose r is an abstract prefixpoint of F. Then γ(r) ≥ γ(F m (r)) ≥ γ(F m (⊥)) ≥ F m (⊥), and as F is ω-continuous, we have γ(r) ≥ sup m∈ω F m (⊥) = lpf (F) as required.

Below we consider the combination of (b) and (d). Figure 7 shows a pseudo code for computing an upper-bound of f (c) for the least solution f of f (x) = e and c ∈ [0, 1]. In the figure, α h (x) = mx m . The algorithm terminates under the assumptions that (i) e consists of non-negative constants, x, +, •, and applications of f , and (ii) every subexpression of e evaluates to a value in [0, 1] (if x ∈ [0, 1] and f ∈ [0, 1] → [0, 1]), which are satisfied by the fixpoint equations obtained from a PHORS (recall Section 5.1).

Example 5.1. Consider f (x) = 1 4 x + 3 4 f (f (x)
) and let n = 2 and m = 4. The value r (j) of r after the j-th iteration is given by:

r (0) = [0, 0, 0]; r (
i := nc ; (* i n ≤ c < i+1 n *) return (i + 1 -nc)r[i] + (nc -i)r[i + 1]; } eval(e, ρ){ match e with x → return ρ(x) | c → return c | f (e) → return apply(ρ(f), eval(e , ρ)) | e 1 + e 2 → return eval(e 1 ,ρ)+eval(e 2 ,ρ) | e 1 • e 2 → return eval(e 1 ,ρ)•eval(e 2 ,ρ) } Figure 7.
Pseudo code for computing an upper-bound of f (c) where f (x) = e (unary function case) 5.2.2. Computing an upper-bound for a binary function. We now consider a fixpoint equation of the form f (x 1 , x 2) = e, where x 1 and x 2 are such that 0 ≤ x 1 , x 2 , and x 1 + x 2 ≤ 1. Such an equation is obtained from an order-2 PHORS by using the fixpoint characterization in the previous section. A new difficulty compared with the unary case is that f (x 1 , x 2) may take a value outside [0, 1], or may even be undefined for (x 1 , x 2) ∈ [0, 1] × [0, 1] such that x 1 + x 2 > 1. Figure 8 shows how we discretize the domain of f . The grey-colored and red-colored areas show the valid domain of f , for which we wish to approximate f (x 1 , x 2) using the values at discrete points. An upper-bound of the value of f at a point (x 1 , x 2) in the grey area can be obtained by (pointwise) linear interpolations from (upper-bounds of) the values at the surrounding four points, i.e., (

i 1 n , i 2 n), (i 1 n , i 2 +1 n), (i 1 +1 n , i 2 n), (i 1 +1 n , i 2 +1 n) where x 1 ∈ [i 1 n , i 1 +1 n] and x 2 ∈ [i 2 n , i 2 +1 n], as follows. f (x 1 , x 2) = (i 2 + 1 -nx 2) f (x 1 , i 2 n) + (nx 2 -i 2) f (x 1 , i 2 +1 n) = (i 2 + 1 -nx 2)(i 1 + 1 -nx 1) f (i 1 n , i 2 n) +(i 2 + 1 -nx 2)(nx 1 -i 1) f (i 1 +1 n , i 2 n) +(nx 2 -i 2)(i 1 + 1 -nx 1) f (i 1 n , i 2 +1 n) +(nx 2 -i 2)(nx 1 -i 1) f (i 1 +1
n , i 2 +1 n). Note that f (x, y) ≥ f (x, y) at the four points imply that f (x 1 , x 2) ≥ f (x 1 , x 2), because f (x, y) is convex on each of x and y (recall Section 5.1).

A difficulty is that to estimate the value of f at a point in the red area, we need the value at a red point ♦, but the value of f at the red point may be greater than 1 or even ∞, being outside f 's domain. To this end, we discretized the codomain of f to {0, 1 m , . . . , mh-1 m , h, ∞} (instead of {0, 1 m , . . . , m-1 m , 1}) for some h ≥ 1. Any value greater than h is approximated to ∞. The value at a point in the red area is then approximated in the same way as for the case of a point in the grey area, except that if f (

i 1 +1 m , i 2 +1 m) = ∞, then f (x 1 , x 2) = 1. x y O 1 1 Figure 8
. Discretization in the case of a binary function f (x, y), whose domain is {(x, y) | 0 ≤ x, 0 ≤ y, x + y ≤ 1} (i.e., the grey and red areas).

Outside the domain, the value of f (x, y) may not belong to [0, 1], or may be even undefined. The value at a point in the grey area can be estimated by using those at discrete points •. To estimate the value at a point in the red area, we also need the value of f (x, y) at a point marked by ♦.

A further complication arises when the equation contains function compositions, as in

f (x 1 , x 2) = E[f (f (x 1 , x 2), x 2)
] where E denotes some context. In this case, the point (f (x 1 , x 2), x 2) may even be outside the area surrounded by ♦ and •-points

either if (x 1 , x 2) is a ♦-point or if (x 1 , x 2) is a •-point but f (x 1 , x 2)
+x 2 is too large due to an overapproximation. In such a case, (f (x 1 , x 2), x 2) belongs to the purple area (lower left triangles) in the figure . To this end, we also compute (upper-bounds of) the values at points marked by and use them to estimate the value at a point in the purple area. If the point (f (x 1 , x 2), x 2) is even outside the area surrounded by •, ♦, or , then we use ∞ as an upper-bound of

f (f (x 1 , x 2), x 2) if (x 1 , x 2) is a ♦-, or -point, and 1 if (x 1 , x 2) is a •-point.
Except the above differences, the overall algorithm is similar to the unary case in Figure 7, and essentially the same soundness argument as Lemma 5.2 applies.

Example 5.2. Consider f (x 1 , x 2) = x 1 + x 2 (f (x 1 , x 2)) 2 , and let n = m = 2. The value of r =   r 0,2 r 1,2 r 2,2 r 0,1 r 1,1 r 2,1 r 0,0 r 1,0 r 2,0   , where r i,j is an upper-bound of the value of f (i 2 , j 2), changes as follows.   0 0 0 0 0 0 0 0 0   -→   0 0.5 1 0 0.5 1 0 0.5 1   -→   0 1 ∞ 0 1 ∞ 0 0.5 1   -→   0 ∞ ∞ 0 1 ∞ 0 0.5 1  
Thus, for example, f (0, 0.5) and f (0.3, 0.3) are overapproximated respectively by 0 and 0.36 f (0.5, 0.5) + 0.24 f (0.5, 0) + 0.24 f (0, 0.5) + 0.16 f (0, 0) = 0.48. The exact values for f (0, 0) and f (0.3, 0.3) are 0 and 1 3 ; so the upper-bound for f (0.3, 0.3) is sound but imprecise. By choosing n = 16 and m = 256, we obtain 0.3359 • • • as an upper-bound of f (0.3, 0.3). This is an example where the values of f at red points in Figure 8 are ∞. The exact value of f (x 1 , x 2) for general x 1 and x 2 is given by:

f (x 1 , x 2) = x 1 if x 2 = 0 1- √ 1-4x 1 x 2 2x 2 if x 1 > 0
Thus, f (0.5, 0.5) = 1, but f (x 1 , x 2) is undefined whenever x 1 x 2 > 0.25; in particular f (0.5, 1) and f (1, 0.5) (the values of red points in Figure 8 for the case n = 2) are undefined.

5.2.3.

Computing an Upper-Bound: General Case. The binary case discussed above can be easily extended to handle the general case, where the goal is to estimate the value of f 1 (c 1 , . . . , c 1) for the least solution of the fixpoint equations:

f 1 (x 1 , . . . , x 1) = e 1 • • • f k (x 1 , . . . , x k) = e k .
Here, the formal arguments x 1 , . . . , x i of each function f i are partitioned to several groups (x 1 , . . . , x d i,1), (x d i,1 +1 , . . . , x d i,2), . . . , (x d g i -1 +1 , . . . , x i), so that the sum of the values of the variables in each group ranges over [0, 1]. Following the binary case, we discretize the domain so that each variable ranges over {0, 1 n , . . . , n-1 n , 1}, where the variables in each group (x d i,j-1 +1 , . . . , x d i,j) are constrained by

x d i,j-1 +1 + • • • + x d i,j ≤ n+2
n . Note that we choose n+2 n instead of 1 as the upper-bound of the sum, to include the points ♦ and in Figure 8. We write D i for the discretized domain of function f i , and D i for the subset of D i where the variables in each group are constrained by

x d i,j-1 +1 + • • • + x d i,j ≤ 1; note that f i (x 1 , . . . , x i) ∈ [0, 1] for (x 1 , . . . , x i) ∈ D i , but f i (x 1 , .
. . , x i) may be greater than 1 or undefined for (x 1 , . . . , x i) ∈ D i \ D i . We also write D i for the set {(x 1 , . . . , x i) | (nx 1 /n, . . . , nx i /n) ∈ D i } (i.e., the set of points for which the value of f i can be approximated by using values at points in D i).

The pseudo code for computing an upper-bound of f 1 (c 1 , . . . , c 1) is given in Figure 9. On the 9th line ("if v ∈ D i then ..."), we also make use of the constraint that Σ f ∈fgrp(f i) f (v) ranges over [0, 1] if v belongs to the valid domain D i (recall the 3rd property in Section 5.1). We assume that the procedure lb(f , v) returns a sound lower-bound of f (v), e.g., by using Kleene iteration. See Remark 5.1 to understand the need for this additional twist.

The function α h takes a real value (or ∞) x, and returns the least element in {0, 1 n , . . . , mh-1 m , h, ∞} that is no less than x. The function apply in the figure takes the current approximations of values of f i at the points D i and the arguments v ∈ D i , and returns an approximation of f i (v). It is given by f (v), where:

fi (x 1 , . . . , x i) = b 1 ,...,b i ∈{0,1} p b 1 1 (1 -p 1) 1-b 1 • • • p b i i (1 -p i) 1-b i fi i 1 +b 1 n , . . . , i i +b i n
Here, i j = nx j , p j = nx -i j , and fi (i 1 +b 1 n , . . . , im+bm n) is the current approximation of the value of f i at (i 1 +b 1 n , . . . , im+bm n

) ∈ D i . The function f above is obtained by applying linear interpolations coordinate-wise.

Remark 5.1. To see the motivation for the 9th line in Figure 9, consider the following fixpoint equations:

S = f 1 () f 1 () = 0.5 • (f 1 () • f 1 () + f 2 () • f 2 ()) f 2 () = 0.5 + f 1 () • f 2 ().
They are obtained from the following order-1 PHORS G treeeven : where p = 0.5, and f 1 () (f 2 (), resp.) represent the probabilities that x 1 and x 2 are used by F . This PHORS is actually a variation of G 6 from Example 2.5 (with manual optimization), whose termination probability represents the probability that a program that randomly generates binary trees (instead of lists, unlike in the case of Example 2.5) contains an even number of trees. Since the events that F uses the first and second arguments are mutually exclusive, we have the constraint f 1 () + f 2 () ≤ 1. The exact solutions for the equations above is

S z = F z Ω F x 1 x 2 = x 2 ⊕ p F (F x 1 x 2) (F x 2 x 1),
∈ D i) in if v ∈ D i then ρ (f i)[v] := α h (min(r, 1 -Σ f ∈fgrp(f i)\{f } lb(f , v))) else ρ (f i)[v] := α h (
f 1 () = 1 -1 √ 2 and f 2 () = 1 √ 2 .
Since lower-bounds of them can be computed with arbitrary precision, thanks to the part 1 -Σ f ∈fgrp(f i)\{f } lb(f , v) of the 9th line of Figure 9, we can also compute upper-bounds with arbitrary precision (as upper-bounds of f 1 () and f 2 () are respectively provided by 1lb(f 2 , ()) and 1lb(f 1 , ())).

If the then-clause were the same as the else-clause on the 10th line, then we would not get a precise upper-bound for the following reason. When the main loop in Figure 9 stops, upper-bounds f 1 () and f 2 () must either have reached the maximal value 1, or satisfy:

f 1 () ≥ 0.5 • (f 1 () • f 1 () + f 2 () • f 2 ()) f 2 () ≥ 0.5 + f 1 () • f 2 ().
These conditions imply that:

f 1 () + f 2 () ≥ 0.5 • (f 1 () • f 1 () + f 2 () • f 2 ()) + 0.5 + f 1 () • f 2 (), i.e., 0 ≥ (f 1 () + f 2 () -1) 2 ,
which is equivalent to f 1 () + f 2 () = 1. Thus, unless the co-domain of α h contains the exact values 1 -1 √ 2 and 1 √ 2 , the main loop would only return the imprecise upper-bound f 1 () = f 2 () = 1. 5.3. Order-n Case. We now briefly discuss how to extend the method discussed above to obtain a sound (but incomplete) method for overapproximating the termination probability of PHORS of order greater than 2. Recall that by the fixpoint characterization given in Section 4.3, it suffices to overapproximate the least solution of equations of the form f = F(f) where f is a tuple of order-(n -1) functions on reals.

The abstract interpretation framework [START_REF] Cousot | Types as abstract interpretations[END_REF] provides a sound but incomplete methodology: the reason why we decided to slightly divert from it in Section 5.2 is that this allows us to use piecewise linear functions, which are more precise. We first recall a basic principle of abstract interpretation. Let (C, C , ⊥ C) and (A, A , ⊥ A) be ω-cpos. Suppose that α : (C, C) → (A, A) and γ : (A, A) → (C, C) are continuous (hence also monotonic) such that α(γ(a)) = a for every a ∈ A, and c C γ(α(c)) for every c ∈ C. Suppose also that F is a continuous function from (C, C , ⊥ C) to (C, C , ⊥ C). Let F : (A, A , ⊥ A) → (A, A , ⊥ A) be λx ∈ A.α(F(γ(x))), which is an "abstract version" of F. Note that F is also continuous. Then, we have:

Proposition 5.3. lfp(F) C γ(lfp(F)).
This result is standard (see, e.g., [START_REF] Cousot | Types as abstract interpretations[END_REF], Proposition 18) but we provide a proof for the convenience of the reader.

Proof of Proposition 5.3. By the monotonicity of F and F, we have:

⊥ C C F(⊥ C) C F 2 (⊥ C) C • • • and ⊥ A A F(⊥ A) A F 2 (⊥ A) A • • •; hence both C {F i (⊥ C) | i ∈ ω} and A { F i (⊥ A) | i ∈ ω} exist,
and by the ω-continuity of F and F, they are the least fixpoints of F and F respectively. Therefore, it suffices to show that

F i (⊥ C) C γ(F i (⊥ C)).
The proof proceeds by induction on i. The base case i = 0 is trivial. If i > 0, we have:

γ(F i (⊥ C)) = γ(α(F(γ(F i-1 (⊥ C))))) (by the definition of F) C F(γ(F i-1 (⊥ C))) (by γ(α(x)) C x) C F(F i-1 (⊥ C)) (by induction hypothesis) = F i (⊥ C).
By the proposition above, to overapproximate the least fixpoint of F, it suffices to find an appropriate abstract domain (A, A , ⊥ A) and α, γ that satisfy the conditions above, so that the least fixpoint of F is easily computable. In the case of overapproximation of the termination probability of order-n PHORS, we need to set up an abstract domain (A, A , ⊥ A) for a tuple of order-(n-1) functions on reals. A simple solution (that is probably too naive in practice) is to use the abstract domain consisting of higher-order step functions, equations "Double" are those obtained from the following order-2 PHORS:

S = F H H x y = x ⊕ 1 2 y F g = g e (F (D g))
D g x y = g (g x y) y, with manual simplifications. The equations "Listgen", "Treegen", and "Treegenp" are from Example 2.3, corresponding to G 3 , G 4 and G 5 , respectively. The equations "ListEven" and "ListEven2" are from Example 2.5, and "Determinize" is from Example 2.6. "TreeGen(p)" (for p ∈ {0.5, 0.49, 0.51}) is from Remark 5.1. If we disable the trick (the one on line 9 in Figure 7) we discussed in the remark, the tool returns an imprecise upper-bound of 1.0 for p = 0.5 (for p = 0.49 and p = 0.51, however, the tool can compute a precise upper-bound even without the trick). The equations "Ex5.4(x,y)" (for (x, y) ∈ {(0, 0), (0.3, 0.3), (0.5, 0.5)}) are from Example 5.2. The equations "Discont(p,1 -p)" consist of: s = f (p, 1 -p) and f (x 0 , x 1) = x 0 + x 1 f (x 0 , x 1), which is obtained from PHORS:

S = F G F g = g e (F g) G x 0 x 1 = x 0 ⊕ p x 1 .
Interestingly, f is discontinuous at (0, 1) (in the usual sense of analysis in mathematics; it is still ω-continuous as functions on ω-cpo's): the exact value of f is given by:

f (x 0 , x 1) = 0 if x 0 = 0 x 0 1-x 1 if x 0 > 0.
The equations "Incomp" and "Incomp2" consist of: s = f (s) f x = x 2 + 0.4x + 0.09, and s = f (s) f x = 0.5x 2 + 2f (0.5x) respectively. They do not correspond to any PHORS -in fact, the value of f (1) for Incomp is 1.49, which does not make sense as a probability. We have included them since they show a source of the possible incompleteness of our method. Indeed, the tool fails to find precise upper bounds. To see why the tool does not work for Incomp1 (with the the default values of #dom and #codom), note that since s = f (s) = s 2 + 0.4s + 0.09, ŝ ≥ ŝ2 + 0.4ŝ + 0.09 must be satisfied for any valid upper-bound ŝ. However, ŝ ≥ ŝ2 + 0.4ŝ + 0.09 is equivalent to 0 ≥ (ŝ -0.3) 2 , which is satisfied only by ŝ = 0.3. So, the only valid upper-bound for s is actually the exact one 0.3. But then an upper-bound f of f must satisfy f (0.3) = 0.3, which can be found only if the set of discrete values (used for abstracting the domain and codomain) contains 0.3. That is why the tool returns 1 (which is the largest value, assuming that s represents a probability) for the default values of #dom and #codom. When we adjust them to 10 and 100 (so that 0.3 belongs to the sets of abstract values of domains and codomains), the precise upper-bound (i.e., 0.3) is obtained; this is, however, impossible in general, without knowing the exact solution a priori.

The reason for "Incomp2" is more subtle. Notice that the least solution for

s = f (s) f x = 0.5x 2 + 2f (0.5x) is f (x) = x 2
. Let 1 n be the size of each interval used for abstracting the domain. Suppose that, at some point, an upper-bound of f (1 n) becomes c n 2 . Due to the linear interpolation (and since the value at x = 0 converges to 0), the value of f at 0.5r (which belongs to the domain (0, 1 n)) is overapproximated by 0.5 • c n 2 . Thus, at the next iteration, the upper-bound at 1 n is further updated to a value greater than 0.5 1 n 2 + 2 • 0.5 • c n 2 = c+0.5 n 2 . Thus, the computation of an upper-bound for the value at x = 1 n never converges. In this case, changing the parameters #dom and #codom does not help. We do not know, however, whether such situations occur in the fixpoint equations that arise from actual order-2 PHORS; it is left for future work to see whether our method (or a minor modification of it) is actually complete (in the sense that upper-bounds can always be computed with arbitrary precision by increasing the parameters #dom and #codom).

To summarize, for all the valid inputs (i.e., except "Incomp" and "Incomp2", which are invalid in the sense that they do not correspond to PHORS), our tool (with piecewise linear functions) could properly compute lower/upper bounds. In contrast, from the column "u.b.(step)", we can observe that the replacement of piecewise (multi)linear functions with step functions not only worsens the precision (as in "Ex2.3-v1", "Ex2.3-v2", and "Ex2.3-v3") significantly, but also makes the procedure obviously incomplete,4 as in "Ex2.3-1" and "Double" (recall the discussion on the incompleteness of step functions in Section 5.3).

Related Work

As already mentioned in Section 1, this work is intimately related to both probabilistic model checking, and higher-order model checking. Let us give some hints on how our work is related to the two aforementioned research areas, without any hope to be exhaustive. Model checking of probabilistic recursive systems. Model checking of probabilistic systems with recursion (but not higher-order functions), such as recursive Markov chains and probabilistic pushdown systems, has been actively studied [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF][START_REF] Etessami | Recursive Markov decision processes and recursive stochastic games[END_REF][START_REF] Brázdil | Branching-time model-checking of probabilistic pushdown automata[END_REF]. Our PHORS are strictly more expressive than those models, as witnessed by the undecidability result from Section 3, and the encoding of recursive Markov chains into order-1 PHORSs given in Appendix A.1. Our fixpoint characterization of the termination probability of PHORS is a generalization of the fixpoint characterization of the termination probability for recursive Markov models [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF] to arbitrary orders. Termination of probabilistic infinite-data programs. Methods for computing the termination probabilities of infinite-data programs (with real-valued variables, but without higher-order recursion) have also been actively studied, mainly in the realm of imperative programs (see, as an example, [START_REF] Bournez | Proving positive almost-sure termination[END_REF][START_REF] Esparza | Proving termination of probabilistic programs using patterns[END_REF][START_REF] Fioriti | Probabilistic termination: Soundness, completeness, and compositionality[END_REF][START_REF] Chatterjee | Stochastic invariants for probabilistic termination[END_REF][START_REF] Mciver | A new proof rule for almost-sure termination[END_REF][START_REF] Avanzini | On probabilistic term rewriting[END_REF][START_REF] Chakarov | Probabilistic program analysis with martingales[END_REF]); to the best of our knowledge, none of those methods deal with higher-order programs, at least directly. All these pieces of work present sound but incomplete methodologies for checking almost sure termination of programs. Incompleteness is of course inevitable due to the Turing completeness of the underlying language considered. In fact, Kaminsiki and Katoen [START_REF] Kaminski | On the hardness of almost-sure termination[END_REF] have shown that almost sure termination of probabilistic imperative programs is Π 0 2 -complete. Since their proof relies on Turing completeness of the underlying language, it does not apply to the setting of our model PHORS, which is a probabilistic extension of a Turing-incomplete language, namely that of HORS. Model checking of higher-order programs. Model checking of (non-probabilistic) higher-order programs has been an active topic of research in the last fifteen years, with many positive results [START_REF] Knapik | Higher-order pushdown trees are easy[END_REF][START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF][START_REF] Hague | Collapsible pushdown automata and recursion schemes[END_REF][START_REF] Kobayashi | Model checking higher-order programs[END_REF][START_REF] Kobayashi | A type system equivalent to the modal mu-calculus model checking of higher-order recursion schemes[END_REF][START_REF] Kobayashi | Predicate abstraction and CEGAR for higher-order model checking[END_REF][START_REF] Grellois | Relational semantics of linear logic and higher-order model checking[END_REF][START_REF] Grellois | Finitary semantics of linear logic and higher-order model-checking[END_REF][START_REF] Tsukada | Compositional higher-order model checking via ω-regular games over Böhm trees[END_REF][START_REF] Salvati | Krivine machines and higher-order schemes[END_REF]. Strikingly, not only termination, but also a much larger class of properties (those expressible in the modal µ-calculus) are known to be decidable for ordinary (i.e. non-probabilistic) HORS. This is in stark contrast with our undecidability result from Section 3: already at order-2 and for a very simple property like termination, verification cannot be effectively solved. Probabilistic functional programs. Probabilistic functional programs have recently attracted the attention of the programming language community, although probabilistic λcalculi have been known for forty years now [START_REF] Saheb-Djahromi | Probabilistic LCF[END_REF][START_REF] Jones | A probabilistic powerdomain of evaluations[END_REF]. Most of the work in this field is concerned with operational semantics [START_REF] Lago | Probabilistic operational semantics for the lambda calculus[END_REF], denotational semantics (see, e.g., [START_REF] Jung | The troublesome probabilistic powerdomain[END_REF][START_REF] Danos | Probabilistic game semantics[END_REF][START_REF] Ehrhard | Probabilistic coherence spaces are fully abstract for probabilistic PCF[END_REF][START_REF] Staton | Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints[END_REF][START_REF] Bacci | Boolean-valued semantics for the stochastic λ-calculus[END_REF]), or program equivalence (see, e.g., [START_REF] Lago | On coinductive equivalences for higher-order probabilistic functional programs[END_REF][START_REF] Crubillé | On probabilistic applicative bisimulation and call-by-value λ-calculi[END_REF][START_REF] Sangiorgi | Environmental bisimulations for probabilistic higher-order languages[END_REF]), which sometime becomes decidable (e.g. [START_REF] Murawski | On probabilistic program equivalence and refinement[END_REF]), but only when higher-order recursion is forbidden. The interest in probabilistic higher-order functional languages stems from their use as a way of writing probabilistic graphical models, as in languages like Church [START_REF] Goodman | Church: A language for generative models[END_REF] or Anglican [START_REF] Wood | A new approach to probabilistic programming inference[END_REF]. There are some studies to analyze the termination behavior of probabilistic higher-order programs (with infinite data) by using types. Dal Lago and Grellois [START_REF] Lago | Probabilistic termination by monadic affine sized typing[END_REF] generalized sized types [START_REF] Hughes | Proving the correctness of reactive systems using sized types[END_REF][START_REF] Barthe | Type-based termination of recursive definitions[END_REF] to obtain a sound but highly incomplete technique. Breuvart and Dal Lago [START_REF] Breuvart | On intersection types and probabilistic lambda calculi[END_REF] developed systems of intersection types from which the termination probability of higher-order programs can be inferred from (infinitely many) type derivations. This however does not lead to any practical verification methodology. Relevant proof techniques. Our technique (of using the undecidability of Hilbert's 10th problem) for proving the undecidability of almost sure termination of order-2 PHORS has been inspired by Kobayashi's proof of undecidability of the inclusion between order-2 (non-probabilistic) word languages and the Dyck language [START_REF] Kobayashi | Inclusion between the frontier language of a non-deterministic recursive program scheme and the dyck language is undecidable[END_REF]. Other undecidability results on probabilistic systems include the undecidability of the emptiness of probabilistic automata [START_REF] Gimbert | Probabilistic automata on finite words: Decidable and undecidable problems[END_REF]. Their proof is based on the reduction from Post correspondence problem. The technique does not seem applicable to our context.

Conclusion

We have introduced PHORS, a probabilistic extension of higher-order recursion schemes, and studied the problem of computing their termination probability. We have shown that almost sure termination is undecidable. As positive results, we have also shown that the termination probability of order-n PHORS can be characterized by order-(n -1) fixpoint equations, which immediately yields a method for computing a precise lower-bound of the termination probability. Based on the fixpoint characterization, we have proposed a sound procedure for computing an upper-bound of the termination probability, which worked well on preliminary experiments.

It is left for future work to settle the question of whether it is possible to compute the termination probability with arbitrary precision, which seems to be a difficult problem. Another direction of future work is to develop a (sound but incomplete) model checking procedure for PHORS, using the procedure for computing the termination probability as a backend.

• The rules in R A have been designed so as to closely mimick the four inductive clauses by which the transition relation ∆ of the Markov chain M A is defined. In particular, any such pair β, u is such that the length of β corresponds to the height of the corresponding term to which S A reduces. The only caveat is that the first such inductive clause needs to be restricted, because in PHORS, contrarily to Markov chains, one needs to fix one initial state. • (β, u , p, β , u) ∈ ∆ if and only if the term corresponding to β, u rewrites to the term corresponding to β , u with probability p in one step. As a consequence, one easily derive that P(G A) is precisely the probability, in M A , to reach , q I starting from , s I .

A.2. Encoding Order-1 PHORS into Recursive Markov Chains. In this section, we show that any order-1 PHORS can be encoded into a recursive Markov chain that has the same termination probability. First, we can normalize any order-1 PHORS to the one consisting of the rewriting rules of the form:

S = F 1 e • • • e F 1 x 1 • • • x k = t 1,L ⊕ p 1 t 1,R • • • F m x 1 • • • x k = t m,L ⊕ p 1 t m,R
, where each t i,d (i ∈ {1, . . . , m}, d ∈ {L, R}) is a variable x j (j ∈ {1, . . . , k}), or is of the form:

F i (F j 1 x 1 • • • x k) • • • (F j k x 1 • • • x k
). Note that Ω on the righthand side can be replaced by F x 1 • • • x k where F is defined by

F x 1 , • • • x k = F (F x 1 , • • • x k) • • • (F x 1 , • • • x k).
Given the normalized order-1 HORS above, let M be a recursive Markov chain consisting of a single component A 1 = (N 1 , B 1 , Y 1 , En 1 , Ex 1 , δ 1) where: • B 1 is the set of terms of the form

F i (F j 1 x 1 • • • x k) • • • (F j k x 1 • • • x k) on the righthand side. • Y 1 (b) = 1 for every b ∈ B 1 . • En 1 = {F 1 , . . . , F m }. • Ex 1 = {x 1 , . . . , x k }. • N 1 = En 1 ∪ Ex 1 .
• δ 1 is the least set of the transitions that satisfies:

-(F i , p, x j) ∈ δ 1 for each transition rule

F i x 1 , • • • x k d,p
--→ x j (recall that we write

F x 1 , • • • x k L,p --→ t L and F x 1 , • • • x k R,1-p ----→ t R if there is a rule F x 1 , • • • x k = t L ⊕ p t R). -(F i , p, (t, F j)) ∈ δ 1 if F i x 1 , • • • x k d,p
--→ t and t is of the form

F j (F j 1 x 1 • • • x k) • • • (F j k x 1 • • • x k). -((t, x i), p, x) ∈ δ 1 if t = F j (F j 1 x 1 • • • x k) • • • (F j k x 1 • • • x k), and F j i x 1 • • • x k d,p --→ x . -((t, x i), p, (t , F j)) ∈ δ 1 if t = F j (F j 1 x 1 • • • x k) • • • (F j k x 1 • • • x k), and F j i x 1 • • • x k d,p
--→ t , and t = F j (F For a PHORS G = (N , R, S) with dom(N) = {F 1 , . . . , F m }, we define its k-th approximation G (k) = (N (k) , R (k) , S (k)) by:

j 1 x 1 • • • x k) • • • (F j k x 1 • • • x k),
N (k) = {F (i) j → N (F j) | j ∈ {1, . . . , m}, 0 ≤ i ≤ k} R (k) (F (i) j) = [F (i-1) 1
/F 1 , . . . , F (i-1) m /F m]R(F j) for each i ∈ {1, . . . , k} R (k) (F (0) j) = λ x.Ω ⊕ 1 Ω. The following properties follow immediately from the construction of G (k) . (Recall that F E denotes the function associated with the fixpoint equations E, as defined in Section 4.1.) Lemma B.3. (1) G (k) is recursion-free.

(2) P(G) = k∈ω P(G (k)).

(3)

F k E G (⊥ N)(F) = F k E G (k) (⊥ N (k))(F (k)) = lfp(F E G (k))(F (k)
) for each non-terminal F of G.

Proof. (1) This follows immediately from the fact that F --→ G e. Therefore, P = k P (k) , from which the result follows.

(3) We show that

F k E G (⊥ N)(F) = F k E G () (⊥ N ())(F (k)
) holds for any ≥ k, by induction on k, from which the first equality follows. The base case k = 0 is trivial. For k > 0, By the definition of the rule for F (k) and the induction hypothesis, we have: As sketched in Section 4.3, we first prove the theorem for recursion-free PHORS. A key property used for showing it is that the translation relation is preserved by reductions, roughly in the sense that if t L,p --→ t L and t R,1-p ----→ t R , then t e (i.e., t is translated to e) implies that there exist e L and e R such that t L e L , t R e R and e ∼ = p • e L + (1 -p) • e R (where + and • are pointwise extended to operations on tuples). Thus, the property that e represents the termination probability of t follows from the corresponding properties of e L and e R ; by induction (note that since we are considering recursion-free PHORS, (t) > (t L), (t R), where (t) denotes the length of the longest reduction sequence from t), it follows that if the initial term is translated to e 0 , then e 0 represents the termination probability of the initial term.

F k E G () (⊥ N ())(F (k)) = ([F (k-1) 1 /F 1 , . . . , F (k-1) m /F m]R(F)) # F k-1 E G () (⊥ N ()) = R(F) # {F i →F k-1 E G () (⊥ N ())(F
Unfortunately, however, the translation relation is not necessarily preserved by the standard reduction relation

d,p
--→ G defined in Section 2. We thus introduce another reduction relation that uses explicit substitutions on order-0 variables. To this end, we extend the syntax of terms as follows.

t (extended terms) ::= Ω | x | t 1 t 2 | {t 1 /x 1 , . . . , t k /x k }t 0 Here, {t 1 /x 1 , . . . , t k /x k }t 0 an explicit substitution; the intended meaning is the same as the ordinary substitution [t 1 / x]t 2 (which represents the simultaneous substitutions of t 1 for x), but the substitution is delayed until one of the variables in x becomes necessary. We often abbreviate {t 1 /x 1 , . . . , t k /x k } as { t/ x}. Note that we have omitted e; we consider an open term S x as the initial term instead of S e. The type judgment relation for terms is extended by adding the following rule: K s i : o (for each i ∈ {1, . . . , k}) K, x 1 : o, . . . , x k : o t : o K {s 1 /x 1 , . . . , s k /x k }t : o Thus, explicit substitutions are allowed only for order-0 variables.

Reductions with explicit substitutions:

We now define a reduction relation for extended terms. The set of evaluation contexts, ranged over by E, is defined by: (2) If K; x 1 , . . . , x k N t : κ (t 0 , . . . , t), then K; x 1 , . . . , x k , x k+1 N t : κ (t 0 , . . . , t , t).

E ::= [] | { t/
Proof. This follows by straightforward induction on the structure of t. Lemma B.9 (Exchange). If K; x 1 , . . . , x i , x i+1 , . . . , x k N t : κ (t 0 , . . . , t ar(κ)+i , t ar(κ)+i+1 , . . . , t ar(κ)+k+1), then K; x 1 , . . . , x i+1 , x i , . . . , x k N t : κ (t 0 , . . . , t ar(κ)+i+1 , t ar(κ)+i , . . . , t ar(κ)+k+1).

Proof. This follows by straightforward induction on the structure of t.

As usual, the substitution lemma, stated below, is a critical lemma for proving subject reduction. The statement of our substitution lemma is, however, quite delicate, due to a special treatment of order-0 variables. Lemma B.10 (Substitution). Suppose t does not contain any explicit substitutions (i.e., any subterms of the form { u/ x}s). If y : κ y ; z N t : κ (t, t m+1) and •; x 1 , . . . , x k N s i : κ y,i (s i , s i, i +1 , . . . , s i, i +k+1) with {x 1 , . . . , x k } ∩ { z} = ∅ and i = ar(κ y,i), then:

•; z, x 1 , . . . , x k N [s/ y]t : κ (θ 0 t, θ 1 t 0 , . . . , θ k t 0 , θ 0 t m+1),

where the substitutions θ j (j ∈ {0, . . . , k}) are defined by: θ j = θ 1,j • • • θ | s|,j for j ∈ {1, . . . , k} θ i,0 = [s i,0 /y i,0 , . . . , s i, i /y i, i , s i, i +k+1 /y i, i +1] for i ∈ {1, . . . , | s|} θ i,j = [s i, i +j /y i,0 , s i,1 /y i,1 , . . . , s i, i /y i, i , s i, i +k+1 /y i, i +1] for i ∈ {1, . . . , | s|}, j ∈ {1, . . . , k}.

Here, the part θ 1 t 0 , . . . , θ k t 0 accounts for information about reachability to the newly introduced variables x 1 , . . . , x k .

Proof. Induction on the derivation of y : κ y ; z N t : κ (t, t m+1).

• Case Tr-Omega: In this case, t = Ω with t = 0 and t m+1 = 0. Thus, the result follows immediately from the rule Tr-Omega. • Case Tr-GVar: In this case, t = z i and κ = o, with t = 0 i , 1, 0 |z|-i and t m+1 = 0. By using Tr-GVar, we obtain

•; z, x 1 , . . . , x k N [s/ y]t(= z i) : κ (0 i , 1, 0 | z|+k-i+1).

Since (θ 0 t, θ 1 t 0 , . . . , θ k t 0 , θ 0 t m+1) = (t, t 0 , . . . , t 0 k , t m+1) = (0 i , 1, 0 | z|+k-i+1),

we have the required result. • Case Tr-Var: In this case, t = y i , with t = y i,0 , . . . , y i, i , y | z| i, i +1 , and t m+1 = y i, i +1 . By applying Lemmas B.8 and B.9 to •; x 1 , . . . , x k N s i : κ y,i (s i , s i, i +1 , . . . , s i, i +k+1), we obtain:

•; z, x 1 , . . . , x k N s i : κ y,i (s i , s

| z| i, i +k+1 , s i, i +1 , . . . , s i, i +k+1).

Since t = y i,0 , . . . , y i, i , y

| z| i, i +1 , and t m+1 = y i, i +1 , we have (θ 0 t, θ 1 t 0 , . . . , θ k t 0 , θ 0 t m+1) = (s i , s

| z| i, i +k+1 , s i, i +1 , . . . , s i, i +k+1). Thus we have the required result.

Definition 2 . 2 (

 22 Operational Semantics and Termination Probability of PHORS). Given a PHORS G = (N , R, S), the rewriting relation d,p --→ G (where d ∈ {L, R} and p ∈ [0, 1]) is defined by: R(

 and π,p = = ⇒ for d,p --→ G and π,p = = ⇒ G respectively. The termination probability of G, refers to its full termination probability P(G).

Figure 1 .

 1 Figure 1. A Recursive Markov Chain Modeling G 1 .

Example 2 . 4 .

 24 The following is a variation of the list generator example (Example 2.3), which generates ternary trees instead of lists: let boolgen () = flip () in let rec treegen f = if flip () then Leaf else Node (f () , treegen f , treegen f , treegen f) in treegen (boolgen)

√ 5-1 2 . 2 f , treegen p+1 2 f

 222 To increase the chance of termination, let us change the original program as follows: let boolgen () = flip () in let rec treegen p f = if flipp (p) then Leaf else Node (f () , treegen p+1 , treegen p+1

2

 2

Example 2 . 6 .

 26 Consider a probabilistic function f , which takes a value of type A, and returns a value of type B with probability p and Unknown with probability 1 -p. The following higher-order function determinize takes such a function f as an argument, and generates a function from A to B. type 'b pans = Ans of 'b | Unknown let rec determinize(f:'a->'b pans)(x:'a)= match f x with Ans(r) -> r | Unknown -> determinize f x

Remark 2 . 4 .

 24 Although PHORS do not have probabilities as first-class values, as demonstrated in the examples above, certain operations on probabilities can be realized by encoding a probability p into a probabilistic function λx.λy.x ⊕ p y. The function Avg in Example 2.6 realizes the average operation p 1 +p 2

3. 2 .

 2 Decreasing the Order. We now refine the construction of G P,Q 3 to obtain an order-2 PHORS G P,Q 2 that satisfies the same property. The idea is, instead of passing around a Church numeral m, to pass a probabilistic function equivalent to NatToPr m, which takes two arguments and chooses the first and second arguments with probabilities 1-1 2 [m] and 1 2 [m] , respectively. Note that a Church numeral m has an order-2 type CT = (o → o) → o → o, whereas NatToPr m has an order-1 type o → o → o. This ultimately allows us to decrease the order of the PHORS.

Figure 2 .

 2 Figure 2. The rules of G P,Q 3

Figure 3 .

 3 Figure 3. The rules of G P,Q 2

Figure 4 .

 4 Figure 4. Type system for fixpoint equations. (x 1 , . . . , x k) : τ denotes x 1 : τ 1 , . . . , x k : τ k where τ = τ 1 × • • • × τ k .

e 1 +

 1 e 2 ρ = e 1 ρ + e 2 ρ e 1 • e 2 ρ = e 1 ρ • e 2 ρ e 1 e 2 ρ = (e 1 ρ)(e 2 ρ) (e 1 , . . . , e k) ρ = (e 1 ρ , . . . , e k ρ).

Theorem 4 . 2 .

 42 Let G be an order-n PHORS. Then P(G) = ρ E G (S).

Example 4 . 3 .

 43 Recall G 1 = (N 1 , R 1 , S) from Example 2.1:

Example 4 . 5 .

 45 Recall G 1 in Example 2.1, consisting of: S = F e and F x = x ⊕ p F (F x).

Figure 5 .

 5 Figure 5. Translation rules for the order-(n -1) fixpoint characterization

 For a PHORS G = (N , R, S) (where N (S) = o → o), we write E ref G for E such that (N , R, S) (E, S 1). Such an E is actually unique (up to α-equivalence), given N , R. Note also that by definition of the translation relation, the output of the translation always exists. Example 4.6. Recall the order-2 PHORS G 2 in Example 2.2:

Lemma 4 . 3 (

 43 Well-typedness of the output of transformation). Let G = (N , R, S) be a PHORS. If N R (E, S 1), then N † E and N † (S 1) = R.

G

 is the functional associated with the fixpoint equations E ref G ; we simply write F for F E ref G below.

Figure 6 .

 6 Figure 6. Overapproximation by a step-function (left) and a stepwise linear function (right)

1)

 1 = [0, 0.25, 0.25]; r (2) = [0, 0.25, 0.5]; r (3) = [0, 0.25, 0.5]. Thus, the upper-bound obtained for f (1) is 0.5. The exact value of f (1) = 1 3 . A more precise upper-bound is obtained by increasing the values of n and m. For example, if n = 16 and m = 256, the upper-bound (obtained by running the tool reported in a later section) is 0.3398 • • •. main(e, c){ r := [0, . . . , 0]; r := [1, . . . , 1] (* dummy *); while not(r=r) do { r := r; (* copy the contents of array r to r *) for each i ∈ {0, . . . , n} do r [i] := α h (eval(e, {f → r, x → i n }))}; return apply(r, c); } apply(r, c) { (* apply the function represented by array r to c *)

main(e 1

 1 , . . . , e k , c){ ρ := [f 1 → [0], . . . , f k → [0]]; (* ρ(f i) is an array indexed by each element of D i *) ρ := [f 1 → [1], . . . , f k → [1]]; (*dummy *) while not(ρ=ρ) do { ρ := ρ; (* copy the contents *) for each i ∈ {0, . . . , k} do for each v ∈ D i do let r = eval(e i , ρ{ x → v}, v ?

Figure 9 .

 9 Figure 9. Pseudo code for computing an upper-bound for the general case

G(2)

 2 (k) F (j) only if j = i -1. Let P be the set {(π, p) | S π,p = = ⇒ G e} and P (k) be {(π, p) | S (k) π,p = = ⇒ G (k) e}. Then P(G) = (π,p)∈P p and P(G (k)) = (π,p)∈P (k) p. Note that for any reduction s d,p --→ G (k) t with t = Ω, there exists a corresponding reduction s ! d,p --→ G t ! where s ! and t ! are the terms of G obtained from s and t respectively, by removing indices, i.e. by replacing each F i with F . Thus, P (k) ⊆ P for any k. Conversely, if S π,p --→ G e, then S (|π|) π,p --→ G (|π|) e, because non-terminals are unfolded at most |π| times in S π,p

) (by the induction hypothesis) = F k E G (⊥ N)(F), as required. (Here, we have extended (•) # and t ρ for λ-terms in the obvious manner.)For the second equality, we can show thatF k E G () (⊥ N ())(F (k)) = lfp(F E G ())(F (k))holds for any ≥ k, by straightforward induction on k. B.2.2. Proof of Theorem 4.4. Given two expressions e 1 , e 2 and fixpoint equations E ref G , we write e 1 ∼ = E ref G e 2 if e 1 ρ E ref G = e e ρ E ref G. We often omit the subscript.

, 1 -

 1 → es,G E[t i] R(F) = λ y.λ z.u L ⊕ p u R N (F) = κ ⇒ o → o = | z| = | t| | y| = | s| z do not occur in E[F s t] E[F s t] L,p --→ es,G E[{ t/ z}[s/ y]u L]

 Since (t) > ([s 1 /x 1 , . . . , s k /x k]t i), by the induction hypothesis, the righthand side equals:p([s 1 /x 1 , . . . , s k /x k]t 1) # ρ + (1 -p)([s 1 /x 1 , . . . , s k /x k]t 2) #

		ρ
	= p(t 1) # ρ{ x → s # ρ }	+ (1 -p)(t 2) # ρ{ x → s # ρ }
	= (F s 1 • • • s k) # ρ = t # ρ ,
	as required.	

 x}E.--→ es,G t (where d ∈ {L, R, }) is defined as follows.z / ∈ {x 1 , . . . , x k } E[{t 1 /x 1 , . . . , t k /x k }z] /x 1 , . . . , t k /x k }x i]

	The new reduction relation t	d,p
		,1 -→ es,G E[z]
	E[{t 1

N. KOBAYASHI, U. DAL LAGO, AND C. GRELLOIS τ (types) ::= R | τ 1 → τ 2 | τ 1 × • • • × τ n . r ∈ R Γ r : RΓ e 1 : R Γ e 2 : R Γ e 1 + e 2 : R Γ e 1 : R Γ e 2 : R Γ e 1 • e 2 : R Γ(x) = τ Γ x : τ

For the sake of simplicity, the following translation slightly deviates from the general translation defined later.

As already mentioned, our method with piecewise linear functions may also be incomplete, but that does not show up in the current benchmark set.

if it were Θ(n -1), Σnfn would diverge, contradicting Σnfn = 1.

Acknowledgments. We would like to thank Kazuyuki Asada and Takeshi Tsukada for discussions on the topic, and anonymous referees of LICS 2019 for comments on the earlier version of the paper. This work was supported by JSPS KAKENHI Grant Number JP15H05706 and by ANR Elica Grant Number ANR-14-CE25-0005.

experiment reported in Section 6). Let us define an m-th approximation Treegen (G 1 (p 1 , p 2), G 2 (p 1 , p 2))) 3 .

Then ρ(Treegen 1) (p 1 , p 2) ≥ Treegen (p 1 , p 2) for every m ≥ 0. We show Treegen (m) 1

(1 -

for every n ≥ 2, m ≥ 1 by induction on n. When m = 1, we have:

1 (1 -

For the inductive step, we have

as required. Thus,

(1 -1 2 (2+(m-1)-1)) for every m ≥ 2. Thus, ρ(S 1) = ρ(Treegen 1)(1 2 , 1 2) (which should be no less than Treegen (m) 1

(1 2 , 1 2) for every m) must be 1.

4.4.

Correctness of the Translation. To state the well-formedness of the output of the translation, we define the translation of types as follows.

(

We also write (κ

It represents the type of the tuple (e 0 , . . . , e +m+1) obtained by translating a term of type κ 1 → • • • → κ k ⇒ o → o with order-0 variables x 1 , . . . , x m . The distinction between κ i † and κ i † reflects the fact that in the output (e 0 , e 1 , . . . , e , e +1 , . . . , e +m+1) of the translation, e 1 , . . . , e take one less argument (recall Tr-App). The translation of the type environment N for non-terminals is defined by: (F 1 : κ 1 , . . . , F k : κ k) † = (F 1,0 , . . . , F 1,ar(κ 1)) : κ † 1 , . . . , (F k,0 , . . . , F k,ar(κ k)) : κ † k . The following lemma states that the output of the translation is well-typed. inductively defined by:

Here, the concrete domain C τ denotes τ in Section 4.1. Then, α τ and β τ satisfy the required conditions (α(γ(a)) = a and c C γ(α(c))). Since A τ is finite, we can effectively compute lfp(F).

We note, however, that the above approach has the following shortcomings. First, although A τ is finite, its size is too large: k-fold exponential for order-k type τ . As in the case of non-probabilistic HORS model checking [START_REF] Kobayashi | Model-checking higher-order functions[END_REF][START_REF] Broadbent | Saturation-based model checking of higher-order recursion schemes[END_REF][START_REF] Ramsay | An abstraction refinement approach to higher-order model checking[END_REF], therefore, we need a practical algorithm that avoids eager enumeration of abstract elements. Second, due to the use of step functions, the obtained upper-bound will be too imprecise. To see why step functions suffer from the incompleteness, consider the equations:

The exact least solution is s = 1 2 and f (x) = x. With step functions (where 1 n is the size of each interval), however, the abstract value f (1 n) must be no less than

, which is impossible. Thus, the computation diverges and 1 is obtained as an obvious upper bound.

The step functions make use of only monotonicity of the least solution of fixpoint equations. As in the use of stepwise multilinear functions in the case of order-1 equations (for order-2 PHORS), exploiting an additional property like convexity would be important for obtaining a more precise method; it is left for future work.

Experiments

We have implemented a prototype tool to compute lower/upper bounds of the least solution of order-1 fixpoint equations (that are supposed to have been obtained from order-2 or order-1 PHORS by using the translations in Section 4 modulo some simplifications; we have not yet implemented the translators from PHORS to fixpoint equations, which is easy but tedious). The computation of a lower bound is based on naive Kleene iterations, and that of an upper-bound is based on the method discussed in Section 5.2. The tool uses floating point arithmetic, and ignores rounding errors.

We have tested the tool on several small but tricky examples. The experimental results are summarized in Table 2. The column "equations" lists the names of systems of equations. The column "#iter" shows the number of Kleene iterations used for computing a lower-bound. The columns "#dom" and "#codom" show the numbers of partitions of the interval [0, 1] for the domain and codomain of a function respectively. The default values for them were set to 12, 16, and 512, respectively in the experiment; they were, however, adjusted for some of the equations. The columns "l.b." and "u.b." are lower/upper bounds computed by the tool. The lower (upper, resp.) bounds shown in the down (up, resp.) the outputs of the tool to 3-decimal places. The column "u.b.(step)" shows the upper-bounds obtained by using step functions instead of piecewise linear functions; this column has been prepared to confirm the advantage of piecewise linear functions over step functions. The column "exact" shows the exact value of the least solution when we know it. The column "time" shows the total time for computing both lower and upper bounds (excluding the time for "u.b.(step)").

The equations "Ex2.3-1" and "Ex2.3-0" are order-1 and order-0 equations obtained from the PHORS in Example 2.1 (see also Examples 4.3 and 4.5) by using the translations in Sections 4.2 and 4.3 respectively; specifically, "Ex2.3-1" consists of s = f (1) and f (x) = 0.25x + 0.75f (f (x)). The equations "Ex2.3-v1", "Ex2.3-v2", and "Ex2.3-v3" are variations of them, where the equation on f is replaced by f (x) = 0.25x + 0.75f (f (x 2)), f (x) = 0.25x + 0.75f (f (f (x 2))), and f (x) = 0.25x + 0.75(f (x)) 2 , respectively. "Ex2.4" is the equations obtained from the order-2 PHORS in Example 2.2 (see also Example 4.6). The

Appendix Appendix A. Relationship between PHORS and Recursive Markov Chains

In this section, we provide mutual translations between order-1 PHORS and recursive Markov chains.

A.1. Encoding Recursive Markov Chains into Order-1 PHORS. In this section, we will give a sketch of a proof that any recursive Markov chain (RMC in the following) can be faithfully encoded as an order-1 PHORS. In doing that, we will closely follow the notational conventions and definitions from [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF], Section 2.

Let us first of all fix a RMC A = (A 1 , . . . , A k), where each component graph is

We fix a reachability problem, given in the form of a triple (i I , s I , q I) where i I ∈ {1, . . . , k}, s I is a vertex of A i I , and q I ∈ Ex i I , where a vertex of each A i is defined as an element of

Here,

The reachability problem (i I , s I , q I) specifies , s I as the initial state, where s I is a vertex of the component graph i I , and , q I as the reachability target (cf. Section 2.2 of [START_REF] Etessami | Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations[END_REF]). The PHORS G A = (N A , R A , S A) is defined as follows:

• Nonterminals are defined as symbols of the form F i,s where i ∈ {1, . . . , k}, and s is a vertex

There is also a nonterminal S A of type o, which is taken to be (i I , s I , q I). The start symbol is S A .

• Rules in R A are of four kinds:

• There is a rule

, e, Ω, . . . , Ω)

where Ex i = {s 1 , . . . , s |Ex i | } and q I = s j . • For every i and for every exit node s j ∈ Ex i = {s 1 , . . . , s |Ex i |}, there is a rule

• For each i and for each non-exit node or return port s of A i , there is a rule

where p q s is the probability to go from s to q, as given by the transition function δ i . • For every i and for every call port s = (b, en) of A i which is in Call b , there is a rule

The next step is to put any global state in M A in correspondence to a term of G A . This is actually quite easy, once one realizes that: • G A is designed so that every term to which S A reduces can be seen as a complete ordered tree.

Intuitively, a PHORS term of the form

is modeled as a call of F j , where F j i is executed when the call exists from the exit port x i . That is why, in the third and fourth kinds of transition rules above, the next node is determined by the rule for F j i . From this intuition, it should be trivial that the termination probabilities of the RMC and the original PHORS coincide.

Proof. This follows by straightforward induction on the derivation of K t : κ.

t # i : R for each i, but this follows immediately from the typing of t i above and Lemma B.1. B.1.2. Proof of Theorem 4.2. We call a PHORS G recursion-free if there is no cyclic dependency on its non-terminals. More precisely, given a PHORS G, we define the relation G on its non-terminals by: F i G F j iff F j occurs on the righthand side of the rule for F i . A PHORS G is defined to be recursion-free if the transitive closure of G is irreflexive.

Below we write t # ρ for t # ρ . Lemma B.2. Let G = (N , R, S) be a recursion-free PHORS, and ρ be the least solution of

Proof. Since G is recursion-free, it follows from the strong normalization of the simply-typed λ-calculus that t does not have any infinite reduction sequence. Because the reduction relation is finitely branching, by König's lemma, there are only finitely many reduction sequences from t; thus a longest reduction sequence from t exists, and we write (t) for its length. The proof proceeds by induction on (t). If (t) = 0, then t is either e (in which case, both sides of the equation are 1) or Ω (in which case, both sides of the equation are 0); thus, the result follows immediately. Otherwise, t must be of the form

B.2. Proofs for Section 4.3.

B.2.1.

Proof of Lemma 4.3. We define the translation for a type environment on variables (other than non-terminals; note that the translation is different from the one for N) by: (y 1 : κ 1 , . . . , y k : κ k) † = (y 1,0 , . . . , y 1,ar(κ 1)+1) : κ † 1 , . . . , (y k,0 , . . . , y k,ar(κ k)+1) :

Proof. This follows by straightforward induction on the derivation of K, x : o t : κ.

We also prepare the following lemma on the syntactic property of the translation result, which is important for Lemma 4.3 and the substitution lemma (Lemma B.10 below) proved later.

Lemma B.5. Suppose: K; z N t : κ (t 0 , . . . , t ar(κ) , t ar(κ)+1 , . . . , t ar(κ)+| z|+1).

Then, for each y i ∈ dom(K), y i,0 does not occur in only in t 1 , . . . , t ar(κ)+| z|+1 .

Proof. This follows by straightforward induction on the structure of t.

Proof of Lemma 4.3.

We call reductions using the first two rules (i.e., reductions labeled by ,p -→ es,G) administrative reductions. In the last two rules, we assume that α-conversion is implicitly applied so that z do not clash with variables that are already used in E[F s t]. In those rules, recall also our notational convention that when we write F s t, the second sequence t is the maximal sequence of order-0 terms (that condition is made explicit in the above rules, but below we often omit to state it). As before, we often omit the subscript G.

For an extended term t, we write t * for the term obtained by replacing explicit substitutions with ordinary substitutions. For example, ({t/x}(F x)) * = F t. The following lemma states that the new reduction relation is essentially equivalent to the original reduction relation:

--→ t * .

(3) If s * d,p --→ u, then there exists t such that s(Proof. By Lemma B.6, t π,p = = ⇒ es x if and only if t * π,p = = ⇒ x, if and only if [e/x]t * π,p = = ⇒ e (for the second "if and only if", recall the assumption that e does not occur in R), from which the result follows.

We extend the translation relation for terms with the following rule.

We shall prove that the translation relation is preserved by the new reduction relation (Lemmas B.11, B.12, and B.13 below).

Lemma B.8 (Weakening). (1)

If K; x 1 , . . . , x k N t : κ e, then K, y : κ y ; x 1 , . . . , x k N t : κ e.

• Case Tr-App: In this case, we have t = uv and

By the induction hypothesis, we have:

By applying Tr-App, we obtain:

Since y i,0 does not occur in v and v +| z|+1 (Lemma B.5), θ 0 v and θ 0 u +| z|+1 are equivalent to θ j v and θ j u +| z|+1 respectively for any j ∈ {1, . . . , k}. Therefore, the whole output of transformation is equivalent to:

Thus, we have the required result. • Case Tr-NT: The result follows immediately from Tr-NT.

• Case Tr-AppG: In this case, we have t = uv and:

By the induction hypothesis, we have:

By applying Tr-AppG, we obtain:

Since u 1 does not contain any occurrence of y i,0 (Lemma B.5), θ 0 u 1 = θ j u 1 for any j ∈ {1, . . . , k}. Therefore, the output of the translation is equivalent to:

Thus, we have the required result.

We are now ready to prove that the translation relation is preserved by reductions (Lemmas B.11, B.12, and B.13 below).

Proof. By the assumptions, we have:

for each j ∈ {1, . . . , | z|} v | z|+j = F 0 (s 1,ar(κ 1)+j , s 1,1 , . . . , s 1,ar(κ 1) , s

By applying the substitution lemma (Lemma B.10) to the last condition, we obtain: Then, we have v j ∼ = pw L,j + (1 -p)w R,j . (Here, the only non-trivial case is for j =

; in this case, by induction on the structure of u d , it follows that

, which implies the required property) Let w d be (w d,0 , . . . , w d,| x|+1), where:

Then, the required result is obtained by applying Tr-Sub to

Lemma B.12 (Subject Reduction (for administrative steps)).

Proof. By the assumption •; x { s/ z}x i : o (t 0 , . . . , t | x|+1), we have:

), we have the required condition for: u i = 1 and u j = 0 for j = i. Lemma B.13 (Subject Reduction (for administrative steps (ii))).

) for some u j (j ∈ {0, . . . , | x| + 1}) such that t j ∼ = u j for each j ∈ {0, . . . , | x| + 1}.

Proof. By the assumption •; x { s/ z}z i : o (t 0 , . . . , t | x|+1), we have:

Thus, the result holds for u j = s j .

We are now ready to prove Theorem 4.4, restricted to recursion-free PHORS (the definition of recursion-free PHORS is found in Section B.1).

Lemma B.14. Let G = (N , R, S) be a recursion-free PHORS, and ρ be the least solution of E ref G . Then, P(G, S e) = ρ(S 1). Proof. By Lemma B.7, it suffices to show that •; x N t (t 0 , t 1 , t 2) implies P es (G, t, x) ∼ = t 1 . This follows by induction on (t), the length of the longest reduction sequence from t by d,p --→ es ; note that (t) is well defined because t is finitely branching and strongly normalizing with respect to d,p --→ es ; the strong normalization follows from Lemma B.6 and the fact that there can be no infinite sequence of consecutive administrative reductions (in fact, each administrative reduction consumes one explicit substitution). Suppose (t) = 0. Then, t is either x (in which case, t 1 = 1) or Ω (in which case, t 1 = 0). Thus, the result follows immediately.

If (t) > 0, we perform a case analysis on a reduction of t.

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. Consider the finite approximation G (k) (defined in Section B.1). Then, we have The rest of the material will not appear in the submission.

Appendix C. Discounted Probability, Average Length of Reduction Sequence, etc.

[I am not sure whether we would like to keep this discounted version in the paper. Since the observation (that the discounted version can be precisely computed) straightforward, we should probably omit it.

-nk] Given a PHORS G, let p G,i (i ∈ Nat) be the probability that reductions from the start symbol of G terminates in i steps. Henceforth we omit the subscript G. Let us define f (z) by:

Clearly, f (1) = Σ i∈Nat p i = Pr(G). For d(0 ≤ d < 1), we call f (d) as the discounted termination probability (with the discount factor d). For probablistic pushdown systems, discounted properties have already been considered in [START_REF] Brázdil | Discounted properties of probabilistic pushdown automata[END_REF]. Interestingly, the discounted probability f (d) can be computed with arbitrary precision, for any 0 ≤ d < 1. It is obvious from the facts that p i is computable for each i, and that

, holds for any n, and d n+1 converges to 0 when n → ∞.

Let us consider related functions:

Note that f (1) gives the average length of reduction sequences when Pr(G) = f (1) = 1. We have the following computability result:

• The value of f (d) (exists and) can be computed with arbitrary precision, for any 0 ≤ d < 1 (or more generally, for any complex number d with |d| < 1), for the same reason as the computability of f (d).

• The value of F (d) can be computed with arbitrary precision, for any 0 ≤ d≤1. For d < 1, F (d) can be computed for the same reason as for f (d). For d = 1, note that the value of F (1) can be bounded by:

for arbitrary > 0. • For the same reason as above, when the value of f (1) is finite and we know an upper-bound M of f (1), the value of Pr(G) = f (1) can be computed with arbitrary precision using the inequalities:

Note that f (1) may be infinite in general; for example, consider the PHORS G 1 consisting of the rules:

Then, the length of the i-th leftmost terminating sequence is at least 2 i , so that f

We can apply the same argument for the number of unfoldings instead of the length of terminating reduction sequences. Let q i be the i-th approximation of the termination probability of G, obtained by the iterative approximation of the least fixpoint, as discussed in Section 4.3. For each i > 0, let r i = q i -q i-1 . Let g(z) be:

Then g(1) = Pr(G). By the same argument as above, if g (1) = Σ i>0 ir i is finite and an upper-bound of it can be computed, then we can also compute g(1) with arbitrary precision.

For G 1 above,

[Question: Is there any case where g (1) is infinite? q i+1 = 1 2 + 1 2 q i , r i = q i -q i-1 may be such an example. -nk] C.1. Generating Functions on the Number of Probabilistic Choices. For a PHORS G, let f n,G be the probability that G terminates after exactly n probabilistic choices (where we do not count deterministic branches, by ⊕ 1 or ⊕ 0). Then we can define a generating function:

f G (z) = Σ n f n,G z n . We often omit the subscript G below. f G (1) gives the termination probability P(G). Note that, for each n, f n,G is computable. (In contrast, f n,G is not computable if G were a program of a Turing-complete language. 5)

The fixpoint characterizations in Section 4 can be lifted to obtain equations on the generating function. For example, for:

the order-n characterization yields:

and the order-(n -1) characterization yields:

The latter yields:

) (which represents the average number of choices) is finite; if we compute it, we can also obtain a precise upper-bound of f (1) (see the discussion above on the estimation of f).

f n eventually converges to 0, but only very slowly. To speed up the convergence (and make the point z = 1 non-singular), one may be tempted to choose a different measure as 5 However, the fact that fn,G is computable alone does not help us compute an upper-bound of f (1) because, even for a Turing-complete language, fn,G is computable if we replace every deterministic rule F x = t with F x = t ⊕ 1 2 t.

n. Choosing the "depth" of recursive calls does not help much, however. If we choose the depth of recursive calls for the example above where n = 1 2 , we have:

)(g n -g n-1), so f n+1 = 1 2 (g n + g n-1)f n . As g n → 1, the factor 1 2 (g n + g n-1)f n tends to 1. Thus, f n does NOT decrease exponentially fast.

Instead of changing the measure n, we may instead wish to consider:

(• is applied to ensure that g G is analytic at z = 0.) Then P(G) = f 0 + g(1), and g (1) = Σ n≥1 f n log n is more likely to be finite. In fact, if f n = O(n -(1+c)) for c > 0 6 , then

). So, g k descreases exponentially with respect to k. Alternatively, one may consider

A problem is that, simple fixpoint characterization is no longer available for the functions above (though every coefficient is computable by iteratively solving higher-order model checking problems for HORS). We can decrease the order by one by using the same trick as we used for Diophantine equations.