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I- Introduction
The Transmission Line Matrix (TLM) method is a well-known numerical time-domain technique which has been
widely used for solving electromagnetic field problems. Axially symmetric structures are frequently encountered in
microwave engineering. For this purpose, a first memory-saving TLM algorithm was developed in the particular case
of uniform guiding structures [1]. Based on the classical Symmetrical Condensed Node (SCN) [2], this approach
leads to a lD mesh array using 18 complex voltages. Low memory requirement and simple algorithm make this
method a very versatile tool. Extension of this model to general axially symmetric structure (2D mesh array) is not 
memory competitive compared to other time domain methods as BoR-FDTD [3,4]. 
In this paper, we propose a new TI..M scheme for this type of geometzy namely, the Axial Symmetzy TI..M (AS­
TLM). This node is directly deduced from Maxwell's integral equations expressed in the case of body of revolution
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with the approach proposed by Pefia
and Ney [4]. The basic cell requires 8 
arms and from a TI.M point of view,
it should be considered as composed
of one 2D series node and one 2D 
parallel node coupled by fields at the 
center (Figure 1). Three types of
nodes are hence proposed: a SCN 
with 6 stubs and one arm impedance
(14 real voltages), an HSCN with 3
stubs and three arm impedances (11 
real voltages) and, finally, a Hybrid­
Hybrid Node (HHSCN) which is 
composed of 2 stubs and 4 arm 
impedances (IO real voltages). The 
name of the HHSCN comes from the 
fact that it includes two 2D nodes
treated as 2D-Hybrid nodes [6]. 
Current sources and losses are 

included in the algorithm straightforwardly. At last, absorbing boundary conditions (ABC) specific to the problem are 
included in the TLM algorithm.

II-Theory . 
In the new node depicted in Figure I, only 8 transmission-lines are used, since azimuthal arms are removed.
Furthermore, azimuthal dimension, called �<!>, is a normalized arbitrary length as shown bellow. It can be chosen to 
obtain the best time step. Wrth the above dimensions, voltage definition remains the same as in [5] expect for 4 of
them: [ a J r1 A+ E� +Zn}AzH� 3 + 3-(j l AzE�-Ztzr1A$H6 a10 =z- AzEfo+Ztzr2A+Hfoan r2A$Ef1-Z,.q,AzHf 

with: and 
r+ 1: 

r1= -­r 
(1) 
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where a indicates incident voltages (b are reflected ones), r is the distance from the center of cylindrical coordinates 
to the center of the node under consideration and Z;j denote arm impedances. In the case of body of revolution, field 
Fourier expansion is expressed as follows: - � (- -jrnc!> ) - � (- -jrnc!>) E = """ e_ e H = """ h. e m=O m=O (2) 
where m is the azimuthal order. Example will be shown for AS-SCN, as AS-HSCN and AS-HHSCN are derived with
the same method. Let us consider a (z,cj>) path integral as depicted in Figure 2. Approximating Maxwell-Ampere 
integral equation without losses and sources leads to: (l+T) 2 . (mt.11>) -jmto [r (y..t. H+) . A H ]-(I T) &r r llz A E- -jmcpo 2 . (mti.1>) -- sm -- e - H2 - 9 - J LlZ - - L.lr e sm --2 2 m z Zo c flt m llr r 2 (3)

Hep2 \ ·\,....-::...--=-· Er � cp 7 H9 :I \ .M.: 

with:
4+Ysr A &r llcl>ll z Ysr+2 =2 ----cll tllr 

I y---; k k l
·-·--.i�?< r/ In a voltage notation, equation (3) is expressed as: 
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� b2 + b9 + Ysr b13 = a2 +a9 + Ysr a13-aZ0tizHz

(4) 

- ·-- /9-: and T is such that T u  = u - . 

Figure 2. (z,cl>) contour path integral for with a= j rn �cl> (5)
Maxwell equation approximation. The calculation is then driven for Maxwell-Faraday equation using 

the same contour path. Thus, the same approximations are made in 
(r,cj>) plane and (z,r) plane. Finally, six equations relating incident and reflected voltages are obtained. At this point, 
the field components at the center of the node are evaluated using the approach proposed in [7] leading, for example, 
to: 

2( a1 + a9 + Ysr a13) -aZ0AzHz 2(-au + a3 + Zsz a 18) -allr Er Lir Er= A Z0llzHz = A 2+ Ysr 2+Zsz (6) 

One can note that a. is a complex constant. Real and imaginary part of field are extracted getting to two independent 
solutions. One of these is then chosen and kept to perform computation with real variables. For example, real part of

£c, Ez and � and imaginary part of Hr, Hz and Ed> ... constitutes one of these solutions. Thus, real and 
·� 
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_..--· roro• ·OJ / imaginary part of corresponding voltages are used. ,/ ,. llHSCN Finally, reflected voltages are calculated from fields at /·(,,.,,. ..- __ -FDTl>- -. 1)- the center of the node and incident voltages. This part / . -;__,..,,.,,. _ _ _ _ _ _ of the algorithm remains unchanged compared to a 

./ • / // ll5CN classical TLM procedure [8]. Furthermore, losses and .< · � / '. ...... current sources integration is straightforward as 
/�:�·�// : indicated in [5].

.. -:,·:;, � / FDTD•·•> The hybrid node is extracted naturally with the same-�·§_ �,,.,,. approach whereas a super condensed node can not be.., .. ""·' J.O .. � Figure 3. Normalized maximum time steps (weighted by a 
term (Cm) taking into account memory requirement) 

comparison for AS-TLM and BOR-FDTD schemes with
cell size variation. 

created. To derive a condensed node, 6 degrees of 
freedom are required. If no stub is used we only have four degrees. An alternative solution is to create an 
Hybrid-Hybrid node where one stub is associated 
with each azimuthal field components. 
Considering voltages along (o,r) direction, namely V 3, V 6· V 10 and V 11 • it should be pointed out that 

their definition varies from neighboring nodes. As a result, a transfer matrix is used to transfer the voltages along this 
direction. 
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The last point of major importance is the treatment of the center of cylindrical coordinates. When the azimuthal order 
is greater than zero, the longitudinal field components are zero at this location. Hence from (I), it can be seen that the
voltages V3 and V6 are zero. This implies they are ignored in the equations governing the cell adjacent to the center of 
coordinates. In the particular case where the azimnthal order is zero, a special cell has to be created for the center. It is obtained by enforcing Maxwell integral equations around the center. It leads to a two-port node with half size in
the radial direction, referred to ''half node".
Finally, since the maximum time-step is independent of the azimuthal order m, AS-TLM seems more competitive than
BoR-FDTD in the general case, even when taking into account memory requirement. (See Figure 3). 

ID- Absorbing boundary conditions
The absorbing boundary conditions created for AS-TLM are based on a non-unified formulation. This kind of
algorithm ensures stability of the ABCs by a coupling between TLM and FDTD [9]. Hence, the computational
domain is modeled with AS-TLM and the PML layer is performed using BoR-FDTD. Coupling is achieved by 
performingWttpo:ons as described in [9] funhe 30 case. The first "'°!' of tllls approach is r 

�

in Figure 4.
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Figure 4. First coupling step (from AS-TIM to BoR-FDTD).

(a) Calculating E., (b) Calculating E,. at the interface.

The second step (from AS-TLM to BoR-FDTD) is straightforwardly performed as in [9]. It is important to notice
that only two interpolations are needed instead of four in the 3D case. This feature insures better coupling
performances. The algorithm is then tested in a circular waveguide where reflection on the interface is calculated.
Results are reported in Figure 5. The coupling is excellent since the reflection coefficient with a coarse mesh is lower
than -50 dB on the TE11 single-mode bandwidth. -%-t-����-'-��__,_����--'--'-"'-'--1-Rdledioo 

codlicient {dB) 
-6()-+-���������������-+-

ll.O 13.2 15.4 17.6 19.8 22.0 Frequency (GHz) 
Figure 5 • Reflection coefficient between AS-TLM and BoR-FDTD

in a cylindrical waveguide excited with TEu mode.

From a memory requirement point of view, anisotropic PML [IO] were selected and adapted to the BoR-FDTD
algorithm in an original manner. This PML formulation is governed in the frequency domain by equations of the 
following type: 
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with ( ()• ) 
si =a.i ll+. 1 J and (i ,.i,k) E {r,4>,z}

3roere0 
(7) 

where cri is the classical PJv.IL loss term (for propagating waves absorption) and a.; add to evanescent waves some 
damping. By manipulating (1) in the frequency domain, we obtain in the time domain:

a'ja.k [ oE· ( ) l (v 1di)i =� ereo Ot.1+ crk +crj -cri Bi +Fij (8) 

with: oFi e e0-+cr·F· = r· E·r Qt. l l l l and (9) 

From (8), it is remarkable that the only difference compared to classical Maxwell's equations is a source term and a 
loss one. Its implementation is straightforward: discretizing (9) leads to: 

( cr.At l ll _1_ 
with·. 1 -2808r 2 Yi AtI'.· -

l ' I': - ( 
(10) 

1- ( a.At 1 - cr·Atl l+-1- 2' 1+-1-J 2eo er \.. 2eo er 
Equation (10) is injected in (8), that allows one to compute the electric field. The source term is then updated with
(10). The only extra memory requirement is due to the F; storage. In the case of an uniaxiaI medium, only two of
them are required. In the general case 6 values are needed. Performances of this algorithm will be shown with
antennas applications. 

IV- Conclusion
A class of new TLM nodes was presented for the analysis of axially symmetric structures (AS-TLM). Performances in 
term of time step and memory make this method more competitive than the equivalent FDTD method (BoR-FDTD).
Since PML layers are not mature in TLM (mstabilities), anisotropic PML layers are used with a non-unified
algorithm. Excellent performance of the coupling between AS-TLM and BoR-FDTD was established. Further
applications will be shown especially a class of corrugated horn antennas. 
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