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Graph based methods are developed to efficiently extract data information. In particular, these methods are adopted for high-dimensional data classification by exploiting information residing on weighted graphs. In this paper, we propose a new hyperspectral texture classifier based on graph-based wavelet transform. This recent graph transform allows extracting textural features from a constructed weighted graph using sparse representative pixels of hyperspectral image. Different measurements of spectral similarity between representative pixels are tested to decorrelate close pixels and improve the classification precision. To achieve the hyperspectral texture classification, Support Vector Machine is applied on spectral graph wavelet coefficients. Experimental results obtained by applying the proposed approach on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) datasets provide good accuracy which could exceed 98.7%. Compared to other famous classification methods as conventional deep learning-based methods, the proposed method achieves better classification performance. Results have shown the effectiveness of the method in terms of robustness and accuracy.

Introduction

Hyperspectral images (HSI) provide very detailed information on spectral and spatial distributions of distinct materials. The rich spectrum information measured by hyperspectral sensors allows to distinguish different classes present in the image, which is very suitable for analyzing and recognising objects. However, high dimension of hyperspectral images is still problematic for classification because of the large number of contiguous spectral sub-bands and the small available labelled training. On the other hand, the high variations of hyperspectral texture to be classified require no stationary classification conditions. Many previous proposed methods have been used to overcome these problems. In Quian, Ye and Zhou (2013), a hyperspectral classification method based on 3D wavelet transform, spectral-spatial texture descriptor and structured sparse logistic regression is proposed for feature extraction and pixel classification. The knowledge about the structure of features, allowed by this method and wavelet-based methods presented in [START_REF] He | Spectral-spatial classification of hyperspectral images via spatial translation-invariant wavelet-based sparse representation[END_REF]; [START_REF] Tang | Hyperspectral image classification based on threedimensional scattering wavelet transform[END_REF], makes the features selection more efficient. A sparse representation of hyperspectral features introducing a kernel function in [START_REF] Chen | Hyperspectral image classification via kernel sparse representation[END_REF]; [START_REF] Persello | Kernel-based domain-invariant feature selection in hyperspectral images for transfer learning[END_REF] has also shown good performances in hyperspectral image classification. Support Vector Machine (SVM) [START_REF] Guo | Customizing kernel functions for SVM-based hyperspectral image classification[END_REF][START_REF] Bruzzone | Approaches based on support vector machine to classification of remote sensing data[END_REF][START_REF] Bovolo | A novel technique for subpixel image classification based on support vector machine[END_REF], is another efficient approach in terms of robustness to the high dimensionality of the feature space and improving accuracy. A semi-supervised classification algorithm is proposed in [START_REF] Yang | Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine[END_REF] in order to avoid the risk of over-fitting of the training samples by using an extension of SVM in the Laplacian Graph (LapSVM). To improve the classification accuracy of hyperspectral images, [START_REF] Tarabalka | Multiple spectralspatial classification approach for hyperspectral data[END_REF] introduced a method based on the fusion of supervised (SVM) and unsupervised (fuzzy c-means clustering) learning. In other works [START_REF] Liu | Sorted random projections for robust rotation-invariant texture classification[END_REF][START_REF] Zhou | Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image[END_REF] graph-based approaches have been suggested to solve classification problems. Deep learning methods also have particularly captured great interest in hyperspectral classification [START_REF] Chen | Deep learning-based classification of hyperspectral data[END_REF][START_REF] Ma | Hyperspectral image classification via contextual deep learning[END_REF][START_REF] Zou | Deep learning based feature selection for remote sensing scene classification[END_REF][START_REF] Zhang | Deep learning for remote sensing data: A technical tutorial on the state of the art[END_REF] and have demonstrated excellent performances in the matter. The deep convolutional neural network (CNN) has been efficiently employed in hyperspectral texture features extraction [START_REF] Hu | Deep convolutional neural networks for hyperspectral image classification[END_REF][START_REF] Mou | Deep recurrent neural networks for hyperspectral image classification[END_REF][START_REF] Li | Hyperspectral image reconstruction by deep convolutional neural network for classification[END_REF]. Several CNN-based methods have been employed to improve the HIS classification performances such as in Li et al (2017); [START_REF] Ran | A hyperspectral image classification framework with spatial pixel pair features[END_REF]; [START_REF] Zhang | Diverse Region-Based CNN for Hyperspectral Image Classification[END_REF]. The Spectral Graph Wavelets Transform (SGWT) is a prospective graph-based transform which has been developed [START_REF] Hammond | Wavelets on graphs via spectral graph theory[END_REF] and successfully used in many applications-based classification (Masouni and Hamza 2017;Pham, Mercier and Michel 2014a), image denoising [START_REF] Malek | Color graph based wavelet transform with perceptual information[END_REF] and Nonrigid image registration [START_REF] Pham | Spectral Graph Wavelet based Nonrigid Image Registration[END_REF]. This transform explores localized signals on the graph Fourier spectrum of an undirected graph. One of the reasons why the SGWT excels in feature extraction is the high flexibility of describing a large number of data. In this paper, we propose a very promising hyperspectral texture classifier based on SGWT and SVM learning. One of the main contributions of this work is to investigate adapted-SGWT for the hyperspectral data classification and evaluate the results of this method in terms of classification accuracy and robustness. The hyperspectral adapted -SGWT is based on a structure which represent spectral and spatial information contained in a hyperspectral image. Another contribution is to observe the effect of different similarity measures used in the SGWT process, on the representative pixels extraction and hence the effectiveness of features selection. The proposed method is evaluated on both the airborne visible/infrared imaging spectrometer (AVIRIS) data sensor and the reflective optics system imaging spectrometer (ROSIS) data sensor.

Methodology

Proposed scheme

The diagram given in Figure 1 describes the different stages of our hyperspectral classification procedure. The first step is to apply the SGWT on the hyperspectral image to generate the spectral graph wavelet coefficients. In this stage, we vary five distance measures for the distance graph computation i.e. Euclidian distance (ED), Kolmogorov distance (KD), Spectral angle (SA), Spectral information divergence (SID) and Normalized cross correlation (NCC) to show the effect of each one on the classification accuracy. The next step includes the SVM classification of SGWT extracted coefficients.

[Figure 1 about here.]

Characteristics of weighted graphs

We use the Spectral Graph Wavelet Transform to efficiently extract information from high-dimensional data localized on the vertices of weighted graphs. A weighted graph G consists of two sets: vertices set V representing the nodes, edges set E representing connection between nodes and a weight function w : E -→ R + which assigns a positive weight to each edge of connecting vertices (i, j) [START_REF] Hammond | Wavelets on graphs via spectral graph theory[END_REF][START_REF] Leonardi | Wavelet frames on graphs defined by fMRI functional connectivity[END_REF]Pham, Mercier and Michel 2014b;[START_REF] Kerola | Spectral graph skeletons for 3D action recognition[END_REF][START_REF] Shuman | Spectrum-adapted tight graph wavelet and vertex-frequency frames[END_REF]. The graph Laplacian matrix of a signal processing is positive, symmetric and semi-definite matrix, defined as:

L = D -A, ( 1 
)
where D is a matrix of size N × N . It is defined as a diagonal matrix with diagonal elements equal to the degrees, and zeros elsewhere. The degrees represent the sum of the weights of all the incident edges of each vertex. A is the symmetric adjacency matrix of G of size N × N . D and A are defined as:

A i,j = { wi,j if(i,j)∈E 0 otherwise (2) 
D ii = j A i,j (3) 
For every real function f : V -→ R given on the vertices of graph G is considered as a vector in R N . The value of the function f on each vertex of the graph defines each coordinate. It is notified as f ∈ R N , where f (i) is the value on the i th vertex. The equation (1) can be satisfied for any f ∈ R N , it is given by:

(Lf )(i) = i∼j w i,j × (f (i) -f (j)) (4) 
where the sum over i ∼ j indicates the summation of j vertices connected to the vertex i and w i,j denotes the edge weight connecting i and j The Laplacian matrix L has a complete set of eigenvectors which are denoted by X l for l = 0, . . . , N -1 with eigenvalues λ l .

L Xl = λ l X l .

(5)

The eigenvalues are non negative.

Spectral graph wavelet transform

A translation of smooth graph spectral filters is accomplished by multiplying each filter by a graph Laplacian eigenvector in the Fourier domain. The graph Fourier transform f for any function f ∈ R N , defined on the vertices of weighted graph G, is given by the formula:

f (l) = X l , f = N n=1 X * l (n)f (n) (6)
To generate the spectral graph wavelet transform, a kernel function g : R + -→ R + in spectral domain is introduced, such as: g(0) = 0 and |lim x→∞ g(x) = 0. The spectral representation of a wavelet operator T g = g(L) is obtained by modulating each Fourier mode, as Tg f (l) = g(λl)f (l) (7) At scale J, this operator is obtained by T J g = g(JL). The scaling function φ J,n (m) localized in vertex n at scale J to capture the residual low-pass h components is defined as:

φ J,n (m) = N -1 l=0 h(Jλ l )X * l (n)X l (m) (8) 
The SGWT of a function on vertices f ∈ R N at scale J and vertex n is thus defined as follows:

W f (J, n) = N -1 k=0 g(Jλ k ) f(k) X k (n) (9)
Hence a linear function W f is generated with N representative pixels presented in (J + 1) sets of scale coefficients. This correspond to a low-pass filter h and J bandpass kernels. To highlight that, the direct decomposition needs high time consumption. To address this issue, authors in [START_REF] Hammond | Wavelets on graphs via spectral graph theory[END_REF] proposed to use Chebyshev polynomial approximation. The generated coefficients performed by the multi-scale analysis allow a good knowledge of local features and graph similarity between vertices at different scales. Authors in [START_REF] Hammond | Wavelets on graphs via spectral graph theory[END_REF] also pointed out the difference between the classical orthogonal wavelet transforms and the SGWT. This is principally summarized in the selection of a mask of vertices at each scale of SGWT subsampling, unlike the classical wavelet transforms which decomposes the transform to coarser spatial levels. Note that in the current work, the whole original data is divided in sub-cubes, to avoid the problem of memory capacity caused by the high dimension data computation.

Similarity measures of connected components

To build HSI data weighted graphs, we measure similarity between each spectrum pixel and its T -neighbourhood spectrum pixels. Hence, representative pixels are selected based on similarity measure between these pixels. In this work, we use edge weights formula based on similarity computation between vertices given by Pham, Mercier and Michel (2014b), defined as follows:

w(i, j) = { e -γ[dist(δ(i),δ(j))] 2 if j∈Nk(i) 0 otherwise (10)
where dist(δ(i), δ(j)) is the distance between compared spectrum pixels (δ(i)), (δ(j)) of vertices i and j and γ is set to 1 (Pham, Mercier and Michel 2014a). Figure 2 shows a schematic of selection of representative pixels.

[Figure 2 about here.]

The calculation of spectral similarity between the connecting pixels allows the identification of various classes in the image. To show the effect of these distance measures on the classification results, we have chosen five similarity measures which are frequently used for classification purposes. Thus, we introduce the Euclidian distance (ED) (Keshava 2014;[START_REF] Robila | Using spectral distances for speedup in hyperspectral image processing[END_REF], Kolmogorov distance (KD) [START_REF] Franchi | Quantization of hyperspectral image manifold using probabilistic distances[END_REF], Spectral angle (SA) [START_REF] Robila | Using spectral distances for speedup in hyperspectral image processing[END_REF][START_REF] Achalakul | Real-time multi-spectral image fusion[END_REF][START_REF] Franchi | Quantization of hyperspectral image manifold using probabilistic distances[END_REF], Spectral information divergence (SID) (Quin et al. 2009;[START_REF] Franchi | Quantization of hyperspectral image manifold using probabilistic distances[END_REF] and Normalized cross correlation (NCC) [START_REF] Nakhmani | A new distance measure based on generalized image normalized cross-correlation for robust video tracking and image recognition[END_REF].

Euclidean Distance: The Euclidean distance measures the similarity between two observations in the same moment t. In the context of our work, the measure is used to estimate the distance between two spectra .i.e. the spectrum to classify and the Tneighbourhood pixels spectrum. The Euclidean distance (ED) of two n -dimensional vectors d 1 and d 2 is defined as:

d ED (d 1 , d 2 ) = n i=1 (d 1 -d 2 ) 2 . ( 11 
)
Kolmogorov Distance: The Kolmogorov-Smirnov distance is a common distance measure which calculates the maximal difference between the cumulative distributions of two spectra. The Kolmogorov-Smirnov distance of two n-dimensional vectors d 1 and d 2 is defined as:

d KD (d 1 , d 2 ) = max(|P d1,1 , P d2,1 |, ..., |P d1,2 , P d2,2 |). ( 12 
)
where P d1 and P d2 are the cumulative distributions of d 1 and d 2 .

Spectral Angle: The spectral angle is another distance measure which is used in hyperspectral data classification for assessing the similarity between two spectra. The spectral angle (SA) gives the angle formed between the spectrum to classify and the neighbourhood spectrum. The SA of two n-dimensional vectors d 1 and d 2 is defined as:

SA(d 1 , d 2 ) = arccos ( d 1 .d 2 d 1 2 d 2 2
). ( 13)

where < . > represents the dot product of the vectors and . represents the Euclidean norm.

Spectral Information Divergence: The spectral information divergence (SID) measures spectral similarity between two n-dimensional pixel vectors d 1 and d 2 . The larger the values of SID, the larger are the differences between the two spectra. It is defined as: 

SID(d 1 , d 2 ) = D(d 1 d 2 ) + D(d 2 d 1 ). ( 14 
) D is the information divergence, D(d 1 d 2 )
NCC = n i=1 d 1 d 2 n i=1 d 2 1 n i=1 d 2 2 . ( 15 
)
Algorithm 1 resumes steps of implementation of SGWT for hyperspectral data images.

Algorithm 1 SGWT

Input: In Figure 3, an example of SGWT multi-scale decomposition applied on a region of the 5 th band of Pavia University image with J = 3 and four closest neighbours T -neighbourhood= 4.

Hyperspectral data cube (N × M × S ) Output:SGWT coefficients (N × M × S × (l + 1)) Divide original data cube in (N 1 × M 1 × S )
[Figure 3 about here.]

The obtained SGWT coefficients will be classified using SVM classifier, which will be discussed in Subsection 2.5.

Classification

The SVM is an efficient supervised classifier which is based on small samples selected from the dataset. It was proposed by [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF] as a kind of statistical learning method. The SVM classification allows the optimal separation hyperplane by the training of appropriate samples and the test of input variables dataset. SVM is basically designed for binary classification but still has been extended to treat multiclass classification. On the other hand, if the training data are not linearly separable, a kernel function is employed to classify the samples. In our case, the SGWT extracted features are not linearly separable and so a kernel-based SVM is used for the classification. Furthermore, SVM decomposes extracted features of dataset on sub-regions to realize good classification by SVM kernel function. The classification is done by minimizing the following function:

1 2 (a T a + b 2 ) -C M I=1 ξ I (16)
subject to constraints:

y I (a T φ(S I ) + b) ≥ 1 -ξ I , ξ I ≥ 0, I = 1, .., M (17) 
where C is a positive regularization parameter, α is the coefficients vector, b is the bias and ξ I are called slack variables introduced to measure the non separability of data. The class label y ∈ ±1 and S I is the features space set for index I from 1 to M training cases. The radial basis function (RBF) φ is the SVM kernel function used for our approach. It is defined as follows:

φ = exp(-γ|X I -X J | 2 ) (18) 
.

Proposed algorithm

The For the construction of graph, we set 4-neighbourhood pixels and Chebyshev polynomial degree of 100. The SVM model is used with a radial Basis Function kernel, a regularization factor C = 1 and 10 cross validation. Note that these parameters are empirically set to arrive classification accuracy and computational time.

Datasets

To evaluate the effectiveness of the proposed method, four hyperspectral datasets available online (http:www.ehu.eus/ccwintco/index.php ? title =Hyperspectral Remote Sensing Scenes) are employed, i.e., Indian Pines, KSC, University and centre of Pavia data sets, as illustrated in Figures 4 (a), 5 (a), 6 (a) and 7 (a). For this evaluation, we adopt the classification metrics: overall accuracy (OA), average accuracy (AA), and kappa coefficient (κ) and we compare the performances of our method to other known classification methods in term of accuracy. [Table 3 4, we show the 9 classes of this dataset [START_REF] Mei | Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[END_REF]. In figures 7 (a) and (b), the Pavia Centre original image and the ground truth map respectively are shown.

[Table 4 about here.]

Discussion on distance measures

In order to verify the impact of the different distance measures presented in section 2.4 on the classification performances, we compare the overall accuracy (OA), average accuracy (AA) and κ given by each distance on the four datasets. Results presented in Table 5, show high classification performances with the tested distance measurements for all datasets. However, one can observe that SA, SID and NCC measures outcome over ED and KD measures. Indeed, the three evaluation parameters for ED and KD are less than the others distances. Especially for the Indian Pines data, these give about 10% less accuracy than the others. For SA, SID and NCC, the results are very appreciable and represent competitive performances for each according to the data distributions. The SID outperforms the other computed distances for all classification measures (OA, AA and κ) over two data distributions (Indian Pines and Pavia C). Therefore, we further our experiments, for the next section (3.4), using this distance.

To highlight that in Indian Pines and Pavia University datasets, the selection of 200 training samples did not achieve the best classification accuracies. The selection of about 20% training samples for each class of these datasets considerably improves the classification performances. The test classification results for all datasets with all distance measurements, are shown in Table 5. Note that the best obtained results are shown in this table using bold formatting.

[Table 5 about here.]

Discussion on neighbouring components

To evaluate the influence of the number of T -neighbourhood taken pixels on the classification results, we select different T -neighbourhood pixels tested over the fourth HSI datasets using SID distance measure. Thus we have tested the influence of four selected T -neighbourhood pixels ( T= 1, 2, 4, 8 ). We also measure the computational time taken by each selection. Note that experiments were carried out using GPU computation provided by The Matlab Image Processing Toolbox to achieve the SGWT computation process of each divided original data cube. All experiments are executed with Intel Xeon-E5620 with 2.40 GHz and 32-GB RAM. From the results shown in Table 6, in all tested datasets, the classification performances increase with the number of taken neighbourhood pixels. Indeed, one can observe an improvement of at least 0.14 % of OA with increasing T for all datasets. Except for Pavia University dataset, for which one can highlight that the larger number of selected T -neighbourhood pixels does not yield to the better performance i.e., the 8-neighbourhood pixels gives less classification results than those given by 4-neighbourhood selected pixels. Similarly, the computational complexity of the proposed classifier increases when the Tneighbourhood pixels increase. As shown in Table 6, the 8-neighbourhood require a larger amount of computational time. One can conclude that the computational time is dominated by the number of selected T -neighbourhood pixels. Therefore, in our experiments 4-neighbourhood pixels are used as input of our SGWT-SVM proposed classifier to minimize consumption-time with preserving classification performance.

[Table 6 about here.]

Classification performance

To evaluate the effectiveness of the proposed SGWT-SVM, we use for each distribution the outperforming distance measure i.e. SID for Indian Pines and Pavia centre datasets, NCC for KSC dataset and SA for Pavia University dataset. We compare results with those given by several other methods such as SVM, ELM, SPPF Framework [START_REF] Ran | A hyperspectral image classification framework with spatial pixel pair features[END_REF], 3D-WT-SVM-rbf, 3D-WT-Mixed-lasso (Quian, Ye and Zhou 2013), CNN (Li et al 2017), CNN-PPF (Li et al 2017;[START_REF] Mei | Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[END_REF], C-CNN [START_REF] Mei | Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[END_REF] and R-PCA CNN [START_REF] Mei | Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[END_REF][START_REF] Makantasis | Deep supervised learning for hyperspectral data classification through convolutional neural networks[END_REF] applied on the Indian Pines and Pavia U datasets. For the KSC HSI data, we compare our results with those presented in Quian, Ye and Zhou (2013); [START_REF] Zhong | Spectral-Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework[END_REF]. For Pavia Centre, results are compared with [START_REF] Hu | Deep convolutional neural networks for hyperspectral image classification[END_REF]; Li et al (2017); [START_REF] Mei | Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[END_REF]; Makantasis et al. (2015). The tuning parameters of the outperforming methods compared to the proposed SGWT-SVM classifier are listed in Table 7.

[Table 7 about here.]

Comparison results are shown in Tables 8,9, 10 and 11 for the Indian Pines, KSC and Pavia U and Centre datasets respectively. One can observe that the proposed SGWT-SVM classifier overcomes the other presented classifiers in term of classification accuracies. For example, in Indian Pines, SGWT-SVM achieves an OA of 98.90%, which is almost 1% and 2% over 3DWT-SVM and C-CNN classifiers (97. 99 % and 96.76%) respectively. As in Indian Pines, in the Pavia University and KSC datasets, the proposed classifier performed better than all other classifiers and achieves higher classification accuracies. Similar to these datasets, Pavia Centre data achieves higher accuracies than the four other compared methods (SVM-RBF, CNN, R-PCA-CNN and CNN-PPF) and presents competitive performances with C-CNN method.

[Table 8 about here.]

[Figure 4 about here.]

[Table 9 about here.]

[Figure 5 about here.]

[Table 10 about here.]

[Figure 6 about here.]

[Table 11 about Results consistently support those given in Tables 8,9, 10 and 11, where the ground cover maps of entire image scenes are greatly generated. The method achieves well-separated regions including those with unlabeled pixels.

To test the robustness of the proposed approach, we vary the number of training samples per class from 50 to 200 with an interval of 50. Results illustrated in Figure 8, show that the classification accuracies increase with the number of training data. Note that even with a small number of training samples (50, 100), the approach yields to high accuracy with all HSI used data. This demonstrates clearly the robustness of the SGWT-SVM classifier.

[Figure 8 

about here.]

To further demonstrate the effectiveness and generalizability of the proposed method, we have illustrated in Figure 9, the overall accuracies of different classifiers with different numbers of training samples. A selection of 1 to 10 of training samples per class is effectuated for Indian Pines, Pavia Centre and Pavia University datasets. The obtained results are compared to those give in [START_REF] Mei | Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[END_REF] (Figures 9(a), 9(b), 9(c)). For KSC dataset, and similar to [START_REF] Zhong | Spectral-Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework[END_REF], 1 % to 20 % of training samples are selected (Figure 9(d)). For all datasets, results show that the SVM-SGWT outperforms the other compared methods in term of classification performance, even with small number of training samples. Indeed, an improvement of at least 0.3 % is observed with all datasets.

[Figure 9 about here.] It is demonstrated that deep learning-based classification methods are vigorously effective for HSI image classification. However, results given by the proposed approach, which consider the data structure with an appropriate selection of connected components overcome clearly several famous CNN-based HSI image classification methods. Note that only five similarity measurements are tested in this work. The use of other test similarity may improve the classification results. Considering the obtained classification performance and based on the fact that the proposed classifier can extract more discriminant features, one can conclude that the SGWT-SVM classifier can excel in HSI image classification fields.

Conclusion

In this paper, a Spectral Graph Wavelet Transform based 3D classifier is developed for hyperspectral classification. The proposed classifier is based on the classification of the SGWT obtained coefficients with SVM model. In our procedure, we also evaluated different measures of spectral similarity for better selection of representative pixels, and so identify classes in the image. Also, according to similarity measure's results, the choice of the distance measure between connected pixels can affect the classification performance. It is observed that SA, SID and NCC similarity measures outcome over ED and KD measures and lead to appreciable classification results. Results of the proposed approach with SID distance applied on four selected hyperspectral image datasets of AVIRIS and ROSIS sensors demonstrate the effectiveness and the robustness of this one. Thus, classification accuracies obtained with our method even with a modest number of training simples, show competitive performances with those of the best recent techniques presented in state-of-the-art of hyperspectral image classification. Future works on denoising, unmixing and compression problems can be proposed. Another interesting perspective is to use a new classifier other than the SVM such as Random multi-graphs (RMG) classifiers [START_REF] Zhang | Random multi-graphs: a semi-supervised learning framework for classification of high dimensional data[END_REF][START_REF] Gao | Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs[END_REF]. This may improve classification performances. CNN PPF Frame-Mixed- [3] SVM-rbf -SVM [3, 4] [2, 3] 

  ) and (b) show the Pavia U original image and the ground truth map respectively.

  Figures 4(c), 5(c), 6(c) and 7(c) show the classification results of the proposed SGWT-SVM over Indian Pines, KSC, Pavia University and Pavia Centre datasets. Results consistently support those given in Tables8, 9, 10 and 11, where the ground cover maps of entire image scenes are greatly generated. The method achieves well-separated regions including those with unlabeled pixels.To test the robustness of the proposed approach, we vary the number of training samples per class from 50 to 200 with an interval of 50. Results illustrated in Figure8, show that the classification accuracies increase with the number of training data. Note that even with a small number of training samples (50, 100), the approach yields to high accuracy with all HSI used data. This demonstrates clearly the robustness of the SGWT-SVM classifier.
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  and D(d 2 d 1 ) represent the relatives entropy of d 1 respect to d 2 and of d 2 respect to d 1 respectively.

Normalized Cross Correlation: Normalized cross correlation (NCC) measures the degree of similarity between two compared images. The NCC is not invariant to linear changes in the amplitude of illumination and contrast variations. The NCC values obtained lead to values in interval [0, 1], where 1 indicates best similarity. The NCC of two n-dimensional vectors d 1 and d 2 is defined as:

  SGWT-SVM classification performances are computed for the SVM classifier applied on SGWT coefficients. SVM model is constructed by selecting representative pixels of ground truth considered classes, which provides testing and training data groups. All steps of our proposed SGWT-SVM classifier are given in Algorithm 2.For our experiments, we use 200 training samples per class and we eliminate the classes which contain small training samples(Li et al 2017;[START_REF] Ran | A hyperspectral image classification framework with spatial pixel pair features[END_REF]. For the proposed SGWT-SVM approach, all programs are implemented using Matlab and GNU Octave languages. SGWT toolbox (http://wiki.epfl.ch/sgwt) and LibSVM (http:https://www.csie.ntu.edu.tw/ cjlin/libsvm/) are used for numerical computation. The SGWT was implemented with a number of 3 scales and a Gaussian filter.

	Algorithm 2 Proposed SGWT-SVM classifier
	Input: Hyperspectral data cube (N × M × S )
	Output: Classified image (N × M )
	Compute SGWT data cube (N × M × S )(l + 1)
	Load ground truth data G t (N × M )
	Scale data image, where scaled data ∈ [-1, 1]
	Create training and testing data groups
	Construct SVM model for SGWT coefficients
	Compute classification performance parameters
	3. Datasets and experements
	3.1. The proposed classifier's parameters

  Indian Pines dataset: This dataset was acquired in Northwestern Indiana in 1992 by the National Aeronautics and Space Administration (NASA) with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. It generates 220 spectral bands from 0.38 to 2.5 µm, which in 20 noisy bands are removed for experiments. The spatial image size is 145 × 145 with a resolution of 20 m per pixel. This hyperspectral dataset includes 16 ground-truths and 10366 labelled pixels, we randomly use 9 classes, as shown in Table1(Quian, Ye and Zhou 2013;[START_REF] Ham | Investigation of the random forest framework for classification of hyperspectral data[END_REF]. Figures4 (a) and (b) show the Indiana original image and the ground truth map respectively.[Table1about here.] KSC dataset: Kennedy Space Centre data base was acquired in Florida in 1996 by NASA with AVIRIS sensor. After removing noisiest spectral bands, 176 bands are used for experiments with spatial size image of 512 × 614. It contains 13 land-cover classes with 5211 labelled pixels (Quian, Ye and Zhou 2013; Tarabalka, Benediktsson and Chanussot 2009). As in Indian Pines data, we use only the classes with the largest number of samples; they are given in Table 2. Figures 5 (a) and (b) show the KSC original image and the ground truth map respectively.[Table 2 about here.] 

	Pavia University dataset: This third dataset used in our experiment, Pavia U, was
	acquired over Pavia University by the Reflective Optics System Imaging Spectrometer
	(ROSIS) sensor in 2001. It generates 115 spectral bands from 0.43 to 0.8 µm, which in
	12 noisy bands are removed for experiments. The size of each band is 641 × 340 with
	a resolution of 1.3 m per pixel. This base contains 9 classes shown in Table 3 (Quian,
	Ye and Zhou 2013; Tarabalka, Benediktsson and Chanussot 2009). Figures 6 (a

  about here.] Pavia Centre dataset: Similar to Pavia U data, Pavia centre data is acquired by ROSIS sensor covering the centre city of Pavia in Italy. It also contains 115 spectral bands from 0.43 to 0.86 µm, with 13 bands removed. Only a size of 1096 × 715 of Pavia Centre scene is generally used for test experiments. The rest of information is discarded. In Table

Table 2 .

 2 : Ground truth classes of KSC scene and their respective sample number

		Class	Samples Training Test
	1	Scrub	761	200	561
	2 Graminoid marsh	431	200	231
	3	Spartina marsh	520	200	320
	4	Cattail marsh	404	200	203
	5	Salt marsh	419	200	218
	6	Mud flats	503	200	302
	7	Water	927	200	726

Table 7 .

 7 : Parameters of the compared methods.

	Method		Parameters	
	DWT-based	Wavelet	Model parameters	Sparsity	Training
	method	filter	selection	parameter (λ = 0.5 x )	data
	3DDWT		With	x = 7 (IN)	25 (%) (IN)
	SVM-rbf	Haar	cross	x = 5 (KSC)	25 (%) (KSC)
	(Quian et al		validation	x = 4 (PU)	100(%)(PU)
	2013)				
	CNN-based	Learning	Dimensionality	Window	Training
	methods	rate	of features	size	data
	PPF-	0.001 (IN)			
	CNN		10	5 × 5	200
	(Li et al 2017)	0.01 (PU)			
	SPPF-				
	Framework	-	10	3 × 3	200
	(Ran et al 2017)				
	C-				
	CNN	0.01	100	5 × 5	200
	(Mei et al 2017)				
		0.0003 (IN)	24 (IN)		20% (IN)
	SSRN	0.0003 (PU)	24 (PU)	7 × 7	10% (PU)
	(Zhong et al. 2018) 0.0001(KSC)	16 (KSC)		70% (KSC)

Table 8 .

 8 : Classification performances of Indian Pines using different techniques.

		SVM ELM CNN R-PCA-CNN-	SPPF	3DDWT C-CNN 3DDWT SGWT
		[1]	[1]	[2]	CNN	PPF	Frame-	Mixed-	[3]	SVM-rbf	-SVM
					[3, 4]	[2, 3] work[1] Lasso[5]		[5]
	1	78.26 79.40 78.58	82.39	92.99	94.22	-	96.28	-	96.26
	2	81.27 85.08 85.23	85.41	96.66	97.94	-	92.26	-	100.0
	3	98.59 96.47 95.75	95.24	98.58	100.0	-	99.3	-	98.61
	4	98.68 99.06 99.81	99.25	100.0	99.43	-	99.25	-	100.0
	5	100.0 100.0 99.64	100.0	100.0	100	-	100.0	-	100.0
	6	76.94 86.66 89.63	82.76	96.24	95.85	-	92.84	-	97.24
	7	65.10 69.84 81.55	96.2	87.80	92.20	-	98.21	-	99.18
	8	84.99 89.31 95.42	82.14	98.98	98.47	-	92.45	-	98.86
	9	98.78 98.40 98.59	99.81	99.81	99.81	-	98.98	-	100.0
	AA 86.96 89.36 90.60	91.47	96.78	97.55	95.90	96.62	97.35	98.77
	AO 80.72 83.80 86.44	91.09	94.34	95.92	96.78	96.76	97.99	98.90
	[1]: Ran et al (2017), [2]: Li et al (2017), [3]: Mei et al (2017), [4]: Makantasis et al. (2015), [5]: Quian, Ye
	and Zhou (2013)								

Table 9 .

 9 : Classification performances of KSC using different techniques. SVM SAE 3DDWT CNNL CNN 3DDWT SPC SPA SSRN SGWT

		[6]	[6]	SVM-rbf	[6]	[6]	Mixed	[6]	[6]	[6]	-SVM
				[5]			Lasso [5]			
	1	86.16 92.04	-	95.20	98.48	-	99.19 99.18 99.88	100.0
	2	42.55 85.59	-	87.53	92.16	-	92.60 95.39 99.00	100.0
	3	67.69 72.12	-	73.35	81.84	-	85.49 93.45 98.26	100.0
	4	65.12 94.10	-	97.28	98.21	-	98.09 98.67 99.54	100.0
	5	67.82 94.57	-	98.05	99.04	-	99.53 99.43 99.70	100.0
	6	93.40 98.91	-	99.40	99.85	-	99.96 99.96 99.96	99.02
	7	100	98.39	-	98.72	98.89	-	99.86 99.63 99.80	99.59
	AA 65.64 89.76	93.23	92.57	95.09	96.74	96.56 97.81 99.33	99.80
	AO 80.29 92.99	94.05	95.45	97.08	97.65	97.90 98.63 99.61	99.73
	[5]: Quian, Ye and Zhou (2013), [6]: Zhong et al. (2018)					

Table 10 .

 10 : Classification performances of Pavia University using different techniques.

	SVM ELM CNN R-PCA-CNN-	SPPF	3DDWT C-CNN 3DDWT-SGWT
	[1]	[1]	[2]
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