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The Geometry of Bayesian Programming

Ugo Dal Lago∗ Naohiko Hoshino†

January 7, 2020

Abstract

We give a geometry of interaction model for a typed λ-calculus endowed with operators for
sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic
calculus for higher-order Bayesian programming. The model is based on the category of
measurable spaces and partial measurable functions, and is proved adequate with respect to
both a distribution-based and a sampling-based operational semantics.

1 Introduction

Randomisation provides the most efficient algorithmic solutions, at least concretely, in many dif-
ferent contexts. A typical example is the one of primality testing, where the Miller-Rabin test [1, 2]
remains the preferred choice despite polynomial time deterministic algorithms are available from
many years now [3]. Probability theory can be exploited even more fundamentally in programming,
by way of so-called probabilistic (or, more specifically, Bayesian) programming, as popularized by
languages like, among others, ANGLICAN [4] or CHURCH [5]. This has stimulated research
about probabilistic programming languages and their semantics [6, 7, 8], together with type sys-
tems [9, 10], equivalence methodologies [11, 12], and verification techniques [13].

Giving a satisfactory denotational semantics to higher-order functional languages is already
problematic in presence of probabilistic choice [6, 14], and becomes even more challenging when
continuous distributions and scoring are present. Recently, quasi-Borel spaces [15] have been pro-
posed as a way to give semantics to calculi with all these features, and only very recently [16] this
framework has been shown to be adaptable to a fully-fledged calculus for probabilistic program-
ming, in which continuous distributions and soft-conditioning are present. Probabilistic coherent
spaces [17] are fully abstract [8] for λ-calculi with discrete probabilistic choice, and can, with some
effort, be adapted to calculi with sampling from continuous distributions [18], although without
scoring.

A research path which has been studied only marginally, so far, consists in giving semantics to
Bayesian higher-order programming languages through interactive forms of semantics, e.g. game
semantics [19, 20] or the geometry of interaction [21]. One of the very first models for higher-
order calculi with discrete probabilistic choice was in fact a game model, proved fully abstract for
a probabilistic calculus with global ground references [7]. After more than ten years, a parallel
form of Geometry of Interaction (GoI) and some game models have been introduced for λ-calculi
with probabilistic choice [22, 23, 24], but in all these cases only discrete probabilistic choice can be
handled, with the exception of a recent work on concurrent games and continuous distributions [25].

In this paper, we will report on some results about GoI models of higher-order Bayesian
languages. The distinguishing features of the introduced GoI model can be summarised as fol-
lows:
• Simplicity. The category on which the model is defined is the one of measurable spaces and

partial measurable functions, so it is completely standard from a measure-theoretic perspective.
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• Expressivity. As is well-known, the GoI construction [26, 27] allows to give semantics to
calculi featuring higher-order functions and recursion. Indeed, our GoI model can be proved
adequate for PCFSS, a fully-fledged calculus for probabilistic programming.

• Flexibility. The model we present is quite flexible, in the sense of being able to reflect
the operational behaviour of programs as captured by both the distribution-based and the
sampling-based semantics.

• Intuitiveness. GoI visualises the structure of programs in terms of graphs, from which depen-
dencies between subprograms can be analyzed. Adequacy of our model provides diagrammatic
reasoning principle about observational equivalence of PCFSS.

This paper’s contributions, beside the model’s definition, are two adequacy results which precisely
relate our GoI model to the operational semantics, as expressed (following [28]), in both the distri-
bution and sampling styles. As a corollary of our adequacy results, we show that integrating over
the sampling-based operational semantics, one obtains precisely the distribution-based operational
semantics.

1.1 Turning Measurable Spaces into a GoI Model

Before entering into the details of our model, it is worthwhile to give some hints about how the
proposed model is obtained, and why it differs from similar GoI models from the literature.

The thread of work the proposed model stems from is the one of so-called memoryful geometry
of interaction [29, 30]. The underlying idea of this paper is precisely the same: program execution
is modelled as an interaction between the program and its environment, and memoisation takes
place inside the program as a result of the interaction.

In the previous work on memoryful GoI by the second author with Hasuo and Muroya, the goal
consisted in modelling a λ-calculus with algebraic effects. Starting from a monad together with
some algebraic effects, they gave an adequate GoI model for such a calculus, which is applicable to
a wide range of algebraic effects. In principle, then, their recipe could be applicable to PCFSS,
since sampling-based operational semantics enables us to see scoring and sampling as algebraic
effects acting on global states. However, that would not work for PCFSS, since the category
Meas of measurable spaces1 is not cartesian closed, and we thus cannot define a state monad by
way of the exponential S ⇒ S × (−).

In this paper, we side step this issue by a series of translations, to be described in Section 4
below. Instead of looking for a state monad on Meas, we embed Meas into the category Mealy
of Int-objects and Mealy machines (Section 5) and use a state monad on this category. This is
doable because Mealy is a compact closed category given by the Int-construction [27]. The use
of such compact closed categories (or, more generally, of traced monoidal categories) is the way
GoI models higher-order functions.

1.2 Outline

The rest of the paper is organised as follows. After giving some necessary measure-theoretic
preliminaries in Section 2 below, we introduce in Section 3 the language PCFSS, together with
the two kinds of operational semantics we were referring to above. In Section 4, we introduce our
GoI model informally, while in Section 5 a more rigorous treatment of the involved concepts is
given, together with the adequacy results. We discuss in Section 10 an alternative way of giving
a GoI semantics to PCFSS based on s-finite kernels, and we conclude in Section 12.

2 Measure-Theoretic Preliminaries

We recall some basic notions in measure theory that will be needed in the following. We also fix
some useful notations. For more about measure theory, see standard textbooks such as [31].

1We need to work on Meas because we want to give adequacy for distribution-based semantics.
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A σ-algebra on a set X is a family Σ consisting of subsets of X such that ∅ ∈ Σ; and if A ∈ Σ,
then the complement X \A is in Σ; and for any family {An ∈ Σ}n∈N, the intersection

⋂
n∈NAn is

in Σ. A measurable space X is a set |X| equipped with a σ-algebra ΣX on |X|. We often confuse
a measurable space X with its underlying set |X|. For example, we simply write x ∈ X instead of
x ∈ |X|. For measurable spaces X and Y , we say that a partial function f : X → Y (in this paper,
we use → for both partial functions and total functions) is measurable when for all A ∈ ΣY , the
inverse image

{x ∈ X : f(x) is defined and is equal to an element of A}

is in ΣX . A measurable function from X to Y is a totally defined partial measurable function.
A (partial) measurable function f : X → Y is invertible when there is a measurable function
g : Y → X such that g ◦ f and f ◦ g are identities. In this case, we say that f is an isomorphism
from X to Y and say that X is isomorphic to Y .

We denote a singleton set {∗} by 1, and we regard the latter as a measurable space by endowing
it with the trivial σ-algebra. We also regard the empty set ∅ as a measurable space in the obvious
way. In this paper, N denotes the measurable set of all non-negative integers equipped with the
σ-algebra consisting of all subsets of N, and R denotes the measurable set of all real numbers
equipped with the σ-algebra consisting of Borel sets, that is, the least σ-algebra that contains
all open subsets of R. By the definition of ΣR, a function f : R → R is measurable whenever
f−1(U) ∈ ΣR for all open subsets U ⊆ R. Therefore, all continuous functions on R are measurable.

When Y is a subset of the underlying set of a measurable space X, we can equip Y with a
σ-algebra ΣY = {A ∩ Y : A ∈ ΣX}. This way, we regard the unit interval and the set of all
non-negative real numbers as measurable spaces, and indicate them as follows:

R[0,1] = {a ∈ R : 0 ≤ a ≤ 1}, R≥0 = {a ∈ R : a ≥ 0}

For measurable spaces X and Y , we define the product measurable space X×Y and the coproduct
measurable space X + Y by

|X × Y | = |X| × |Y |,
|X + Y | = {(•, x) : x ∈ X} ∪ {(◦, y) : y ∈ Y }

where the underlying σ-algebras are:

ΣX×Y = the least σ-algebra such that A×B ∈ ΣX×Y

for all A ∈ ΣX and B ∈ ΣY ,

ΣX+Y = {{•} ×A ∪ {◦} ×B : A ∈ ΣX and B ∈ ΣY }.

We assume that × has higher precedence than +, i.e., we write X + Y × Z for X + (Y × Z). In
this paper, we always regard finite products Rn as the product measurable space on R. It is well-
known that the σ-algebra ΣRn is the set of all Borel sets, i.e., ΣRn is the least one that contains
all open subsets of Rn. Partial measurable functions are closed under compositions, products and
coproducts.

Let X be a measurable space. A measure µ on X is a function from ΣX to [0,∞] that is the
set of all non-negative real numbers extended with ∞, such that
• µ(∅) = 0; and
• for any mutually disjoint family {An ∈ ΣX}n∈N, we have

∑
n∈N µ(An) = µ

(⋃
n∈NAn

)
.

We say that a measure µ on X is finite when µ(X) < ∞ and that it is σ-finite if X =
⋃
n∈NXn

for some family {Xn ∈ ΣX}n∈N satisfying µ(Xn) <∞.
For a measurable space X, we write ∅X for a measure on X given by ∅X(A) = 0 for all

A ∈ ΣX . If µ is a measure on a measurable space X, then for any non-negative real number a,
the function (aµ)(A) = a(µ(A)) is also a measure on X. The Borel measure µBorel on Rn is the
unique measure that satisfies

µBorel([a1, b1]× · · · × [an, bn]) =
∏

1≤i≤n

|ai − bi|.
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We define the Borel measure µBorel on 1 by µBorel(1) = 1. For a measurable function f : Rn → R
and a measurable subset X ⊆ Rn, we denote the integral of f with respect to the Borel measure
restricted to X by ∫

X

f(u) du.

For a measurable space X and for an element x ∈ X, a Dirac measure δx on X is given by

δx(A) = [x ∈ A] =

{
1, if x ∈ A;

0, if x /∈ A.

The square bracket notation in the right hand side is called Iverson’s bracket. In general, for a
proposition P , we have [P ] = 1 when P is true and [P ] = 0 when P is false.

Proposition 2.1. For every σ-finite measures µ on a measurable space X and ν on a measurable
space Y , there is a unique measure µ× ν on X × Y such that (µ× ν)(A×B) = µ(A)ν(B) for all
A ∈ ΣX and B ∈ ΣY .

The measure µ× ν is called the product measure of µ and ν. For example, the Borel measure
on R2 is the product measure of the Borel measure on R.

Finally, let us recall the notion of a kernel, which is a well-known concept in the theory
of stochastic processes. For measurable spaces X and Y , a kernel from X to Y is a function
k : X × ΣY → [0,∞] such that for any x ∈ X, the function k(x,−) is a measure on Y , and for
any A ∈ ΣY , the function k(−, A) is measurable. Notions of finite and σ-finite kernels can be
naturally given, following the eponymous constraints on measures. Those kernels which can be
expressed as the sum of countably many finite kernels are said to be s-finite [32]. We use kernels
to give semantics for our probabilistic programming language, to be defined in the next section.

3 Syntax and Operational Semantics

3.1 Syntax and Type System

Our language PCFSS for higher order Bayesian programming can be seen as Plotkin’s PCF
endowed with real numbers, measurable functions, sampling from the uniform distribution on
R[0,1] and soft-conditioning. We first define types A, B, . . ., values V, W, . . . and terms M, N, . . . as
follows:

A, B ::= Unit | Real | A→ B,

V, W ::= skip | x | λxA. M | ra | fixA,B(f, x, M),

M, N ::= V | V W | let x be M in N | ifz(V, M, N)

| F(V1, . . . , V|F|) | sample | score(V).

Here, x varies over a countably infinite set of variable symbols, and a varies over the set R of all
real numbers. Each function identifier F is associated with a measurable function funF from R|F|
to R. For terms M and N, we write M{N/x} for the capture-avoiding substitution of x in M by N.

Terms in PCFSS are restricted to be A-normal forms, in order to make some of the argu-
ments about our semantics simpler. This restriction is harmless to the language expressive power,
thanks to the presence of let-bindings. For example, term application M N can be defined to be
let x be M in let y be N in x y.

The term constructor score and the constant sample enable probabilistic programming in
PCFSS. Evaluation of score(ra) has the effect of multiplying the weight of the current proba-
bilistic branch by |a|, this way enabling a form of soft-conditioning. The constant sample generates
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x : A ∈ ∆

∆ ` x : A
a ∈ R

∆ ` ra : Real

∆ ` Vi : Real for all i ≤ |F|
∆ ` F(V1, . . . , V|F|) : Real

∆ ` V : A→ B ∆ ` W : A
∆ ` V W : B

∆ ` M : B ∆, x : B ` N : A

∆ ` let x be M in N : A

∆, x : A ` M : B

∆ ` λxA. M : A→ B

∆, f : A→ B, x : A ` M : B

∆ ` fixA,B(f, x, M) : A→ B

∆ ` skip : Unit
∆ ` V : Real ∆ ` M : A ∆ ` N : A

∆ ` ifz(V, M, N) : A

∆ ` sample : Real
∆ ` V : Real

∆ ` score(V) : Unit

Figure 1: Typing Rules

a real number randomly drawn from the uniform distribution on R[0,1]. Only one sampling mecha-
nism is sufficient because we can model sampling from other standard distributions by composing
sample with measurable functions [33].

Terms can be typed in a natural way. A context ∆ is a finite sequence consisting of pairs of
a variable and a type such that every variable appears in ∆ at most once. A type judgement is a
triple ∆ ` M : A consisting of a context ∆, a term M and a type A. We say that a type judgement
∆ ` M : A is derivable when we can derive ∆ ` M : A from the typing rules in Figure 1. Here, the
type of sample is Real, and the type of score(V) is Unit because sample returns a real number,
and the purpose of scoring is its side effect.

In the sequel, we only consider derivable type judgements and typable closed terms, that is,
closed terms M such that ` M : A is derivable for some type A.

3.2 Distribution-Based Operational Semantics

We define distribution-based operational semantics following [28] where, however, a σ-algebra on
the set of terms is necessary so as to define evaluation results of terms to be distributions (i.e.
measures) over values. In this paper, we only consider evaluation of terms of type Real and avoid
introducing σ-algebras on sets of closed terms, thus greatly simplifying the overall development.

Distribution-based operational semantics is a function that sends a closed term M : Real to
a measure µ on R. Because of the presence of score, the measure may not be a probabilistic
measure, i.e., µ(R) may be larger than 1, but the idea of distribution-based operational semantics
is precisely that of associating each closed term of type Real with a measure over R.

As common in call-by-value programming languages, evaluation is defined by way of evaluation
contexts:

E[−] ::= [−] | let x be E[−] in M.

The distribution-based operational semantics of PCFSS is a family of binary relations {⇒n}n∈N
between closed terms of type Real and measures on R inductively defined by the evaluation rules
in Figure 2 where the evaluation rule for score is inspired from the one in [32]. The binary relation
red−→ in the precondition of the third rule in Figure 2 is called deterministic reduction and is defined
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as follows as a relation on closed terms:

(λxA. M) V
red−→ M{V/x},

let x be V in M
red−→ M{V/x},

fixA,B(f, x, M) V
red−→ M{fixA,B(f, x, M)/f, V/x},

ifz(ra, M, N)
red−→

{
M, if a = 0,

N, if a 6= 0,

F(ra, . . . rb)
red−→ rfunF(a,...,b).

The last evaluation rule in Figure 2 makes sense because k in the precondition is a kernel from
R[0,1] to R:

Lemma 3.1. For any n ∈ N and for any term

x1 : Real, . . . , xm : Real ` M : Real,

there is a finite kernel k from Rm to R such that for any u ∈ Rm and for any measure µ on R,

M{ra1/x1, . . . , ram/xm} ⇒n µ ⇐⇒ µ = k(u,−)

where u = (a1, . . . , am).

Proof. Let ∆ be a context of the form x1 : Real, . . . , xm : Real. In this proof, for a finite sequence
u = (a1, . . . , an) ∈ Rm, and for a term ∆ ` M : A, we denote

M{ra1/x1, . . . , ram/xm}

by M{ru/∆}. We prove the statement by induction on n ∈ N. (Base case) Let k be the zero kernel
from Rm to R:

k(u,A) = 0.

Then for any u = (a1, . . . , am) ∈ Rm,

M{ra1/x1, . . . , ram/xm} ⇒0 µ ⇐⇒ µ = ∅R ⇐⇒ µ = k(u,−).

(Induction step) We define a redex R by

R ::=score(V) | sample | (λxA. M) V | fixA,B(f, x, M) V

| F(V, . . . W) | let x be V in M | ifz(ra, M, N).

We note that V, W in the above BNF can be variables. By induction on the size of type derivation,
we can show that every term ∆ ` M : A is either a value or of the form E[R] for some evaluation
context E[−] and some redex R. Given a term ∆ ` M : A where ∆ = x1 : Real, . . . , xm : Real, we
prove the induction step by case analysis.
• If ∆ ` M : Real is a value, then M is either a variable xi or a constant ra. When M is a variable
xi, we have

xi{ra1/x1, . . . , ram/xm} ≡ rai ⇒n+1 µ ⇐⇒ µ = δai .

When M is a constant ra, we have

ra{ra1/x1, . . . , ram/xm} ≡ ra ⇒n+1 µ ⇐⇒ µ = δa.

Both k, h : Rm × ΣR → [0,∞] given by

k((a1, . . . , am), A) = δai(A), h((a1, . . . , am), A) = δa(A)

are finite kernels from Rm to R.
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• If ∆ ` M : Real is of the form E[sample], then by induction hypothesis, there is a finite kernel
from Rm+1 to R such that for any u ∈ Rm+1,

E[y]{ru/(∆, y : Real)} ⇒n µ ⇐⇒ µ = k(u,−).

We define a kernel h from Rm to R by

h((a1, . . . , am), A) =

∫
R[0,1]

k((a1, . . . , am, a), A) da.

This is a finite kernel because for any non-negative measurable function f : R × · · · × R → R
bounded by d > 0,

(b, . . . , c) 7→
∫
R[0,1]

f(a, b, . . . , c) da

is measurable and bounded by d. See [31, Theorem 18.3]. Then, for any u = (a1, . . . , am) ∈ Rm,

E[sample]{ru/∆} ⇒n+1 µ ⇐⇒ µ =

∫
R[0,1]

k((a1, . . . , am, a),−) da

⇐⇒ µ = h(u,−).

• If ∆ ` M : B is of the form E[score(xi)] for some i ∈ {1, 2, . . . ,m}, then by induction hypothesis,
there is a finite kernel k from Rm to R such that for any u ∈ Rm,

E[skip]{ru/∆} ⇒n µ ⇐⇒ µ = k(u,−).

We define a finite kernel h : Rm to R by

h((a1, . . . , am), A) = |ai| k((a1, . . . , am), A).

Then, for any u = (a1, . . . , am) ∈ Rm,

E[score(xi)]{ru/∆} ⇒n+1 µ ⇐⇒ E[skip]{ru/∆} ⇒n ν and µ = |ai| ν
⇐⇒ µ = h(u,−).

• If ∆ ` M : B is of the form E[score(ra)] for some a ∈ R, then by induction hypothesis, there is
a finite kernel k from Rm to R such that for any u ∈ Rm,

E[skip]{ru/∆} ⇒n µ ⇐⇒ µ = k(u,−).

We define a finite kernel h : Rm to R by

h((a1, . . . , am), A) = |a| k((a1, . . . , am), A).

Then, for any u = (a1, . . . , am) ∈ Rm,

E[score(xi)]{ru/∆} ⇒n+1 µ ⇐⇒ E[skip]{ru/∆} ⇒n ν and µ = |a| ν
⇐⇒ µ = h(u,−).

• If ∆ ` M : B is of the form E[(λxA. N) V], then by induction hypothesis, there is a finite kernel k
from Rm to R such that for all u ∈ Rm,

E[N {V/x}]{ru/∆} ⇒n µ ⇐⇒ µ = k(u,−).

Hence,

E[(λxA. N) V]{ru/∆} ⇒n+1 µ ⇐⇒ E[N{V/x}]{ru/∆} ⇒n µ

⇐⇒ µ = k(u,−).
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• If ∆ ` M : B is of the form E[fixA,B(f, x, N) V], then by induction hypothesis, there is a finite
kernel k from Rm to R such that for all u ∈ Rm,

E[N{fixA,B(f, x, N)/f, V/x}]{ru/∆} ⇒n µ ⇐⇒ µ = k(u,−).

Hence,

E[fixA,B(f, x, N) V]⇒n+1 µ ⇐⇒ E[N{fixA,B(f, x, N)/f, V/x}]{ru/∆} ⇒n µ

⇐⇒ µ = k(u,−).

• If ∆ ` M : Real is of the form E[F(V1, . . . , V|F|)], then Vi is equal to either a variable or a constant
ra. For simplicity, we suppose that |F| = 2 and V1 = xi and V2 = ra. By induction hypothesis,
there is a finite kernel from Rm+1 to R such that for all u ∈ Rm+1,

E[y]{ru/(∆, y : Real)} ⇒n µ ⇐⇒ µ = k(u,−).

We define a finite kernel h from Rm to R by

h((a1, . . . , am), A) = k((a1, . . . , am, funF(ai, a)), A).

Then, for any u = (a1, . . . , am) ∈ Rm,

E[F[xi, ra]]{ru/∆} ⇒n+1 µ ⇐⇒ E[y]{ru/∆, rfunF(ai,a)/y} ⇒n µ

⇐⇒ µ = k((u, funF(ai, a)),−) = h(u,−).

• If ∆ ` M : Real is of the form let x be V in N, then by induction hypothesis, there is a finite
kernel k from Rm to R such that for all u ∈ Rm,

E[N {V/x}]{ru/∆} ⇒n µ ⇐⇒ µ = k(u,−).

Hence,

E[let x be V in N]{ru/∆} ⇒n+1 µ ⇐⇒ E[N{V/x}]{ru/∆} ⇒n µ

⇐⇒ µ = k(u,−).

• If ∆ ` M : Real is of the form E[ifz(xi, N, L)] for some i ∈ {1, 2, . . . ,m}, then by induction
hypothesis, there are finite kernels k and k′ from Rm to R such that for any u ∈ Rm,

E[N]{ru/∆} ⇒n µ ⇐⇒ µ = k(u,−),

E[L]{ru/∆} ⇒n µ ⇐⇒ µ = k′(u,−).

We define a finite kernel h from Rm to R by

h(u,A) =

{
k(u,A), if ai = 0,

k′(u,A), if ai 6= 0
where u = (a1, . . . , an).

Then, for any u ∈ Rm,

E[ifz(xi, N, L)]{ru/∆} ⇒n+1 µ ⇐⇒
(
E[N]{ru/∆} ⇒n µ and ai = 0

)
or
(
E[L]{ru/∆} ⇒n µ and ai 6= 0

)
⇐⇒ µ = h(u,−).

• If ∆ ` M : Real is of the form E[ifz(r0, N, L)], then by induction hypothesis, there is a finite
kernel k from Rm to R such that for any u ∈ Rm,

E[N]{ru/∆} ⇒n µ ⇐⇒ µ = k(u,−).

Hence,

E[ifz(r0, N, L)]{ru/∆} ⇒n+1 µ ⇐⇒ E[N]{ru/∆} ⇒n µ

⇐⇒ µ = k(u,−).
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M⇒0 ∅R

n > 0
ra ⇒n δa

M
red−→ N E[N]⇒n µ

E[M]⇒n+1 µ

E[skip]⇒n µ

E[score(ra)]⇒n+1 |a| µ
E[ra]⇒n k(a,−) for all a ∈ R[0,1]

E[sample]⇒n+1

∫
R[0,1]

k(a,−) da

Figure 2: Evaluation Rules of Distribution-Based Operational Semantics

• If ∆ ` M : Real is of the form E[ifz(ra, N, L)] for some real number a 6= 0, then by induction
hypothesis, there is a finite kernel k from Rm to R such that

E[L]{ru/∆} ⇒n µ ⇐⇒ µ = k(u,−).

Hence,

E[ifz(ra, N, L)]{ru/∆} ⇒n+1 µ ⇐⇒ E[L]{ru/∆} ⇒n µ

⇐⇒ µ = k(u,−).

Lemma 3.1 implies that the relations ⇒n can be seen as functions from the set of closed terms
of type Real to the set of measures on R.

The step-indexed distribution-based operational semantics approximates the evaluation of
closed terms by restricting the number of reduction steps. Thus, the limit of the step-indexed
distribution-based operational semantics represents the “true” result of evaluating the underlying
term.

Definition 3.1. For a closed term M : Real and a measure µ on R, we write M⇒∞ µ when there
is a family of measures {µn}n∈N on R such that M⇒n µn and for all A ∈ ΣR,

µ(A) = sup
n∈N

µn(A).

The binary relation ⇒∞ is a function from the set of closed terms of type Real to the set
of measures on R. This follows from Lemma 3.1 and that the family of measures {µn}n∈N on R
such that M ⇒n µn forms an ascending chain µ0 ≤ µ1 ≤ · · · with respect to the pointwise order.
Moreover, it can be proved that for any x1 : Real, . . . , xm : Real ` M : Real, there is an s-finite
kernel k given by M{ra1/x1, . . . , ram/xm} ⇒∞ k((a1, . . . , am),−).

3.3 Sampling-Based Operational Semantics

PCFSS can be endowed with another form of operational semantics, closer in spirit to inference
algorithms, called the sampling-based operational semantics. The way we formulate it is deeply
inspired from the one in [28].

The idea behind sampling-based operational semantics is to give the evaluation result of each
probabilistic branch somehow independently. We specify each probabilistic branch by two pa-
rameters: one is a sequence of random draws, which will be consumed by sample; the other is a
likelihood measure called weight, which will be modified by score.

Definition 3.2. A configuration is a triple (M, a, u) consisting of a closed term M : Real, a real
number a ≥ 0 called the configuration’s weight, and a finite sequence u of real numbers in R[0,1],
called its trace.

9



M
red−→ N

(M, b, u)→ (N, b, u)

(E[score(ra)], b, u)→ (E[skip], |a| b, u)

(E[sample], a, b :: u)→ (E[rb], a, u)

Figure 3: Evaluation Rules of Sampling-Based Operational Semantics

Below, we write ε for the empty sequence. For a real number a and a finite sequence u consisting
of real numbers, we write a :: u for the finite sequence obtained by putting a on the head of u.

In Figure 3, we give the evaluation rules of sampling-based operational semantics where
red−→ is

the deterministic reduction relation introduced in the previous section. We denote the reflective
transitive closure of → by →∗. Intuitively, (M, 1, u) →∗ (ra, b, ε) means that by evaluating M, we
get the real number a with weight b consuming all the random draws in u.

4 Towards Mealy Machine Semantics

In this section, we give some intuitions about our GoI model, which we also call Mealy machine
semantics. Giving Mealy machine semantics for PCFSS requires translating PCFSS into the
linear λ-calculus. This is because GoI is a semantics for linear logic, and is thus tailored for calculi
in which terms are treated as resources. Schematically, Mealy machine semantics for PCFSS
translates terms in PCFSS into Mealy machines in the following way.

PCFSS
(1) Moggi’s translation��

Moggi’s meta-language +sample + score
(2) Girard translation��

the linear λ-calculus +sample + score
(3)��

proof structures+sample + score
(4)��

Mealy machines .

In Section 4.1, we explain the first three steps. The last step deserves to be explained in more detail,
which we do in Section 4.2. For the sake of simplicity, we ignore the translation of conditional
branching and the fixed point operator.

4.1 From PCFSS to Proof Structures

4.1.1 Moggi’s Translation

In the first step, we translate PCFSS into an extension of the Moggi’s meta-language by Moggi’s
translation [34]. Here, in order to translate scoring and sampling in PCFSS, we equip Moggi’s
meta-language with base types Unit and Real and the following terms:

a ∈ R
∆ ` ra : Real,

∆ ` M : Real
score(M) : T Unit, ∆ ` sample : T Real

where T is the monad of Moggi’s meta-language. Any type A of PCFSS is translated into the
type A] defined as follows:

Unit] = Unit, Real] = Real, (A→ B)] = A] → T B].

Terms sample and score(−) in PCFSS are translated into sample and score(−) in Moggi’s
meta-language respectively. See [34] for more detail about Moggi’s translation.
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4.1.2 Girard Translation

We next translate the extended Moggi’s meta-language into an extension of the linear λ-calculus,
by way of the so-called Girard translation [35]. Types are given by

A, B ::= Unit | Real | State | A⊥ | A⊗ B | A ℘ B | !A

where Unit, Real and State are base types, and terms are generated by the standard term
constructors of the linear λ-calculus, plus the following rules:

a ∈ R
∆ ` ra : Real

∆ ` M : !Real
∆ ` score(M) : State( State⊗ !Unit

∆ ` sample : State( State⊗ !Real

(as customary in linear logic, A( B is an abbreviation of A⊥ ℘ B). These typing rules are derived
from the following translation (−)[ of types of the extended Moggi’s meta-language into types of
the extended linear λ-calculus:

Unit[ = Unit, Real[ = Real, (A→ B)[ = !A[( B[,

(T A)[ = State( State⊗ !A[

The definition of (T A)[ is motivated by the following categorical observation: let L be the syntactic
category of the extended linear λ-calculus, which is a symmetric monoidal closed category endowed
with a comonad ! : L → L with certain coherence conditions (see e.g. [36]), and let L! be the
coKleisli category L! of the comonad !. Then, by composing the adjunction between L and L!

with a state monad State( State⊗ (−) on L, we obtain a monad on L!:

L
''

>State(State⊗(−)
%%

L!ee ,

which sends an object A ∈ L! to State( State ⊗ !A. This use of the state monad is motivated
by sampling-based operational semantics: we can regard PCFSS as a call-by-value λ-calculus
with global states consisting of pairs of a non-negative real number and a finite sequence of real
numbers, and we can regard score and sample as effectful operations interacting with those states.

4.1.3 The Third Step

We translate terms in the extended linear λ-calculus into (an extension of proof structures) [37],
which are graphical presentations of type derivation trees of linear λ-terms. We can also understand
proof structures as string diagrams for compact closed categories [38]. Operators of the pure, linear,
λ-calculus, can be translated as usual [37]. For example, type derivation trees

x : A ` x : A,
x : A ` x : A

` λxA. x : A( A

π : ` M : A ρ : ` N : B

` M⊗ N : A⊗ B

are translated into proof structures

A

A⊥

A

A(A
℘

ρ

π

⊗

B

A

A⊗B

respectively, where nodes labelled with M and N are proof structures associated to type derivations
of M and N. Terms of the form ra, sample(M) and score, require new kinds of nodes:

Real
ra sc

!Real

State⊥

State

!Unit
sc

State⊥

State

!Unit .
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This is not a direct adaptation of typing rules for score and sample in the linear λ-calculus, but
the correspondence can be recovered by way of multiplicatives:

!A

State

State⊥

State⊗!A

State(State⊗!A

⊗
℘

.

4.2 From Proof Structures to Mealy Machines

The series of translations from PCFSS to proof structures is agnostic as for the computational
meaning of score and sample in PCFSS because score and sample introduced in these trans-
lations are just constant symbols. In other words, the translation from PCFSS to the extended
proof structures is not sound with respect to either form of operational semantics for PCFSS.
In the last translation step, we assign proof structures a computational meaning, respecting the
operational semantics of the underlying PCFSS term.

We do this by associating proof structures with Mealy machines. A Mealy machine is an
input/output-machine whose evolution may depend on its current state. In this paper, for the
sake of supporting intuition and of enabling graphical reasoning, we depict a Mealy machine M as
a node with some input/output-ports:

M M

s/t

x
y

M

s′/t′

z w

For example, the thick arrow in the middle diagram indicates that if the current state is s and the
given input is x, then the Mealy machine outputs y and changes its state to t. In the GoI jargon,
data traveling along edges of proof structures are often called tokens.

For the standard proof structures, we can follow [39] where Mealy machines associated with
proof structures are built up from Mealy machines associated to each nodes. For example, the
following nodes

B

A

A⊗B
⊗

B

A

A℘B
℘

are both associated with a one-state Mealy machine that behaves in the following manner:

b

a

(◦,b)
(•,a)

b

a

(•,b)
(◦,a)

Namely, the Mealy machine forwards each input from the left hand side to the right hand side
endowing it with a tag that tells where the token came from. The Mealy machine handles inputs
from the right hand side in the reverse way.

Soundness of Mealy machine semantics states that if two (pure) linear λ-terms are β-equivalent,
then the behaviours of the Mealy machines associated to these terms are the same. As an example,
let us consider a β-reduction step (λxA. x) y → y. The proof structure associated to (λxA. x) y is
the graph in the left hand side, and the arrow in the right hand side illustrates a trace of a run of
this Mealy machine for an input a from the right edge:

⊗

℘

A

A

A(AA⊥

A a

a

This Mealy machine forwards any input from the right hand side to the left hand side as indicated
by the thick arrow, and it also forwards any input from the left hand side to the right hand side.
Hence, the behaviour of this Mealy machine is equivalent to the behaviour of the following trivial
Mealy machine:

a
a

a
a ,
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which is the interpretation of y : A ` y : A. This is in fact a symptom of a general phenomenon:
Mealy machine semantics for the linear λ-calculus captures β-reduction (λxA. x) y→ y.

But how can we extend this Mealy machine semantics to score and sample? Here, we borrow
the idea from Game semantics [40] that models computation in terms of interaction between
programs and environments. For scoring and sampling, we can infer how they interact with the
environment from sampling-based operational semantics. For scoring, we associate score with a
one-state Mealy machine that has the following transitions:

!Real

State⊥

State

!Unit

sc
(a,b::u) (|b| a,u)

(a,u)

(a,u)

where u is a finite sequence of real numbers and a, b are real numbers such that a ≥ 0. We can read
these transitions as follows: for each “configuration” (−, a, u), the Mealy machine sends a query
(a, u) to environment in order to know the value of its argument, and if environment answers that
the value is b, i.e., if the Mealy machine receives (a, b :: u), then it outputs (|b| a, u), which is the
evaluation result of (score(rb), a, u).

For sampling, we associate sample with a Mealy machine that has the following transitions:

sa

State⊥

State

!Real

∗/b

(a,u)

(a,b::u)

sa

State⊥

State

!Real

b/b

(a,u)
(a,b::u)

where u is a finite sequence of real numbers and a, b are real numbers such that a ≥ 0. The first
transition means that in the initial state ∗, given a “configuration” (−, a, b ::u), the Mealy machine
pops the first element of b :: u and memorises the value b by changing its state from ∗ to b. After
this transition, for any query (a, u) asking the result of sampling, it answers the value memorised
in the first transition.

For example, a Mealy machine

State⊥

State

!Real
!Unit

!State

sa

sc

which is a denotation of the term

M = let x be sample in score(x),

and behaves as follows:

sa

sc

(a,u)

(a,u)

(a,b::u) (|b| a,u)

(a,b::u)
∗/b

Our adequacy theorem says that the evaluation result of a term coincides with the execution
result of the associated Mealy machine. In fact, for this case, the outcome (|b| a, u) of the above
Mealy machine is equal to the evaluation result of (M, a, b::u), that is, (M, a, b::u)→∗ (skip, |b| a, u).
In this interaction process, the memoisation mechanism of the sa-node is necessary, otherwise the
sa-node can not tell the sc-node that the result of sampling is b.

Remark 4.1. Two notions of state (the one coming from the state monad and the one of the of
the Mealy machine itself) are used for different purpose here: the first notion is needed to model
the call-by-value evaluation strategy where we need to store intermediate effects that are invoked
during the evaluation. The second notion of state is needed to model sampling. More concretely,
each Mealy machine for sampling need to remember the already sampled values in the current
probabilistic branch.
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5 Mealy Machines and their Compositions

After having described Mealy machine semantics briefly and informally, it is now time to get more
precise. In this section, we introduce the notion of a Mealy machine and some constructions on
Mealy machines. We also introduce a way of diagramatically presenting Mealy machines which is
behaviourally sound.

5.1 Mealy Machines, Formally

In this paper, we call a pair of measurable spaces an Int-object. We use sans-serif capital letters
X,Y,Z, . . . to denote Int-objects, and we denote the positive/negative part of an Int-object by
the same italic letter superscripted by +/−. For example, X denotes an Int-object (X+, X−)
consisting of two measurable spaces X+ and X−. The name “Int-object” comes from the so-
called Int-construction [26]. Definition 5.1 and the definition of monoidal products in Section 5.4
are also motivated by Int-construction.

Definition 5.1. For Int-objects X and Y, a Mealy machine M from X to Y consists of
• a measurable space SM called the state space of M;
• an element sM ∈ SM called the initial state of M;
• a partial measurable function

τM : (X+ + Y −)× SM → (Y + +X−)× SM

called the transition function.
If M is a Mealy machine from X to Y, we write M : X( Y.

The transition function τM of a Mealy machine M describes a mapping between inputs and
outputs which can also alter the underlying state. For x ∈ X+ +Y − and s ∈ SM, τM(x, s) = (y, t)
means that when the current state of M is s, given an input x, there is an output y and the next
state is t.

Readers may wonder why X− appears in the target and Y − appears in the source of the
transition function of a Mealy machine from X to Y. In short, this is because we are interested in
Mealy machines that handle bidirectional computation. The diagrammatic presentation of Mealy
machines clarifies the meaning of “bidirectional.” Let M : X ( Y be a Mealy machine. In this
paper, we depict M as follows:

M
YX

.

Intuitively, each label on an edge indicates the type of data traveling along the edge. Namely, on
the X-edge (on the Y-edge), elements in X+ (in Y +) go from left to right, and elements in X− (in
Y −) go from right to left. For example, we depict the following transitions

τM((◦, y), s0) = ((◦, x), s1), τM((◦, y′), s0) = ((•, y′′), s2)

for some y, y′ ∈ Y −, x ∈ X−, y′′ ∈ Y + and s0, s1, s2 ∈ SM as the following thick arrows

M

s0/s1
YX

yx M

s0/s2
Y

X

y′
y′′

.

(Recall that the white/black bullet indicates the left/right part of the disjoint sum.) The expres-
sions s0/s1 and s0/s2 on the Mealy machine M stands for transitions of states. We omit states
transitions when we can infer them.

We will give some Mealy machines whose state spaces are trivial, namely 1. We call such a
Mealy machine token machine. Our usage of the term token machine is along the lines of that
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in other papers on GoI such as [41, 39]. Since we can identify the transition function of a token
machine M : X( Y with the following partial measurable function

X+ + Y − ∼= (X+ + Y −)× 1
τM−→ (Y + +X−)× 1 ∼= Y + +X−,

giving partial measurable function of this type is enough to specify a token machine.

Convention 5.1. We define a token machine M : X( Y by giving a partial measurable function
from X+ + Y − to Y + +X−, and we also call this partial measurable function transition function
of M. Abusing notation, we write τM for this transition function.

5.2 Behavioural Equivalence

We are now ready to give an equivalence relation between Mealy machines which identifies ma-
chines which behave the same way. Identifying Mealy machines in terms of their behaviour is
important to reason about compositions of Mealy machines in the coming sections. Here, we are
inspired by behavioural equivalence from coalgebraic theory of modelling transition systems [42].

Let M and N be Mealy machines from X to Y. We write M �X,Y N when there is a measurable
function f : SM → SN satisfying f(sM) = sN and

(X+ + Y −)× SM
id×f

//

τM
��

(X+ + Y −)× SN

τN
��

(Y + +X−)× SM
id×f

// (Y + +X−)× SN .

The definition means that if we have M �X,Y N, then no observer can distinguish between M and
N from their input/output behaviour, although their internal structure can be quite different. We
define an equivalence relation 'X,Y to be the reflective, symmetric, and transitive closure of �X,Y.
Below, if we can infer the subscript X,Y from the context, we write ' instead of 'X,Y.

Definition 5.2. For Mealy machines M,N : X( Y, we say that M is behaviourally equivalent to
N when M ' N.

For a Mealy machine M : X ( Y, we write [M] for its equivalence class with respect to be-
havioural equivalence. We define a binary relation ≤ between equivalence classes of Mealy ma-
chines from X to Y by [M] ≤ [N] if and only if there are M′ ' M and N′ ' N such that SM′ = SN′

and sM′ = sN′ , and the graph relation of τM′ is a subset of the graph relation of τN′ .

Proposition 5.1. The set of equivalence classes for 'X,Y with ≤ is a pointed ωcpo.

We can characterize interpretation of the fixed point operator in PCFSS in terms of least
fixed points, see [43]. We give a proof of Proposition 5.1 in Section 5.3.

5.3 Proof of Proposition 5.1

For a partially defined expressions E and E′, we write E ≈ E′ when E is defined if and only if
E′ is defined, and if both expressions are defined, then they are the same. For example, we have
(1−x)−1 ≈

∑∞
n=0 x

n for all x ∈ R[0,1]. For a measurable space X, we write LX for the measurable
space of all finite sequences over X endowed with the following σ-algebra:

A ∈ ΣLX ⇐⇒ for all n ∈ N, A ∩Xn ∈ ΣXn .

We write ε for the empty sequence. For a ∈ X and u ∈ LX, we denote the list obtained by
appending a to u by a :: u.

Let M : X( Y be a Mealy machine. We write Z for X+ + Y − and W for Y + + X−. Then,
the transition function of M is of the form

τM : Z × SM →W × SM.
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We define partial measurable functions αM : LZ → SM and βM : Z × LZ →W by

αM(ε) = sM,

αM(z :: u) =


s, if αM(u) and τM(z, αM(u)) are defined and

τM(z, αM(u)) = (w, s) for some w ∈W,
undefined, otherwise,

βM(z, u) =


w, if αM(u) and τM(z, αM(u)) are defined and

τM(z, αM(u)) = (w, s) for some s ∈ SM,

undefined, otherwise.

Below, for x ∈W ×SM, we write fst(x) for the first entry of x, and we write snd(x) for the second
entry of x. By the definition of αM and βM, we have

αM(z :: u) ≈ snd(τM(z, αM(u))), βM(z, u) ≈ fst(τM(z, αM(u))).

Lemma 5.1. If M � N, then βM = βN.

Proof. Let h : SM → SN be a measurable function that realizes M � N. We show h(αM(u)) ≈ αN(u)
and βM(z, u) ≈ βN(z, u) by induction on the size of u. (Base case)

h(αM(ε)) = h(sM)

= sN

= αN(ε)

βM(z, ε) ≈ fst(τM(z, αM(ε)))

≈ fst((W × h)(τM(z, αM(ε))))

≈ fst(τN(z, h(αM(ε))))

≈ fst(τN(z, αN(ε)))

≈ βN(z, ε).

(Induction step)

h(αM(z :: u)) ≈ h(snd(τM(z, αM(u))))

≈ snd((W × h)(τM(z, αM(u))))

≈ snd(τN(z, h(αM(u))))

≈ snd(τN(z, αN(u)))

≈ αN(z :: u).

βM(z′, z :: u) ≈ fst(τM(z′, αM(z :: u)))

≈ fst((W × h)(τM(z′, αM(z :: u))))

≈ fst(τN(z′, h(αM(z :: u))))

≈ fst(τN(z′, αN(z :: u)))

≈ βN(z′, z :: u).

For a Mealy machine M : X( Y, we define Mealy machines M#,M@ : X( Y by
• SM# = LZ,
• sM# = ε,
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• τM#(z, u) =

{
(βM(z, u), z :: u), if βM(z, u) is defined,

undefined, otherwise,

and
• SM@ = {�} ∪ SM,
• sM@ = sM,

• τM@(z, s) =


τM(z, s), if s ∈ SM and τM(z, s) is defined,

undefined, if u = �,
undefined, otherwise.

Here, the σ-algebra of SM@ is the one induced by Σ1+SM
via the obvious bijection between 1 +SM

and {�} ∪ SM.

Lemma 5.2. M � M@ � M#.

Proof. It is straightforward to check that the embedding e : SM → {�} ∪ SM is a measurable
function that realizes M � M@. It remains to show M# � M@. We define a measurable function
h : LZ → {�} ∪ SM by

h(u) =

{
αM(u), if αM(u) is defined,

�, otherwise.

We show that for any (z, u) ∈ Z × LZ,

τM@((Z × h)(z, u)) ≈ (W × h)(τM#(z, u))

by induction on u ∈ LZ. (Base case)

τM@(z, h(ε)) = τM@(z, sM) = τM(z, sM) ≈ (fst(τM(z, αM(ε))), snd(τM(z, αM(ε))))

≈ (fst(τM(z, αM(ε))), αM(z :: ε))

≈ (βM(z, ε), h(z :: ε))

≈ (W × h)(τM#(z, ε)).

(Induction step)

τM@((Z × h)(z, z′ :: u)) ≈ τM(z, αM(z′ :: u))

≈ τM(z, snd(τM(z′, αM(u))))

≈ τM@(z, snd(τM(z′, αM(u))))

≈ τM@(z, snd(τM@(z′, h(u))))

≈ τM@(z, h(snd(τM#(z′, u))))

≈ τM(z, αM(snd(τM#(z′, u))))

≈ τM(z, αM(z′ :: u))

≈ (βM(z, z′ :: u), αM(z :: z′ :: u))

≈ (βM(z, z′ :: u), h(z :: z′ :: u))

≈ (W × h)(τM#(z, z′ :: u)).

Proposition 5.2. For all Mealy machines M,N : X( Y, we have M ' N if and only if βM = βN.

Proof. If M ' N, then we can show that βM = βN by using Lemma 5.1. If βM = βN, then we have
M# = N# by the definition of (−)#. Because we have M ' M# and N ' N# (Lemma 5.2), we see
that M is behaviourally equivalent to N.

Hence, each equivalence class [M] of behavioural equivalence is represented by M#, and M# is
independent of choice of M. We extend this correspondence to order theoretic structure of Mealy
machines.
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Lemma 5.3. Let M,M be Mealy machines from X to Y such that SM = SN. If τM ≤ τN and
sM = sN, then τM# ≤ τN# .

Proof. By induction on the size of u ∈ LZ, we can show that if αM(u) is defined, then αN(u) is
defined and they are the same. Then τM# ≤ τN# follows from the definition of (−)#.

Theorem 5.1. For Mealy machines M,N : X( Y,

[M] ≤ [N] ⇐⇒ τM# ≤ τN# .

Proof. If τM# ≤ τN# , then because M# and N# are representatives of [M] and [N] respectively, we
have [M] ≤ [N]. If [M] ≤ [N], then there are M′ ' M and N′ ' N such that
• SM′ = SN′ and sM′ = sN′ ,
• the graph relation of τM′ is a subset of the graph relation of τN′ .

By Lemma 5.3, we see that τM′# ≤ τN′# .

Theorem 5.2. The set of equivalence classes of Mealy machines from X to Y with the partial
order ≤ is an ω-cpo.

Proof. Let [N] be an upper bound of an ω-chain

[M1] ≤ [M2] ≤ · · · .

By Theorem 5.1, we have
τM#

1
≤ τM#

2
≤ · · · ≤ τN# .

We define a Mealy machine L : X( Y by
• SL = SM#

1
,

• sL = sM#
1

,

• τL =
∨
n∈N τM#

n
.

Because Mn ' M#
n , the equivalence class [L] is an upper bound of the ω-chain [M1] ≤ [M2] ≤ · · · .

We also have [L] ≤ [N] because τL ≤ τM#
n

.

5.4 Constructions on Mealy Machines

It is now time to give some constructions which are the basic building blocks of our Mealy machine
semantics. This section consists of three parts. The first part (from Section 5.4.2 to Section 5.4.5)
is related to the linear λ-calculus and serves to model the purely functional features of PCFSS,
such as λ-abstraction and function application. In the second part (Section 5.4.6 and Section 5.4.7),
we give Mealy machines modelling real numbers and measurable functions. In the last part (from
Section 5.4.9 to Section 5.4.11), we introduce a state monad and associate the monad with Mealy
machines modelling score and sample.

5.4.1 Composition

Let X, Y and Z be Int-objects, and let M : X ( Y, N : Y ( Z be Mealy machines. We can
now define their composition N ◦ M : X ( Z. Before giving a precise definition, some intuitive
explanation about N◦M is in order. The main idea is to define N◦M as a Mealy machine obtained
by connecting N and M in the following manner:

M N
X Y Z

.

The following series of thick arrows

M N

y0
y1
y2
y3

z
z′
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illustrates an execution of the obtained Mealy machine. Given an input from an edge, M and N
engage in some interactive communication, and at some point, some output is produced. Because
N◦M performs “parallel composition plus connecting”, the state space of N◦M should be SM×SN,
and the initial state should be (sM, sN). The transition function of N ◦M should be given by the
collection of all possible interaction paths between M and N.

Let us give a precise definition. For Mealy machines M : X( Y and N : Y( Z, we define the
state space and the initial states of N ◦M by SN◦M = SM × SN, sN◦M = (sM, sN) and we define the
transition function τN◦M by

τN◦M = fX+,Z−,Z+,X− ∨
∨
n∈N

fY +,Y −,Z+,X− ◦ fnY +,Y −,Y +,Y − ◦ fX+,Z−,Y +,Y −

where the fA,B,C,D : (A + B) × SN◦M → (C + D) × SN◦M are restrictions of the following partial
measurable function

(X+ + Z− + Y + + Y −)× SN◦M
∼=��

(X+ + Y −)× SM × SN + (Y + + Z−)× SN × SM

τM×SN+τN×SM��

(Y + +X−)× SM × SN + (Z+ + Y −)× SN × SM
∼=��

(Z+ +X− + Y + + Y −)× SN◦M ,

and the above join is with respect to the inclusion order between graph relations. The above
join is measurable because measurable sets are closed under countable joins. It is tedious but
doable to check that the above join always exists and that the composition is compatible with
behavioural equivalence and satisfies associativity modulo behavioural equivalence. We define a
token machine idX : X ( X by τidX = idX++X− . This is the unit of the composition modulo
behavioural equivalence.

5.4.2 Monoidal Products

Monoidal Products of Int-objects We introduce monoidal products of Int-objects and their
diagrammatic presentation. For Int-objects X and Y, we define an Int-object X⊗ Y by

X⊗ Y = (X+ + Y +, Y − +X−).

We define an Int-object I to be (∅, ∅). We write X⊗ Y ⊗ · · · for X⊗ (Y ⊗ · · · ).
Let X1, . . . ,Xn,Y1, . . . ,Ym be Int-object. We depict a Mealy machine M from X1⊗· · ·⊗Xn to

Y1 ⊗ · · · ⊗ Ym as a node with edges labeled by X1, . . . ,Xn on the left hand side and edges labeled
by Y1, . . . ,Ym on the right hand side:

M

Ym

...
Y1

Xn

...
X1 .

We do not draw any edges on the left/right hand side when the domain/codomain of M is I:

M

Ym

...
Y1

M

Xn

...
X1

The diagrammatic presentation of monoidal products allows for an intuitive description of transi-
tion functions. For example, we can depict a transition

τM((•, (•, x)), s) = ((•, (◦, · · · (◦, y))), t)

for some x ∈ X+
1 , y ∈ Y +

m and s, t ∈ SM as follows:
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M

Ym

...
Y1

Xn

...
X1

x

ys/t

We note that there are several ways to present a Mealy machine M : X1⊗· · ·⊗Xn( Y1⊗· · ·⊗Ym
such as

M

Ym

...
Y1

Xn

...
X1 ,

M

Ym

...
Y1

Xn

X1 ⊗ · · · ⊗ Xn−1 ,
M

Y1 ⊗ · · · ⊗ Ym

Xn

...
X1 · · · .

Monoidal Product of Mealy Machines We give monoidal products of Mealy machines. For
Mealy machines M : X( Z and N : Y( W, we define a Mealy machine M⊗ N : X⊗ Y( Z⊗W
by: SM⊗N = SM × SN, sM⊗N = (sM, sN) and τM⊗N is given by

((X+ + Y +) + (W− + Z−))× SM⊗N
∼=��

(X+ + Z−)× SM × SN + (Y + +W−)× SN × SM

τM×SN+τN×SM��

(Z+ +X−)× SM × SN + (W+ + Y −)× SN × SM
∼=��

((Z+ +W+) + (Y − +X−))× SM⊗N .

It is not difficult to check that the monoidal product is compatible with behavioural equivalence.
We depict M⊗ N : (X⊗ Y)( (Z⊗W) as follows:

M

N

ZX

WY

As indicated by the above diagram, M ⊗ N consists of two sub-machines M and N working inde-
pendently. For example, if we have

M N

Z
X WY

s0/s1 t0/t1

z
z′

wy

then M⊗ N has the following transitions:

M

N

Z
X

WY

s0/s1

t/t

z
z′

M

N

ZX

WY
t0/t1

s/s

wy

for all t ∈ SN and for all s ∈ SM.

Convention 5.2. We do the following identification:
• We identity X⊗(Y⊗Z) with (X⊗Y)⊗Z by the canonical isomorphism X+(Y +Z) ∼= (X+Y )+Z.
• We identify I⊗ X and X⊗ I with X by the unit laws X+ + ∅ ∼= X+ and ∅+X− ∼= X−.

5.4.3 Axiom Link and Cut Link

For an Int-object X, we define X⊥ to be (X−, X+), and we define token machines

unitX : I( X⊗ X⊥, counitX : X⊥ ⊗ X( I

by τunitX = idX++X− and τcounitX = idX−+X+ . We depict them by single edges
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X

X⊥

X⊥

X

respectively. This is compatible with behaviour of these Mealy machines: if we give an input to
an edge, then we will get the same value from the other end of the edge. For example, for any
x ∈ X+, we have

x

x

x

x

.

5.4.4 Symmetry

Let X and Y be Int-objects. We define a token machine symX,Y : X ⊗ Y ( Y ⊗ X by letting its
transition function be the canonical isomorphism

(X+ + Y +) + (X− + Y −)
∼=−→ (Y + +X+) + (Y − +X−).

We depict symX,Y by a crossing:

XY XY

x

xy

y

As arrows in the right hand side indicate, given an input from an edge in one side, symX,Y outputs
the same value to the corresponding edge on other side.

5.4.5 A Modal Operator

We give a constructor on Mealy machines that corresponds to the resource modality in linear logic.
For an Int-object X, we define an Int-object !X by

!X = (N×X+,N×X−).

We can informally regard !X as a countable monoidal power
⊗

n∈N X ≈ X⊗X⊗· · · . Following this
intuition, we extend the action of !(−) to Mealy machines. Let M : X( Y be a Mealy machine.
We define a Mealy machine !M : !X( !Y by: the state space of !M is defined to be |M|N associated
with the least σ-algebra such that for all A1, A2, . . . ∈ ΣM, A1 × A2 × · · · ∈ Σ!M; the initial state
s!M is (sM, sM, . . .); the transition function τ!M is the unique partial measurable function satisfying

(X+ + Y −)× SM × SN
M

(injn+injn)×insn
//

τM×SN
M

��

(N×X+ + N× Y −)× SN
M

τ!M

��

(Y + +X−)× SM × SN
M

(injn+injn)×insn
// (N× Y + + N×X−)× SN

M

for all n ∈ N. Here, injn : (−) → N× (−) are the nth injections, and insn : SM × SN
M → SN

M sends
(s, {sn}n∈N) to (s0, . . . , sn−1, s, sn, sn+1, . . .).

As !(−) is defined to be a countable monoidal power, !M behaves as a parallel composition of
countably infinite copies of M. For example, if we have

M
YX

s/s′

yx

then for all n ∈ N and t1, t2, . . . ∈ SM, we have

!M
!Y!X

(t1, . . . , tn−1, s, tn, tn+1, . . .)/(t1, . . . , tn−1, s
′, tn, tn+1, . . .)

(n, y)(n, x) .
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In other words, given an input whose first entry is n, then the nth copy of M handles the input,
and there is no side effect to the other copies of M.

Proposition 5.3. The operator !(−) is compatible with the behavioral equivalence and is functo-
rial. Namely,

• for all Mealy machines M,N : X( Y, if M ' M′, then !M ' !N; and

• for all Mealy machines M : X( Y and N : Y( Z,

!(N ◦M) ' !N ◦ !M;

• !idX ' id!X.

Convention 5.3. For the sake of legibility and due to lack of space, we sometimes implicitly
identify !(X⊗ Y) with !X⊗ !Y by the canonical isomorphism N× (X + Y ) ∼= N×X + N× Y.

Under the above convention, for Mealy macines M : !(X ⊗ Y) ( Z and N : W ( X, we can
simply write M◦ (!N⊗Y!Y) : !W⊗ !Y( Z. It is not difficult to see that when Z = !Z′ and M = !M′

for some M′ : X⊗ Y( Z′, we have M ◦ (!N⊗ id!Y) ' !(M ◦ (N⊗ idY)).

Dereliction For an Int-object X, we define a token machine dX : !X( X by defining τdX : (N×
X+) +X− → X+ + (N×X−) by

τdX(•, (n, x)) = (•, x), τdX(◦, x) = (◦, (0, x)).

The Mealy machine dX pops/pushes indices with probability 1. Namely, we have

dX
X!X

x(n, x)
dX

X!X
x(0, x)

for all n ∈ N, x ∈ X+ and x′ ∈ X−. Hence, for any Mealy machine M : I( X, if we have

M

X

x
x′

s/s′

for some x ∈ X−, x′ ∈ X+ and s, s′ ∈ SM, then dX ◦ !M has the following transition:

!M

!X

(0, x)

(0, x′)
(s, s1, s2, . . .)/(s

′, s1, s2, . . .) dX

X

x
x′

for all s1, s2, . . . ∈ SM.

Proposition 5.4. For any Mealy machine M : I( X,

dX ◦ !M ' M.

Diagrammatically, we have

!M dX
!X X ' M

X

.

Digging and Contraction For natural numbers n,m ∈ N, we write 〈n,m〉 for the Cantor
pairing n + (n + m)(n + m + 1)/2, and we write n|0 and n|1 for unique natural numbers such
that n = 〈n|0, n|1〉. For an Int-object X, let dgX : !X( !!X and conX : !X( !X ⊗ !X be stateless
deterministic Mealy machines whose transition functions

τdgX : N×X+ + N× N×X− → N× N×X+ + N×X−,
τconX : N×X+ + (N×X− + N×X−)→ (N×X+ + N×X+) + N×X−.
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are given by

τdgX(•, (〈n,m〉, x)) = (•, (n,m, x))

τdgX(◦, (n,m, x)) = (◦, (〈n,m〉, x)),

τconX(•, (n, x)) =

{
(•, (•, (n/2, x))), if n is even,

(•, (1, ((n− 1)/2, x))), if n is odd,

τconX(◦, (•, (u, x))) = (◦, (2n+ 1, x)),

τconX(◦, (◦, (u, x))) = (◦, (2n, x)).

These stateless Mealy machines dgX and conX behave as follows: for all n,m ∈ N,

dgX
!!X!X

(n, (m,x))(〈n,m〉, x)

cX
!X

!X

!X

(2n, x)

(n, x)

(2n+ 1, x)

(n, x)

Proposition 5.5. For any Mealy machine M : X( Y,

dgY ◦ !M ' !!M ◦ dgX, conY ◦ !M ' (!M⊗ !M) ◦ conX.

Diagrammatically, we have

!M dgY
!Y!X !!Y ' dgY !!M

!Y!X !!Y

!M cX
!Y!X

!Y

!Y
' cX

!M

!M

!Y

!X

!Y

!Y

!X

.

Weakening We define a token machine wX : X→ I by

τwX = the empty partial function.

Because the identity is the only Mealy machine from I to I (up to behavioural equivalence), we see
that for any Mealy machine M : I( X,

wX ◦M ' idI.

This behavioural equivalence means that we can remove

M wX
X

from any diagram.

5.4.6 Real Numbers

We define an Int-object R to be (S,S) where S is the measurable space of all finite sequences of
real numbers endowed with the following σ-algebra

A ∈ ΣS ⇐⇒ A ∩ Rn ∈ ΣRn for all n ∈ N.

For a ∈ R, we define a token machine ra : I( R by

τra(◦, u) = (•, a :: u) ra
R

u

a :: u

.

The transition means that given a query u from environment, ra answers its value a by appending
a to u. We will use u as a stack. See Section 5.4.7 and Section 5.4.10.
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5.4.7 Measurable Functions

We associate a measurable function f : Rn → R with a token machine fnf : R⊗n ( R. For
simplicity, we define fnf for n = 1 and n = 2. When n = 1, the transition function τfnf : S + S→
S + S is given by

τfnf (◦, u) = (◦, u),

τfnf (•, u) =

{
(•, f(a) :: u′), if u = a :: u′,

undefined, otherwise.

We explain how fnf simulates f by describing execution of fnf ◦ ra for a real number a ∈ R. As in
the following diagram, given an input u ∈ S from the right R-edge, fnf sends u to the left R-edge
in order to obtain the value of its argument. The return value to fnf from ra is a ::u, by which fnf
sees that its argument is a. Then, fnf outputs f(a) :: u. As a whole, the following Mealy machine
is behaviourally equivalent to rf(a).

fnfra
u

a :: u
R R

u

f(a) :: u

When n = 2, the transition function of fnf : R⊗R( R is τfnf : (S+ S) + S→ S+ (S+ S) given by

τfnf (•, (•, u)) = (◦, (•, u)),

τfnf (•, (◦, u)) =

{
(•, f(a, b) :: v), if u = a :: b :: v,

undefined, otherwise,

τfnf (◦, u) = (◦, (◦, u)).

As in the following diagram, given an input u ∈ S from the right R-edge, fnf first sends u to the
lower R-edge in the left hand side in order to obtain the value of its first argument. The return
value to fnf from ra is a ::u. Next, fnf sends a ::u to the upper R-edge in the left hand side. Then
rb returns b ::a ::u. Now, fnf sees that its first argument is a and its second argument is b. Finally,
fnf outputs f(a, b) :: u.

fnf

ra

rb

u

a :: u

a :: u
b :: a :: u

u

f(a, b) :: u

For general cases, f may have more arguments, and fnf sequentially sends queries to its arguments
storing partial information about its arguments on finite sequences of real numbers.

5.4.8 Conditional Branching

For an Int-object X such that X− is a measurable subspace of S, we define

cd : R⊗ (X⊗ X)→ X

to be a token machine whose transition function

τcdX : (S + (X+ +X+)) +X− → X+ + ((X− +X−) + S)

is given by

τcdX(•, (•, u)) =


(◦, (•, (◦, v))), if u = 0 :: v and v ∈ X−,
(◦, (•, (•, v))), if u = a :: v and a 6= 0 and v ∈ X−,
undefined, otherwise,

τcdX(•, (◦, (•, x))) = (•, x),

(•, (◦, (◦, x))) = (•, x),

τcdX(◦, u) = (◦, (◦, u)).

24



For a real number a ∈ R and Mealy machines M,N : I( X, we describe execution of cdX ◦ (ra ⊗
M ⊗ N). Given an input u ∈ X−, then cdX tries to check whether a is zero or not by sending u
to the R-edge. There are two cases: (i) if a is 0, then ra returns 0 :: u, and cdX forwards u to the
middle X-edge; (ii) if a is not 0, say 1, then ra returns 1 :: u, and cdX forwards u to the upper
X-edge:

cd

r0

M

N

R

X

X

X

u
0 :: u

u

x

u

x
(i)

cd

r0

M

N

R

X

X

X

u
0 :: u

u

x

u

x
(ii)

Because in both cases, all outputs from M and N are sent to the X-edge in the right hand, we see
that cdX ◦ (ra ⊗M⊗ N) simulates M when a = 0 and simulates N when a 6= 0.

Proposition 5.6. For a ∈ R and for Mealy machines M,N : I→ X, we have

cdX ◦ (ra ⊗M⊗ N) '

{
M, if a = 0,

N, if a 6= 0.

Diagrammatically, we have

cd

r0

M

N

R

X

X

X ' M
X

and for any a 6= 0,

cd

ra

M

N

R

X

X

X ' N
X

Proof. When a = 0, the first behavioral equivalence is realized by the first projection from 1×1×
SM×SM

∼= SM×SM to SM. When a 6= 0, the first behavioral equivalence is realized by the second
projection from 1× 1× SM × SM

∼= SM × SM to SN. The second behavioral equivalence is realized
by the obvious measurable function from 1× 1× SM × SN to 1.

5.4.9 A State Monad

Let T be the subspace of S consisting of all finite sequences of real numbers in R[0,1]. Recall that
R≥0 × T is “the set of states” in sampling-based operational semantics and our idea is to model
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score and sample by a state monad. In this section, we give a state monad that we use in our
Mealy machine semantics. We define Int-objects S0 and S by

S0 = (R≥0 × T, ∅), S = (R≥0 × T,R≥0 × T).

Then S ⊗ (−) is a state monad (on Mealy) because for any Int-object X, we have S ⊗ X =
((S0 ⊗ X)⊥ ⊗ S0)⊥. The unit and the multiplication of this monad are:

e⊗ X : X( S⊗ X, m⊗ X : S⊗ S⊗ X( S⊗ X

where e = unitS0
and m = S0 ⊗ counitS0

⊗ S⊥0 . Note that S is equal to S0 ⊗ S⊥0 . We can depict the
unit and the multiplication as follows:

X

e
S

X

m
S

S

S

.

5.4.10 Scoring

We define sc to be a token machine from R to S whose transition function τsc : S + R≥0 × T →
R≥0 × T + S is given by

τsc(◦, (a, u)) = (◦, a :: u),

τsc(•, u) =

{
(•, (|ab|, u′)), if u = a :: b :: u′ and u′ ∈ T,
undefined, otherwise.

The token machine simulates scoring (score(ra), b, u)→ (skip, |a| b, u) as follows:

ra sc
R S

b :: u

a :: b :: u
(b, u)

(|a|b, u)

.

5.4.11 Sampling

We define a Mealy machine sa : I ( S ⊗ !R by: the state space Ssa is defined to be {∗} ∪ R[0,1],
and the initial state ssa is ∗, and the transition function

τsa : (∅+ (N× S + R≥0 × T))× Ssa → ((R≥0 × T + N× S) + ∅)× Ssa

is given by

τsa((◦, (•, (n, u))), s) =

{
undefined, if s = ∗,
((•, (◦, (n, s :: u))), s), if s ∈ R,

τsa((◦, (◦, (a, u))), s) =

{
((•, (•, (a, v))), b), if s = ∗ and u = b :: v

undefined, otherwise.

As we explained in Section 4.2, the Mealy machine sa simulates the evaluation rule (sample, a, b ::
u)→ (b, a, u):

sa

!R

S

∗/b

(a, b :: u)

(a, u)
sa

!R

S

b/b
(n, u)

(n, b :: u)

.

Namely, sa pops b from the trace, and then sa answers queries (n, u) that the result of sampling
is b.
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5.5 Diagrammatic Reasoning

We now give a brief remark on diagrammatic presentation of Mealy machines. The diagrammatic
presentation of a Mealy machine is not only for intuitive explanation, but also for rigorous reasoning
about behavioural equivalence. This follows from some categorical observation. Let Mealy be the
category of Int-objects and behavioural equivalence classes of Mealy machines, where composition
is induced by the composition of Mealy machines. We will give a proof of the followng proposition
in the next section.

Proposition 5.7. The category Mealy is a compact closed category. The dual of an Int-object
X is X⊥. The unit and the counit arrows are unitX and counitX.

Therefore, as a consequence of the coherence theorem for compact closed categories [44, 38],
we see that graph isomorphism preserves behavioural equivalence.

Proposition 5.8. If two Mealy machines have the same diagrammatic presentation modulo some
rearrangement of edges and nodes, then they are behaviourally equivalent.

For example, for all Mealy machines M : X⊗ Y( Z⊗W and N : W( Y, we have

M

NWY

ZX
' M

N Y
W

X Z .

5.6 Proof of Proposition 5.7

5.6.1 The Category of Partial Measurable Functions

For some basic categorical notions, see standard text books such as [45]. We define pMeas to
be the category of measurable spaces and partial measurable functions. In pMeas, the empty
space ∅ is the initial object, and the coproduct space X + Y is the coproduct of X and Y in the
categorical sense. We write

inlX,Y : X → X + Y, inrX,Y : Y → X + Y

for the left/right injections. For partial measurable functions f : X → Y and g : Z → Y , we
define [f, g] : X + Z → Y to be the cotupling of f and g. For partial measurable functions
f : X → Y and g : Z → W , we define partial measurable functions f + g : X + Z → Y + W and
f × g : X × Z → Y ×W by

(f + g)(•, x) =

{
(•, y), if f(x) is defined and is equal to y,

undefined, otherwise,

(f + g)(◦, z) =

{
(◦, w), if g(z) is defined and is equal to w,

undefined, otherwise,

(f × g)(x, z) =


(y, w), if f(x) is defined and is equal to y

and g(w) is defined and is equal to z,

undefined, otherwise.

We note that (pMeas, 1,×) and (pMeas, ∅,+) are symmetric monoidal categories. We also note
that X × (−) distributes over the coproducts, i.e., the canonical arrow

dstX,Y,Z = [X × inlY,Z , X × inrY,Z ] : X × Y +X × Z → X × (Y + Z)

is an isomorphism.
The notion of trace introduced by Joyal, Street and Verity [26] plays important role in this

section.
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Definition 5.3. Let (C, I,⊗) be a symmetric monoidal category. A trace operator on (C, I,⊗) is
a family

{
trZX,Y

}
X,Y,Z∈C satisfying the following axioms:

• (Dinaturality) For all C-arrows f : X ⊗ Z → Y ⊗ Z, g : X ′ → X and h : Y → Y ′,

h ◦ trZX,Y (f) ◦ g = trZX′,Y ′((h⊗ Z) ◦ f ◦ (g ⊗ Z)).

• (Sliding) For all C-arrows f : X ⊗ Z → Y ⊗W , g : W → Z,

trZX,Y ((Y ⊗ g) ◦ f) = trZX,Y (f ◦ (X ⊗ g)).

• (Vanishing I) For all C-arrows f : X ⊗ I → Y ⊗ I,

trIX,Y (f) = f.

• (Vanishing II) For all C-arrows f : X ⊗ Z ⊗W → Y ⊗ Z ⊗W ,

trZ⊗WX,Y (f) = trZX,Y
(
trWX⊗Z,Y⊗Z(f)

)
.

• (Superposing) For all C-arrows f : X ⊗ Z → Y ⊗ Z,

W ⊗ trZX,Y (f) = trW⊗ZW⊗X,W⊗Y (W ⊗ f).

• (Yanking) For all X ∈ C,
trXX,X(σX,X) = idX

where σX,Y : X ⊗ Y → Y ⊗X is the brading.
A symmetric monoidal category (C, I,⊗) endowed with a trace operator tr is called a traced sym-
metric monoidal category.

We give a trace operator on (pMeas, ∅,+). The symmetric monoidal category (pMeas, ∅,+) is
enriched over ωCppo, which is the cartesian category of pointed ω-cpos and continuous functions.
The partial order on a hom-set pMeas(X,Y ) is given by

f ≤ g ⇐⇒ for all x ∈ X, if f(x) is defined, then g(x) is defined, and f(x) = g(x).

The least arrow ⊥X,Y : X → Y is the empty partial measurable function. The ωCppo-enrichment
induces an iterator

iterX,Y : pMeas(X,Y +X)→ pMeas(X,Y )

given by

iterX,Y (f) = the least fixed point of

(
g : X → Y 7−→ [idY , g] ◦ f : X → Y

)
.

The operator iter induces another operator

trZX,Y : pMeas(X + Z, Y + Z)→ pMeas(X,Y )

given by
trZX,Y (f) = [idY , iterZ,Y (f ◦ inrX,Z)] ◦ f ◦ inlX,Z .

Concretely, for a partial measurable function f : X + Z → Y + Z,

trZX,Y (f)(x) is defined and is equal to y

if and only if either f(•, x) = (•, y) or there is a finite sequence z1, . . . , zn ∈ Z such that

f(•, x) = (◦, z1), f(◦, z1) = (◦, z2), · · · f(◦, zn−1) = (◦, zn), f(◦, zn) = (•, y).
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Proposition 5.9. The family of operators
{
trZX,Y

}
X,Y,Z∈pMeas

is a trace operator of the sym-

metric monoidal category (pMeas, ∅,+). Furthermore, the trace operator is uniform [46] with
respect to partial measurable functions : for all partial measurable functions f : X + Z → Y + Z,
f : X +W → Y +W and h : Z →W , if

X + Z
f
//

X+h

��

Y + Z

Y+h

��

X +W
g
// Y +W

commutes, then
trZX,Y (f) = trWX,Y (g).

Proof. It is straightforward to adapt the argument in [47, Section A].

We will use the next proposition to construct a trace operator for Mealy machines.

Proposition 5.10. For any partial measurable function f : X + Z → Y + Z and a measurable
space W ,

W × trZX,Y (f) = trW×ZW×X,W×Y
(
dst−1W,Y,Z ◦ (W × f) ◦ dstW,X,Z

)
.

Proof. For any w ∈W , we show that

trW×ZW×X,W×Y
(
dst−1W,Y,Z ◦ (W × f) ◦ dstW,X,Z

)
◦ (w × idX) = w × trZX,Y (f)

where we identify w with the arrow from 1 = {∗} to W that sends ∗ to w. Because

dst−1W,Y,Z ◦ (W × f) ◦ dstW,X,Z ◦ (w ×X + w × Z) = (w × Y + w × Z) ◦ f,

it follows from uniformity that

trW×ZX,W×Y
(
dst−1W,Y,Z ◦ (W × f) ◦ dstW,X,Z ◦ (w ×X +W × Z)

)
= trZW×X,Y ((w × Y + Z) ◦ f).

By dinaturality, we obtain

trW×ZW×X,W×Y
(
dst−1W,Y,Z ◦ (W × f) ◦ dstW,X,Z

)
◦ (w × idX) = w × trZX,Y (f).

Since this is true for any w ∈W , we see that W × trZX,Y (f) is equal to

trW×ZW×X,W×Y
(
dst−1W,Y,Z ◦ (W × f) ◦ dstW,X,Z

)
.

5.6.2 The Category of Mealy Machines

Definition 5.4. We define a category Mealy by:
• objects are Int-objects X; and
• arrows f : X( Y are behavioural equivalence classes of Mealy machines from X to Y.

We denote a wide subcategory of Mealy consisting of Int-object X such X− = ∅ by Mealy+.

Intuitively, while arrows in Mealy are bidirectional Mealy machines, arrows in Mealy+ are
“one-way” Mealy machines. We consider the wide subcategory Mealy+ because categorical struc-
ture of Mealy+ is easier to describe than that of Mealy, and categorical structure of Mealy is
induced by that of Mealy+.

The identity arrow and the composition of Mealy+ is given by the identity Mealy machine
[idX] and the composition of Mealy machine:

[M] ◦ [N] = [M ◦ N].

Concrete description of the composition of Mealy machines between Mealy+-objects is easy: for
Mealy+-objects X and Y, and for Mealy machines M : X ( Y and N : Y ( Z, the composition
N ◦M : X( Y consists of:
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• SN◦M = SN × SM;

• sN◦M = (sN, sM);

• τN◦M given by

(X+ + ∅)× Sg × Sf
∼=−→ (X+ + ∅)× Sf × Sg

τf×Sg−−−−→

(Y + + ∅)× Sf × Sg
∼=−→ (Y + + ∅)× Sg × Sf

τg×Sf−−−−→ (Z+ + ∅)× Sg × Sf .

The composition of transition functions makes sense because X− = Z− = ∅. From this concrete
description, it is easy to check that the composition of Mealy+-arrows is well-defined. In fact,
if h : SM → SM′ realizes M � M′ and h′ : SN → SN′ realizes and N � N′, then h′ × h realizes
N◦M � N′◦M′. Therefore, the symmetric transitive closure ' is compatible with the composition.

Proposition 5.11. The category Mealy+ with (I,⊗) is a symmetric monoidal category where the
monoidal product of Mealy+-arrows [M] : X( Y and [N] : Z(W is given by

[M]⊗ [N] = [M⊗ N].

Proof. It is easy to see that objects in Mealy+ are closed under the monoidal product of Int-
objects. Thanks to simplicity of the composition of Mealy+-arrows, we can easily check that the
monoidal product of Mealy machines between Mealy+-objects is compatible with behavioural
equivalence and that (Mealy+, I,⊗) is a symmetric monoidal category.

Furthermore, Mealy+ inherits the trace operator of pMeas. For a Mealy+-arrow [M] : X ⊗
Z( Y ⊗ Z, we define a Mealy+-arrow TrZX,Y[M] : X( Y to be the equivalence class of a Mealy
machine N : X( Y given by

SN = SM, sN = sM

and

τN = tr
(Z++∅)×Sf
(X++∅)×Sf ,(Y ++∅)×Sf



(X+ + ∅)× Sf + (Z+ + ∅)× Sf
∼=
��

((X+ + Z+) + ∅)× Sf

τM

��

((Y + + Z+) + ∅)× Sf
∼=
��

(Y + + ∅)× Sf + (Z+ + ∅)× Sf



.

Proposition 5.12. The family of operators {TrZX,Y}X,Y,Z∈Mealy+
is a trace operator on the sym-

metric monoidal category (Mealy+, I,⊗).

Proof. Well-definedness of TrZX,Y(−) follows from uniformity of the trace operator on pMeas. Slid-
ing, vanishing I, vanishing II, superposing and yanking for Tr follow from that of tr. Dinaturality
for Tr follows from dinaturality of tr and Proposition 5.10.

We recall the notions of Int-construction [26] and compact closed category.

Definition 5.5 (Int-construction). Let (C, I,⊗, tr) be a traced symmetric monoidal category. We
define a category Int(C) by:
• objects are pairs (X+, X−) of C-objects;
• arrows from (X+, X−) to (Y +, Y −) are C-arrows from X+ ⊗ Y − to Y + ⊗X−.
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The identity on (X+, X−) is given by the identity on X+ ⊗X−, and the composition of Int(C)-
arrows f : (X+, X−)→ (Y +, Y −) and g : (Y +, Y −)→ (Z+, Z−) is given by

trY
−

X+⊗Z−,Z+⊗X−
(
(X+ ⊗ σZ−,Y −) ◦ (f ⊗ Z−) ◦ (Y + ⊗ σX−,Z−) ◦ (g ⊗X−) ◦ (Z+ ⊗ σY −,X−)

)
.

Here, we omit some coherence isomorphisms.

Definition 5.6. A compact closed category is a symmetric monoidal category (C, I,⊗) with a
function (−)⊥ : obj(C)→ obj(C) and families of C-arrows

{ηX : I → X ⊗X⊥}X∈C , {εX : X⊥ ⊗X → I}X∈C

such that
(εX ⊗X⊥) ◦ (X⊥ ⊗ ηX) = idX⊥ , (X ⊗ εX) ◦ (ηX ⊗X) = idX .

For X ∈ C, the object X⊥ is called the dual object of X.

Theorem 5.3 ([26]). The category Int(C) is a compact closed category. The unit and the monoidal
product are given by

(I, I), (X+, X−)⊗ (Y +, Y −) = (X+ ⊗ Y +, Y − ⊗X−).

The dual object of (X+, X−) is (X−, X+). The unit arrow η(X+,X−) and the counit arrow ε(X+,X−)

are given by
η(X+,X−) = idX+⊗X− , ε(X+,X−) = idX−⊗X+ .

Corollary 5.1. The category Mealy is a compact closed category. The monoidal structure is
given by (I,⊗), and the unit and the counit are given by unitX and counitX respectively.

Proof. It is straightforward to check that Mealy is isomorphic to Int(Mealy+), and the compact
closed structure is given by data provided in Section 5.

6 Mealy Machine Semantics for PCFSS

We interpret a type A as the Int-object JAK given by

JUnitK = I, JRealK = R, JA→ BK = S⊗ !JBK⊗ !JAK⊥.

We define interpretation of contexts by

Jx : A, . . . , y : BK = JAK⊗ · · · ⊗ JBK.

When ∆ is the empty sequence, we define J∆K to be I.
For interpreting conditional branching, we use the following proposition.

Proposition 6.1. For any type A, there is a partial measurable embedding e : S + N× JAK− → S.

Proof. We first define an embedding from JAK− to S by induction on A. We note that for any type
A, we have JAK+ = JAK−. Base cases are easy. For induction step,

JA→ BK− = S + N× JBK− + N× JAK− ⊆ S + N× S + N× S (induction hypothesis)

⊆ S + R× S + R× S (N ⊆ R)

⊆ S + S + S (R× S ⊆ S)
∼= {0, 1, 2} × S
⊆ R× S
⊆ S.

The statement follows from S + N× JAK− ⊆ JUnit→ AK−.

31



J∆`V:AK
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!J∆K

!JAK JAK
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c
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dg !LWM
!!J∆K!J∆K

!J∆K

!J∆K
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J∆`V W:BK

JMK
!J∆K

!JAK⊥

S

!JBK

L∆`λxA. M:A→BM

c

JMK JNK

m

!J∆K

!J∆K
!JBK

!J∆K
S

S
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S
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L∆`skip:UnitM
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L∆`ra:RealM
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e
S

!!J∆K!J∆K !R !R

J∆`F(V):RealK

LVM sc
!J∆K R S

J∆`score(V):UnitK
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!J∆K !R

S

J∆`sample:RealK

c

dg

dg

!M c

M
!J∆K

!J∆K
!J∆K

!!J∆K

!!JCK
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!JCK

!JCK!JCK

JCK
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M=JλxA. MK
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!J∆K

!J∆K

S⊗ !JAKS⊗ !JAK

S⊗ !JAK

R

J∆`ifz(V,M,N):AK

Figure 4: Interpretation of Terms and Values

We interpret terms ∆ ` M : A and values ∆ ` V : A by

J∆ ` M : AK : !J∆K( S⊗ !JAK, L∆ ` V : AM : !J∆K( JAK

inductively defined by diagrams in Figure 4. In these definitions, when we can infer ∆ and A,
we simply write JMK and LVM for J∆ ` M : AK and L∆ ` V : AM respectively, and we often apply
Convention 5.3 to these Mealy machines. Extracting precise definitions from these diagrams
would be easy.

7 Adequacy Theorems

Finally, we give our main results. In the proof of our adequacy theorems, we use logical relations,
diagrammatic reasoning of Mealy machines (Proposition 5.8), the domain theoretic structure of
Mealy machines (Proposition 5.1), and Fubini-Tonelli theorem.

7.1 Sampling-Based Operational Semantics

For a closed term M : Real, we define a partial measurable function o(M) : R≥0 × T→ R≥0 × R as
follows:
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• for (a, u) ∈ R≥0 × T, if there are s, s′ ∈ SJMK such that

τJMK((◦, (◦, (a, u))), sJMK) = ((•, (•, (a′, ε))), s),
τJMK((◦, (•, (0, ε))), s) = (•, (◦, (0, b :: ε)), s′),

i.e., if we have the following transitions:

JMK

!R

S
sJMK/s

(a, u)

(a′, ε)
JMK

!R

S
s/s′

(0, ε)

(0, b :: ε)

then we define o(M)(a, u) to be (a′, b);
• otherwise, o(M)(a, u) is undefined.

Theorem 7.1 (Adequacy). For any closed term ` M : Real and for any (a, u) ∈ R≥0×T, we have

o(M)(a, u) = (a′, b) ⇐⇒ (M, a, u)→∗ (b, a′, ε).

Corollary 7.1. For any closed term ` M : Real, partial functions weight(M) : R≥0 × T → R≥0
and val(M) : R≥0 × T→ R given as follows

(weight(M)(a, u), val(M)(a, u)) =

{
(a′, b), if (M, a, u)→∗ (b, a′, ε),

undefined, otherwise

are partial measurable functions.

7.2 Distribution-Based Operational Semantics

For a closed term M : Real, we define measurable functions o0(M) : T→ R≥0 and o1(M) : T→ R by

o0(M)(u) =

{
a, if ∃b ∈ R, o(M)(1, u) = (a, b),

0, otherwise,

o1(M)(u) =

{
b, if ∃a ∈ R≥0, o(M)(1, u) = (a, b),

0, otherwise.

Then we define a measure O(M) on R by:

O(M)(A) =
∑
n∈N

∫
Rn

[0,1]

o0(M)(u) [o1(M)(u) ∈ A] du.

Theorem 7.2 (Adequacy). For any closed term ` M : Real, we have M⇒∞ O(M).

It follows from our adequacy theorems that sampling-based operational semantics induces
distribution-based operational semantics.

Corollary 7.2. For any closed term ` M : Real,

M⇒∞
∑
n∈N

∫
Rn

[0,1]

weight(M)(u) [val(M)(u) ∈ A] du.

A result analogous to Corollary 7.2 has already been proved by way of a purely operational
(and quite laburious) argument in an untyped setting in which, however, score is not available in
its full generality [28]. Here, it is just an easy corollary of our adequacy theorems.
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8 Proof of Adequacy Theorems

Lemma 8.1. For any term ∆, x : A ` M : B and for any closed value ` V : A,

JMK ◦ (J∆K⊗ !LVM) ' JM{V/x}K.

Proof. By induction on M.

Lemma 8.2. For all closed terms M, N : A, if M
red−→ N, then JMK = JNK.

Proof. By case analysis. For the case of recursion, see Proposition 9.2 in Section 9.

We first prove soundness.

Proposition 8.1. For any closed term M : Real and for any (a, u) ∈ R≥0 × T, if (M, a, u) →∗
(b, a′, ε), then o(M)(a, u) = (a′, b).

Proof. By induction on the length of →∗. (Base case) Easy. (Induction step) By case analysis on
the first evaluation step of (M, a, u)→∗ (b, a′, ε).

• If the first evaluation step is of the form (E[N], a, u)→ (E[L], a′, u′) for some N
red−→ L, then by

Lemma 8.2, we have E[N] = E[N]. Because (E[L], a′, u′)→∗ (b, a′, ε), by induction hypothesis,
we obtain o(E[L])(a′, u′) = (a′, b). Hence, o(E[N])(a, u) = o(E[L], a′, u′) = (a′, b).

• If the first evaluation step is of the form (E[score(rc)], a, u) → (E[skip], |c| a, u), then by
induction hypothesis, we have o(E[skip])(|c| a, u) = (a′, b). Therefore, by the definition of
the Mealy machine sc, we see that o(E[score(rc)])(a, u) is (a′, b).

• If the first evaluation step is of the form (E[sample], a, c::u)→ (E[rc], a, u), then by induction
hypothesis, o(E[rc])(a, u) is (a′, b). Therefore, by the definition of the Mealy machine sample,
we see that o(E[sample])(a, c :: u) is (a′, b).

It remains to prove that o(M)(a, u) = (a′, b) implies that (M, a, u) →∗ (b, a′, ε). We use logical
relations. We define a binary relation O between closed terms of type Real and Mealy machines
from I to S⊗ !R by

(M,M) ∈ O ⇐⇒ if o(M)(a, u) = (a′, b), then (M, a, u)→∗ (b, a′, ε)

where o(M) : R≥0 × T → R≥0 × R is a partial measurable function given by: for each (a, u) ∈
R≥0 × T,
• if there are states s, s′ ∈ SM such that

τM((◦, (◦, (a, u))), sM) = ((•, (•, (a′, ε))), s),
τM((◦, (•, (0, ε))), s) = (•, (◦, (0, b :: ε)), s′),

i.e., if we have the following transitions:

M

!R

S
sM/s

(a, u)

(a′, ε)
M

!R

S
s/s′

(0, ε)

(0, b :: ε)

then we define o(M)(a, u) to be (a′, b);
• otherwise, o(M)(a, u) is undefined.
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We then inductively define binary relations

RA ⊆ {closed values of type A} × {Mealy machines from I to JAK}
R>A ⊆ {evaluation contexts x : A ` E[x] : Real} × {Mealy machines from !JAK to S⊗ !R}
RA ⊆ {closed terms of type A} × {Mealy machines from I to S⊗ !JAK}

by

RReal = {(ra, ra) : a ∈ R},
RUnit = {(skip, idI)},
RA→B = {(V,M) : ∀(W, N) ∈ RA, (V W, (S⊗ !JBK⊗ counit!JAK) ◦ (M⊗ !N)) ∈ RB},
R>A = {(E[−],E) : ∀(V,M) ∈ RA, (E[V],E ◦ !M) ∈ O},
RA = {(M,M) : ∀(E[−], E) ∈ R>A , (E[M], (m⊗ !R) ◦ (S⊗ E) ◦M) ∈ O}

We list some properties of the logical relations.

Lemma 8.3. Let A be a type.

1. If (V, M) ∈ RA, then (V, e⊗ !M) ∈ RA.

2. If (M,M) ∈ RA and N
red−→ M, then (N,M) ∈ RA.

3. If (M,M) ∈ RA and M
red−→ N, then (N,M) ∈ RA.

4. If (M,M) ∈ RA and M ' N, then (M,N) ∈ RA.

5. For any closed term M : A, (M, botS⊗!JAK) ∈ RA where botX : I( X is a token machine whose
transition function is the empty partial measurable function.

6. For any closed value V : A→ B, (V, botJA→BK) ∈ RA→B.

7. If (M,Mi) ∈ RA and [M1] ≤ [M2] ≤ · · · , then (M,N) ∈ RA where [N] is the least upper bound
of the ω-chain [M1] ≤ [M2] ≤ · · · .

Proof. We can check these items by unfolding the definition of O and the logical relations.

Lemma 8.4 (Basic Lemma). Let ∆ = (x : A1, . . . , xn : An) be a context.

• For any term ∆ ` M : A and for any (Vi, Ni) ∈ RAi for i = 1, 2, . . . , n, we have

(M{V1/x1, . . . , Vn/xn}, JMK ◦ (!N1 ⊗ · · · ⊗ !Nn)) ∈ RA.

• For any value ∆ ` V : A and for any (Vi, Ni) ∈ RAi for i = 1, 2, . . . , n, we have

(V{V1/x1, . . . , Vn/xn}, LMM ◦ (!N1 ⊗ · · · ⊗ !Nn)) ∈ RA.

Proof. By induction on M and V. Most cases follow from Lemma 8.3. For M = sample and
M = score(V), we check the statement by unfolding the definition of sa and sc. Here, we only
check for M = sample and M = fixA,B(f, x, N).

• When M = sample, for any (E,E) in R>Real, if

o((m⊗ !R) ◦ (S⊗ E) ◦ sa)(a, u) = (a′, b),

then by the definition of sa, we see that u = c :: u′ for some c ∈ R[0,1] and u′ ∈ T such that

o(E ◦ !rc)(a, u
′) = (a′, b).

Because (E,E) ∈ R>Real, we obtain (E[rc], a, u
′)→∗ (b, a′, ε). Hence,

(E[sample], a, u)→∗ (b, a′, ε).
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• When M = fixA,B(f, x, N), for simplicity, we suppose that M is a closed term. By induction
hypothesis, we can check that

(M, JλxA. NK ◦ !JλxA. NK ◦ · · · ◦ !kJλxA. NK ◦ botI,!kJA→BK) ∈ RA→B

by induction on n. Because [JMK] is the least upper bound of JλxA. MK◦!JλxA. NK◦· · ·◦!kJλxA. NK◦
botI,!kJA→BK (Proposition 9.1), we obtain (M, JMK) ∈ RA→B by Lemma 8.3.

Theorem 8.1. For any closed term ` M : Real and for any (a, u) ∈ R≥0 × T, we have

o(M)(a, u) = (a′, b) ⇐⇒ (M, a, u)→∗ (b, a′, ε).

Proof. If (M, a, u)→∗ (b, a′, ε), then we have o(M)(a, u) = (a′, b) by Proposition 8.1. If o(M)(a, u) =
(a′, b), then because ([−], e ⊗ id!R) is an element of R>Real, we obtain (M, a, u) →∗ (b, a′, ε) by
Lemma 8.4.

9 Approximation Lemma

Let M : !X( X be a Mealy machine. In this section, we give a way to calculate a Mealy machine
M† : I→ !X given by

M† = (M⊗ counit!X) ◦ ((cX ◦ !M ◦ dgX)⊗ id!X) ◦ unit!X

Diagrammatically, M† consists of digging, contraction and a feed back loop:

!Mdg c

M

!!X !X

!X X

!X!X

This construction already appeared in the interpretation of the fixed point operator. In fact, for
a term f : A→ B, x : A ` M : B, we have JfixA,B(f, x, M)K = JλxA. MK†.

The goal of this section is to show that M† is a fixed point of M and can be approximated by
a family of Mealy machines

M ◦ botI,!X, M ◦ !(M ◦ botI,!X), M ◦ !(M ◦ !(M ◦ botI,!X)), . . . : I( X.

9.0.1 Parametrized Modal Operator and Parametrized Loop Operator

We introduce parametrization of the modal operator !. For a subset α ⊆ N and for a Mealy
machine M : X( Y, we define a Mealy machine !αM : !X( !Y by: the state space and the initial
state of !αM are given by

S!αM = S!M = SN
M, s!αM = s!M

and τ!αM is given by

τ!M((i, (n, z)), (sn)n∈N) ={
((j, (n,w)), (s1, . . . , sn−1, t, sn+1, . . .)), if n ∈ α and τM((i, z), sn) = ((j, w), t),

undefined, otherwise

where i, j ∈ {0, 1} and z, w vary over the corresponding sets. For example, if we have

M
YX

s/s′

x y ,
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M†,αn+1 ' !αn+1Mdg c

M

!!X !X

!X X

!X!X

'
!βnM

!M

dg c

M

!!X

!!X

!!X

!X X

!X!X

' !βnM

!M

dg c

M

!!X

!!X

!!X

!X X

!X!!X

' !αn !M

!M

dg c

M

!!X

!!X

!!X

!X X

!!!X!!X

Figure 5: A Diagrammatic Proof of Lemma 9.2

then for any t1, t2, . . . ∈ SM and for any n ∈ N, we have

!M
YX

(t1, . . . , tn−1, s, tn+1, . . .)/(t1, . . . , tn−1, s
′, tn+1, . . .)

(n, x) (n, y)

whenever n ∈ α. When n /∈ α, there is no output from !αM. We can think !αM as a “restriction”
of !M to α. In fact, !M is equal to !NM.

We are interested in restrictions of ! to subsets αn, βn ⊆ N inductively given by

α0 = ∅, βn = {〈i, j〉 : i ∈ αn and j ∈ N}, αn+1 = {2i : i ∈ N} ∪ {2i+ 1 : i ∈ βn}.

The definition of αn and βn are motivated by the following lemma.

Lemma 9.1. For any n ∈ N and for any M : X( Y, we have

cY ◦ !αn+1
M ' (!M⊗ !βnM) ◦ cX, dgY ◦ !βn+1

M ' !αn !M ◦ dgX.

By means of !α, we can also parametrize the operator (−)†. For α ⊆ N, and for M : !X( X,
we define M†,α : I→ !X by

M†,α = (M⊗ counit!X) ◦ ((cX ◦ !αM) ◦ dgX)⊗ id!X ◦ unit!X.

It is easy to see that M† is equal to M†,N.

Lemma 9.2. For any Mealy machine M : !X( X, we have

M†,αn+1 ' M ◦ (!M)†,αn .

Proof. See Figure 5.

Lemma 9.3. For any Mealy machine M : !X( X and for any n ∈ N,

(!M)†,αn ' !(M†,αn).
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Proof. We prove the statement by induction on n. The base case follows from that the transition
functions of (!M)†,α0 and !(M†,α0) are equal to the empty partial function. We next check the
induction step. We have

(!M)†,αn+1 ' !M ◦ (!!M)†,αn (Lemma 9.2)

' !M ◦ !(!M)†,αn (Induction hypothesis)

' !(M ◦ (!M)†,αn) (Functoriality)

' !(M†,αn+1). (Lemma 9.2)

Proposition 9.1. For a Mealy machine M : !X( X, we inductively define itern(M) : I( X by

iter0(M) = botI,X, itern+1(M) = M ◦ !(itern(M)).

For all n ∈ N, we have

SM† = SM†,αn , sM† = sM†,αn , M†,αn ' itern(M),

and
τM†,α0 ≤ τM†,α1 ≤ τM†,α2 ≤ · · · , τM† =

∨
n≥0

τM†,αn .

Hence, we have an ascending chain

[M†,α0 ] ≤ [M†,α1 ] ≤ [M†,α2 ] ≤ · · · ,

and [M†] is the least upper bound of the ascending chain [itern(M)].

Proof. It follows from the definition of !αn , we have

S!M = S!αnM, s!M = s!αnM

for all n ∈ N, and

τ!α0M
≤ τ!α1M

≤ τ!α2M
≤ · · · , τ!M =

∨
n≥0

τ!αnM

Hence, by the definition of the composition and the monoidal product, we have

SM† = SM†,αn , sM† = sM†,αn

for all n ∈ N, and

τM†,α0 ≤ τM†,α1 ≤ τM†,α2 ≤ · · · , τM† =
∨
n≥0

τM†,αn .

It remains to check itern(M) ' M†,αn . We show this by induction on n. For the base case, we
have M†,∅ ' iter0(M) because these Mealy machines M†,∅ and iter0(M) are behaviorally equivalent
to botI,X. For the induction step,

M ◦ !(itern(M))
induction hypothesis

' M ◦ !(M†,αn)
Lemma 9.3' M ◦ (!M)†,αn

Lemma 9.2' M†,αn+1 .

Because itern+1(M) is equal to M ◦ !(itern(M)), we obtain itern+1(M) ' M†,αn+1 .

Proposition 9.2. For any Mealy machine M : !X( X,

M ◦ !(M†) ' M†.

Proof. Because !(−) and the composition of Mealy machines are continuous, we have

M ◦ !(M†) ' M ◦
∨
n∈N

!(M†,αn) '
∨
n∈N

(M ◦ !(M†,αn)) '
∨
n∈N

itern+1(M) '
∨
n∈N

M†,αn+1 ' M†.
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10 How About S-Finite Kernels?

The reader experienced with the semantics of probabilistic programming languages have probably
already wondered whether a GoI model for PCFSS could be given out of s-finite kernels instead
of measurable functions, following Staton’s work on the semantics of a first-order probabilistic
programming language [32].

The answer is indeed positive: the kind of construction we have presented in Section 5 can in
fact be adapted to the category of measurable spaces and s-finite kernels. The latter, being traced
monoidal, has all the necessary structure one needs [27]. What one obtains proceeding this way
is indeed a GoI model, but adequate only for the distribution-based operational semantics.

The interpretation of any program in this alternative GoI can be seen as structurally identical
to the one from Section 5 once the sample and score operators are interpreted as usual, namely
as those s-finite kernels which actually perform sampling and scoring internally. Below, we first
recall the definition of s-finite kernel, and then we introduce Mealy machines whose transition is
described in terms of an s-finite kernel, and we give some basic Mealy machines. Finally, we give
an adequate GoI model for the distribution-based operational semantics.

Being adequate for the distribution-based semantics directly (and not by way of integration as
in Theorem 7.2) has the pleasant consequence of validating a number of useful program transfor-
mations, and in particular commutation of sampling and scoring effects, see [28] for a thorough
discussion about this topic, and about how s-finite kernels are a particularly nice way of achieving
commutativity in presence of scoring.

10.1 S-finite Kernels

Let k : X  Y be a kernel. We say that k is finite when there is a real number c > 0 such that
for all x ∈ X and A ∈ ΣY , we have k(x,A) < c. An s-finite kernel is a kernel k : X  Y such
that there is a countable family {kn : X  Y } of finite kernels such that k(x,A) =

∑
n∈N kn(x,A)

for all x ∈ X and A ∈ ΣY . It is easy to see that s-finite kernels are closed under the pointwise
addition. We write

∑
i∈I ki : X  Y for the pointwise addition of s-finite kernels ki : X  Y . A

(sub)probability kernel is a kernel k : X  Y such that k(x,−) is a (sub)probability measure on
X for all x ∈ X. Every (sub)probability kernel is a finite kernel.

Every measurable function f : X → Y gives rise to a probability kernel f̂ : X  Y given by

f̂(x,A) = [f(x) ∈ A].

We denote the probability kernel induced by the identity measurable function by idX : X  X.
Concretely, this is given by idX(x,A) = [x ∈ A].

We recall two constructions of s-finite kernels.

• (Composition) For s-finite kernels k : X  Y and h : Y  Z, we define an s-finite kernel
h ◦ k : X  Z by

(h ◦ k)(x,C) =

∫
h(y, C)k(x, dy).

The composition of s-finite kernels is associative and satisfies the unit laws, namely, we have
k ◦ idX = k and idY ◦ k = k.

• (Tensor product) For s-finite kernels k : X  Y and h : Z  W , we define an s-finite kernel
k⊗ h : X ×Z  Y ×W to be the unique s-finite kernel such that for all (x, z) ∈ X ×Z and
for all A ∈ ΣY and B ∈ ΣW ,

(k ⊗ h)((x, z), A×B) = k(x,A)h(z,B).

The tensor product and the coproduct of s-finite kernels is functorial. This means that these con-
structors are compatible with the composition and preserve identities. The following proposition
summarizes catagorical status of these structures.
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Proposition 10.1. The category of measurable spaces and s-finite kernels with ⊗ forms a sym-
metric monoidal category where the unit object is 1. The object ∅ is the zero object, and X + Y
with

înlX,Y : X  X + Y, ̂inrX,Y : Y  X + Y,

forms the coproduct of X and Y where inlX,Y : X → X + Y and inrX,Y : X → X + Y are the
first and the second injections. Furthermore, the monoidal product distributes over the coproducts.

Namely, the canonical s-finite kernel ̂dstX,Y,Z : X × Z + Y × Z  (X + Y )× Z given by

dstX,Y,Z(•, (x, z)) = ((•, x), z), dstX,Y,Z(◦, (y, z)) = ((◦, y), z)

is a natural isomorphism.

Proof. For associativity of the composition, see [32, Lemma 3], and for functoriality of ⊗, see [32,
Proposition 5]. It is not difficult to check that the category of measurable spaces and s-finite kernels
associated with ⊗ and 1 forms a symmetric monoidal category. For s-finite kernels f : X  Z and
g : Y  Z, the cotupling [f, g] : X + Y  Z is given by

[f, g]((•, x), A) = f(x,A), [f, g]((◦, y), A) = g(y,A).

It follows from universality of coproducts that ̂dstX,Y,Z is a natural isomorphism.

For s-finite kernels k : X  Y and h : Z  W , we define an s-finite kernel k⊕h : X+Z  Y +W
by

(k ⊕ h)((•, x), A) = k(x,AY ) where AY = {y : (•, y) ∈ A},
(k ⊕ h)((◦, z), A) = k(x,AW ) where AW = {w : (◦, w) ∈ A}.

This is the unique s-finite kernel satisfying

(k ⊕ h) ◦ inlX,Z = inlY,W ◦ k, (k ⊕ h) ◦ inrX,Z = inrY,W ◦ h.

10.2 Probabilistic Mealy Machine

Definition 10.1. For Int-objects X and Y, a probabilistic Mealy machine M from X to Y consists
of

• a measurable space SM called the state space of M;

• an element sM ∈ SM called the initial state of M;

• an s-finite kernel τM : (X+ + Y −)× SM  (Y + +X−)× SM called the transition relation.

When M is a probabilistic Mealy machine from X to Y, we write M : X _ Y.

We can regard a Mealy machine M : X( Y as a probabilistic Mealy machine from X to Y by
identifying the transition function τM : (X++Y −)×SM → (Y ++X−)×SM with the correspondnig
s-finite kernel τ̂M : (X+ +Y −)×SM  (Y + +X−)×SM. In the sequel, we confuse Mealy machines
(and token machines) with corresponding probabilistic Mealy machines.

Let X1, . . . ,Xn and Y1, . . . ,Ym be Int-object. Just like Mealy machines, we depict a proba-
bilistic Mealy machine M from X1 ⊗ · · · ⊗ Xn to Y1 ⊗ · · · ⊗ Ym as a box with edges labeled by
X1, . . . ,Xn on the left hand side and edges labeled by Y1, . . . ,Ym on the right hand side:

M

Ym

...
Y1

Xn

...
X1 ,
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and we depict transitions as arrows. For example, when n = m = 1, we depict

τM(((◦, y), s), A) = 0.4[((◦, x), s1) ∈ A],

for y ∈ Y −1 , x ∈ X−1 and s, s1, s2 ∈ SM as the following arrow

M

s/s1
Y1X1

y
0.4

x

where the positive real on the arrow indicate probabilities of the transition. Below, we may omit
states and probabilities of transitions when they are not important or are easy to infer.

10.3 Behavioral Equivalence

We give an equivalence relation between probabilistic Mealy machines so as to identify probabilistic
Mealy machines that behaves in the same way. Let X and Y be Int-objects, and let M and N
be probabilistic Mealy machines from X to Y. We write M ∼X,Y N when there is a measurable
function f : SM → SN such that f(sM) = sN and the following diagram commutes:

(X+ + Y −)× SM
id⊗f̂

//

τM

��

(X+ + Y −)× SN

τN

��

(Y + +X−)× SM
id⊗f̂

// (Y + +X−)× SN .

We define an equivalence relation 'X,Y to be the symmetric transitive closure of ∼X,Y. A proba-
bilistic Mealy machine M : X _ Y is behaviorally equivalent to N : X _ Y when we have M 'X,Y N.
When we can infer subscripts of 'X,Y, we omit them. We say that a measurable function
f : SM → SN realizes a behavioral equivalence M ' N (realizes M ∼ N) when M ∼ N is wit-
nessed by f .

10.4 Construction of probabilistic Mealy Machines

We introduce probabilistic Mealy machines and their constructions that are building blocks of our
denotational semantics. Most of them are adoptation of Mealy machines in Section 5.4, and we
just give their formal definitions.

10.4.1 Composition/Cut

For probabilistic Mealy machines M : X _ Y and N : Y _ Z, we define the state space and the
initial states of N ◦M by SN◦M = SM × SN, sN◦M = (sM, sN) and we define the transition relation
τN◦M by

τN◦M = kX+,Z−,Z+,X− ∨
∨
n∈N

kY +,Y −,Z+,X− ◦ knY +,Y −,Y +,Y − ◦ kX+,Z−,Y +,Y −

where kA,B,C,D : (A+B)×SN◦M  (C+D)×SN◦M are restrictions of the following s-finite kernel

(X+ + Z− + Y + + Y −)× SN◦M
∼=��

(X+ + Y −)× SM × SN + (Y + + Z−)× SN × SM

(τM⊗SN)⊕(τN⊗SM)��

(Y + +X−)× SM × SN + (Z+ + Y −)× SN × SM
∼=��

(Z+ +X− + Y + + Y −)× SN◦M ,
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namely, the s-finite kernels kA,B,C,D satisfies

A× SN◦M

kA,B

��

inj, dst
// ((X+ + Y −)× SM × SN) + ((Y + + Z−)× SN × SM)

(τM⊗idSN )⊕(τN⊗idSM )

��

B × SN◦M
inj, dst

// ((Y + +X−)× SM × SN) + ((Z+ + Y −)× SN × SM) .

Here, the horizontal arrows consists of the injection from A into X+ + Y − + Y + + Z− followed
by distributivity and symmetry. For example, when A = X+ +Z−, the upper horizontal arrow is
given by

(X+ + Z−)× SN◦M

(inlX+,Y−⊕inrY+,Z− )⊗idSN◦M
��

((X+ + Y −) + (Y + + Z−))× SN◦M

dstX++Y−,Y++Z−,SN◦M
��

((X+ + Y −)× SN◦M) + ((Y + + Z−)× SN◦M)

id(X++Y−)×SN◦M
⊕(idY++Z−⊗symSN,SM )

��

((X+ + Y −)× SM × SN) + ((Y + + Z−)× SN × SM) .

Joins in the definition of the composition of probabilistic Mealy machines are the pointwise ordoer.
We can check that the composition of probabilistic Mealy machines is compatible with behavioural
equivalence and that Int-objects and the composition of probabilistic Mealy machines is a category
where the identity on an Int-object X is idX : X _ X (regarded as a probabilistic Mealy machine).

10.4.2 Monoidal Products

We give monoidal products of probabilistic Mealy machines. For probabilistic Mealy machines
M : X _ Z and N : Y _ W, we define a probabilistic Mealy machine M ⊗ N : X ⊗ Y _ Z ⊗W by:
SM⊗N = SM × SN, sM⊗N = (sM, sN) and τM⊗N is given by

((X+ + Y +) + (W− + Z−))× SM⊗N
∼=��

(X+ + Z−)× SM × SN + (Y + +W−)× SN × SM

(τM⊗SN)⊕(τN⊗SM)��

(Z+ +X−)× SM × SN + (W+ + Y −)× SN × SM
∼=��

((Z+ +W+) + (Y − +X−))× SM⊗N .

It is not difficult to check that the monoidal product is compatible with behavioural equivalence.
We depict M⊗ N : (X⊗ Y) _ (Z⊗W) as follows:

M

N

ZX

WY

For unitX, counitX and symX,Y, we adopt the same diagrammatic presentation.

10.4.3 A Modal Operator

Let M : X _ Y be a probabilistic Mealy machine. We define a probabilistic Mealy machine
!M : !X _ !Y by: the state space of !M is defined to be |M|N associated with the least σ-algebra
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such that for all A1, A2, . . . ∈ ΣM,

A1 ×A2 × · · · ∈ Σ!M;

the initial state s!M is (sM, sM, . . .); the transition function τ!M is the unique partial measurable
function satisfying

(X+ + Y −)× SM × SN
M

(injn⊕injn)⊗insn
//

τM⊗SN
M

��

(N×X+ + N× Y −)× SN
M

τ!M

��

(Y + +X−)× SM × SN
M

(injn⊕injn)⊗insn
// (N× Y + + N×X−)× SN

M

for all n ∈ N. Here, injn : (−) → N× (−) are the nth injections, and insn : SM × SN
M → SN

M sends
(s, {sn}n∈N) to (s0, . . . , sn−1, s, sn, sn+1, . . .).

10.4.4 Diagrammatic Reasoning on Probabilistic Mealy Machines

Diagrammatic reasoning is valid also for probabilistic Mealy machines.

Proposition 10.2. The category pMealy of Int-object and probabilistic Mealy machines (modulo
behavioural equivalence) is a compact closed category. The dual of an Int-object X is X⊥. The
unit and the counit arrows are unitX and counitX.

Proposition 10.3. If two probabilistic Mealy machines have the same diagrammatic presentation
modulo some rearrangement of edges and nodes, then they are behaviourally equivalent.

We can check Proposition 10.2 by replacing the category of partial measurable functions by
the category of s-finite kernels in Section 5.6.

10.4.5 A State Monad

We define an Int-object J by (1, 1) and define an Int-object J0 by (1, ∅). Then J⊗ (−) is a state
monad (on pMealy), whose unit and multiplication are given by:

j⊗ X : X _ J⊗ X, n⊗ X : J⊗ J⊗ X _ J⊗ X

where j = unitJ0 and n = J0 ⊗ counitJ0 ⊗ J⊥0 .

10.4.6 Scoring

We construct a probabilistic Mealy machine Sc : R _ J by:

SSc = 1, sSc = ∗

and

τSc(((•, u), ∗), A) =

{
|a| [((•, ∗), ∗) ∈ A], if u = a :: v,

0, otherwise,
τSc(((◦, ∗), ∗), A) = [((◦, ε), ∗) ∈ A].

The probabilistic Mealy machine simulates scoring score(ra) as follows:

ra Sc

R J |a|

ε

a :: ε

∗
∗

.
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10.4.7 Sampling

We define a Mealy machine Sa : I _ J ⊗ !R by: the state space SSa is defined to be {∗} ∪ R[0,1],
and the initial state sSa is ∗, and the transition function

τSa : (∅+ (N× S + 1))× SSa  ((1 + N× S) + ∅)× SSa

is given by

τSa(((◦, (•, (n, u))), s), A) = [((•, (◦, (n, s :: u))), s) ∈ A] [s ∈ R],

τSa(((◦, (◦, ∗)), s), A) = [s = ∗]µBorel({a ∈ R[0,1] : ((•, (•, ∗)), a) ∈ A}).

The probabilistic Mealy machine behaves as follows:

• In the initial state ∗, given ∗ from the J-edge, Sa draws a real number from the uniform
distribution and stores the real number:

Sa

!R

J

∗/a

∗
∗

.

For example, the probability of the state being a real number in [0, 0.3] after this transition
is 0.3.

• After this transition, Sa returns (n, a :: u) to each “query” (n, u):

Sa

!R

J

a/a
(n, u)

(n, b :: u)

.

11 Probabilistic Mealy Machine Semantics for PCFSS

We interpret a type A as the Int-object JAKd given by

JUnitKd = I, JRealKd = R, JA→ BKd = J⊗ !JBKd ⊗ !JAK⊥d .

We define interpretation of contexts by

Jx : A, . . . , y : BKd = JAKd ⊗ · · · ⊗ JBKd.

When ∆ is the empty sequence, we define J∆Kd to be I.
We interpret terms ∆ ` M : A and values ∆ ` V : A by

J∆ ` M : AKd : !J∆Kd _ S⊗ !JAKd, L∆ ` V : AMd : !J∆Kd _ JAKd

inductively defined by diagrams in Figure 6 where Mealy machines are regarded as probabilistic
Mealy machines in the obvious manner.

11.1 Soundness and Adequacy

11.1.1 Observation

Let M : I _ J ⊗ !R be a probabilistic Mealy machine. We define s-finite kernels t0 : 1  SM and
t1 : SM  R by

tM0 (∗, A) = τM(((◦, (◦, ∗)), sM), {((•, (•, ∗)), s) : s ∈ A}),
tM1 (s,A) = τM(((◦, (•, (0, ε))), s), {(•, (◦, (0, a :: ε))) : a ∈ A}).

Then we define a measure obs(M) on R to be tM1 ◦ tM0 (∗,−). Intuitively, obs(M) is a measure that
describes distribution of real numbers obtained by the following process:
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J∆`V:AKd

dg !LVMd

j

!J∆Kd !!J∆Kd !JAKd

J
w

d

!J∆Kd

!JAKd JAKd

L∆,x:A`x:AMd

c

LVMd

dg !LWMd
!!J∆Kd!J∆Kd

!J∆Kd

!J∆Kd

!JAKd

!JBKd

J

J∆`V W:BKd

JMKd
!J∆Kd

!JAK⊥d

J

!JBKd

L∆`λxA. M:A→BMd

c

JMKd JNKd

n

!J∆Kd

!J∆Kd
!JBKd

!J∆Kd
J

J

!JAKd

J

J∆`let x be M in N:AKd

w
!J∆Kd

L∆`skip:UnitMd

w ra
!J∆Kd R

L∆`ra:RealMd

!LVMd !fnfdg

j
J

!!J∆Kd!J∆Kd !R !R

J∆`F(V):RealKd

LVMd Sc
!J∆Kd R J

J∆`score(V):UnitKd

Saw
!J∆Kd !R

J

J∆`sample:RealKd

c

dg

dg

!M c

M
!J∆Kd

!J∆Kd
!J∆Kd

!!J∆Kd

!!JCKd

!JCKd
!JCKd

!JCKd!JCKd

JCKd

L∆`fixA,B(f,x,M):A→BMd
C=A→B,

M=JλxA. MKd
: !J∆Kd⊗!JCKd_JCKd

JMKd

JNKd

LVMd

cdc
!J∆Kd !J∆Kd

!J∆Kd

!J∆Kd

J⊗ !JAKdJ⊗ !JAKd

J⊗ !JAKd

R

J∆`ifz(V,M,N):AKd

Figure 6: Interpretation of Terms and Values

• We first input ∗ to the J-wire of M.

• If M outputs ∗ to the J-wire, then we input (0, ε) to the !R-wire of M.

• We only observe outputs of the form (0, a :: ε) for some a ∈ R.

For example, obs(sa) is the uniform distribution over R[0,1].

Theorem 11.1 (Soundness and Adequacy). For any closed term ` M : Real, if M ⇒∞ µ, then
obs(JMK) = µ.

Below, we give a proof of Theorem 11.1.

11.1.2 Proof of Adequacy Theorem

Lemma 11.1. For any term ∆, x : A ` M : B and for any closed value ` V : A,

JMKd ◦ (J∆Kd ⊗ !LVMd) ' JM{V/x}Kd.

Proof. By induction on M.
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Lemma 11.2. For all closed terms M, N : A, if M
red−→ N, then JMK = JNK.

Proof. By case analysis. For the case of recursion, see Corollary 11.1.

We first prove soundness.

Proposition 11.1. For any closed term M : Real, if M⇒n µ, then µ ≤ obs(JMKd).

Proof. By induction on n. (Base case) Easy. (Induction step) By case analysis.

• If M = ra, then obsJMKd = δa.

• If M = E[N] and N
red−→ L, then obs(JMKd) = obs(JE[L]Kd) ≥ µ.

• If M = E[score(ra)] and E[skip] ⇒n−1 µ, then by the definition of obs(−), we see that
obs(JMKd) = |a| obs(JE[skip]Kd) ≥ |a|µ.

• If M = E[sample] and E[ra] ⇒n−1 k(a,−) for some finite kernel k, then by the definition of
t0 and t1, we see that

t
JMKd
0 = 1

µBorel
// R h

// SJMKd × R
injection

// SJMKd × (1 + R) ,

t
JMKd
1 ((s, a),−) = t

JE[ra]Kd
1 (s,−),

t
JMKd
1 ((s, 0),−) = 0

for some h such that h(a,−) = t
JE[ra]Kd
0 × δa. Hence,

(t
JMKd
1 ◦ tJMKd0 )(∗, A) =

∫
R[0,1]

(t
JE[ra]Kd
1 ◦ tJE[ra]Kd0 )(∗, A) da ≥

∫
R[0,1]

k(a,A) da.

It remains to prove that M⇒∞ µ implies obs(JMKd) ≤ µ. We use logical relations. We define a
binary relation Od between closed terms of type Real and probabilistic Mealy machines from I to
J⊗ !R by

(M,M) ∈ Od ⇐⇒ if M⇒∞ µ then obs(M) ≤ µ.

We then inductively define binary relations

SA ⊆ {closed values of type A} × {Mealy machines from I to JAK}
S>A ⊆ {evaluation contexts x : A ` E[x] : Real} × {Mealy machines from !JAK to J⊗ !R}
SA ⊆ {closed terms of type A} × {Mealy machines from I to J⊗ !JAK}

by

SReal = {(ra, ra) : a ∈ R},
SUnit = {(skip, idI)},
SA→B = {(V,M) : ∀(W, N) ∈ SA, (V W, (J⊗ !JBKd ⊗ counit!JAKd) ◦ (M⊗ !N)) ∈ SB},
S>A = {(E[−],E) : ∀(V,M) ∈ SA, (E[V],E ◦ !M) ∈ Od},
SA = {(M,M) : ∀(E[−], E) ∈ S>A , (E[M], (n⊗ !R) ◦ (J⊗ E) ◦M) ∈ Od}

We list some properties of the logical relations.

Lemma 11.3. Let A be a type.

1. If (V, M) ∈ SA, then (V, j⊗ !M) ∈ SA.
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2. If (M,M) ∈ SA and N
red−→ M, then (N,M) ∈ SA.

3. If (M,M) ∈ SA and M
red−→ N, then (N,M) ∈ SA.

4. If (M,M) ∈ SA and M ' N, then (M,N) ∈ SA.

5. For any closed term M : A, (M, botJ⊗!JAK) ∈ SA where botX : I _ X is a token machine whose
transition function is the zero kernel.

6. For any closed value V : A→ B, (V, botJA→BK) ∈ SA→B.

7. If (M,Mi) ∈ SA and SM1
= SM2

= · · · and sM1
= sM2

= · · · and τM1
≤ τM2

≤ · · · , then
(M,N) ∈ SA where N is given by SN = SM1

, sN = sM1
, τN =

∨
n τMn .

Proof. We can check these items by unfolding the definition of Od and the logical relations.

Lemma 11.4 (Basic Lemma). Let ∆ = (x : A1, . . . , xn : An) be a context.

• For any term ∆ ` M : A and for any (Vi, Ni) ∈ SAi for i = 1, 2, . . . , n, we have

(M{V1/x1, . . . , Vn/xn}, JMKd ◦ (!N1 ⊗ · · · ⊗ !Nn)) ∈ SA.

• For any value ∆ ` V : A and for any (Vi, Ni) ∈ SAi for i = 1, 2, . . . , n, we have

(V{V1/x1, . . . , Vn/xn}, LMMd ◦ (!N1 ⊗ · · · ⊗ !Nn)) ∈ SA.

Proof. By induction on M and V. Most cases follow from Lemma 11.3. For M = sample and
M = score(V), we check the statement by unfolding the definition of Sa and sc. Here, we only
check for M = sample and M = fixA,B(f, x, N).

• When M = sample, let (E,E) be a pair in R>Real. We write N for (n ⊗ !R) ◦ (J ⊗ E) ◦ Sa. By
the definition of t0 and t1, we have

tN0 = 1
µBorel

// R h
// SN × R

injection
// SN × (1 + R) ,

tN1 ((s, a),−) = tE◦ra1 (s,−),

tN1 ((s, 0),−) = 0

for some h such that h(a,−) = tE◦ra0 × δa. Hence,

(tN1 ◦ tN0 )(∗, A) =

∫
R[0,1]

(tE◦ra1 ◦ tE◦ra0 )(∗, A) da =

∫
R[0,1]

k(a,A) da.

• When M = fixA,B(f, x, N), for simplicity, we suppose that M is a closed term. By induction
hypothesis, we can check that

(M, LλxA. NMd ◦ !LλxA. NMd ◦ · · · ◦ !kLλxA. NMd ◦ botI,!kJA→BKd) ∈ RA→B

by induction on n. By Lemma 11.3 and Proposition 11.2, we obtain (M, JMK) ∈ RA→B.

Theorem 11.2. For any closed term ` M : Real, if M⇒∞ µ, then

obs(JMKd) ≤ µ.

Proof. By soundness, we have µ ≤ obs(JMKd). On the other hand, because ([−], j ⊗ id!R) is an
element of S>Real, we obtain the other inequality by Lemma 11.4.
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11.1.3 Induction step on recursion

Our Goal: Approximation Lemma Let M : !X _ X be a Mealy machine. In this section, we
show that a Mealy machine M† : I→ !X given by

M† = (counit!X ⊗M) ◦ ((conX ◦ !M ◦ dgX)⊗ id!X) ◦ unit!X.

is a “least” fixed point of M. Diagrammatically, M† consists of digging, contraction and a feed
back loop:

dgX !M conX

M

!!X !X

!X X

!X
!X

This construction already appeared in the interpretation of the fixed point operator. In fact, for
a term f : A→ B, x : A ` M : B, we have JfixA,B(f, x, M)K = JλxA. MK†.

Parametrized Modal Operator and Parametrized Loop Operator We introduce parametriza-
tion of the modal operator ! and the loop operator (−)†. For α ⊆ N, we define !αM by: the state
space and the initial state of !M are given by

S!αM = S!M = SN
M, s!αM = s!M

and τ!αM is a unique s-finite kernel such that the following diagrams commute:

• for any n ∈ α,

(X+ + Y −)× SM × S!αM

τM⊗S!αM

��

(injn⊕injn)⊗insn
// ((N×X+) + (N× Y −))× S!αM

τ!αM

��

(Y + +X−)× SM × S!αM

(injn⊕injn)⊗insn
// ((N× Y +) + (N×X−))× S!αM ,

• for any n 6∈ α,

(X+ + Y −)× SM × S!αM

τM⊗S!αM

��

(injn⊕injn)⊗insn
// ((N×X+) + (N× Y −))× S!αM

∅
��

(Y + +X−)× SM × S!αM

(injn⊕injn)⊗insn
// ((N× Y +) + (N×X−))× S!αM ,

Let αn, βn ⊆ N be

α0 = ∅, βn = {〈i, j〉 : i ∈ αn and j ∈ N}, αn+1 = {2i : i ∈ N} ∪ {2i+ 1 : i ∈ βn}.

The definition of αn and βn are motivated by the following lemma.

Lemma 11.5. For any n ∈ N and for any M : X _ Y, we have

conY ◦ !αn+1M ' (!M⊗ !βnM) ◦ conX, dgY ◦ !βn+1M ' !αn !M ◦ dgX.

By means of !α, we also parametrize the operator (−)†. For α ⊆ N, and for M : !X _ X, we
define M†,α : I→ !X by

M†,α = (counit!X ⊗M) ◦ ((conX ◦ !αM) ◦ dgX)⊗ id!X ◦ unit!X.

Because !NM = !M, we have M† = M†,N.
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Lemma 11.6. For any α ⊆ N, we have

SM†,α = SM† , sM†,α = sM† .

Below, we write h(M) : SM† → SM × SN
M for the isomorphism obtained by applying 1× (−) ∼= (−)

to SM.

Lemma 11.7. There is a family of measurable functions φX : (XN)N → (XN)N such that the
following diagram commutes:

(XN)N

u
XN

��
φX

))

(XN)N × ((XN)N)N

(XN)N×φ
XN

��

(XN)N × ((XN)N)N ∼=
// (XN × (XN)N)N

(u−1
X )N

// (XN)N .

where uX : XN → XN × (XN)N is a measurable isomorphism given by

uX(xn)n∈N = ((x2n)n∈N, ((x2〈m0,m1〉+1)m0∈N)m1∈N).

Proof. In this proof, for sets N1, N2, . . . , Nk, we identify elements in (((XN1)N2) · · · )Nk with func-
tions from N1 × N2 × · · · × Nk to X. For x ∈ (XN)N and (a, b) ∈ N, We define (φX(x))(a, b) by
induction on a:

(φX(x))(a, b) =

{
x(a′, 2b), if a = 2a′;

(φXN(x′))(a0, a1, b), if a = 2〈a0, a1〉+ 1.

where x′ ∈ ((XN)N)N is given by

x′(n,m, l) = x(n, 2〈m, l〉+ 1).

We note that this definition makes sense because a = 2〈a0, a1〉+ 1 implies a1 < a. It is straight-
forward to check the family φX makes the above diagram commute.

Lemma 11.8. For any Mealy machine M : !X _ X, we have

M†,αn+1 ' M ◦ (!M)†,αn ,

which is realized by u′M given by

SM†,αn+1
∼= SM × SN

M

SM×uSM−−−−−→ SM × SN
M × (SN

M)N ∼= SM◦(!M)†,αn

where the first and the last isomorphisms are obtained by applying canonical isomorphisms 1 ×
(−) ∼= (−) and (−)× 1 ∼= (−).

Proof. See Figure 5.

Lemma 11.9. For any Mealy machine M : !X _ X and for any n ∈ N,

(!M)†,αn ' !(M†,αn)

which is realized by φ′M given by

S(!M)†,αn
∼= SN

M × (SN
M)N

SN
M×φSM

// SN
M × (SN

M)N
∼=

// (SM × SN
M)N ∼= S!(M†,αn )

where the first and the last isomorphisms are obtained by applying canonical isomorphisms 1 ×
(−) ∼= (−) and (−)× 1 ∼= (−).
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Proof. We prove the statement by induction on n. The base case follows from that the transition
relations of (!M)†,α0 and !(M†,α0) are the zero kernels. We next check the induction step. We have

(!M)†,αn+1 ' !M ◦ (!!M)†,αn (Lemma 11.8)

' !M ◦ !(!M)†,αn (Induction hypothesis)

' !(M ◦ (!M)†,αn) (Proposition 5.3)

' !(M†,αn+1). (Lemma 11.8)

By Lemma 11.7, this behavioral equivalence is realized by φ′M.

Proposition 11.2. For a Mealy machine M : !X _ X, we inductively define itern(M) : I _ X by

iter0(M) = botI,X, itern+1(M) = M ◦ !(itern(M)).

For all n ∈ N, we have

SM† = SM†,αn , sM† = sM†,αn , M†,αn ' itern(M),

and
τM†,α0 ≤ τM†,α1 ≤ τM†,α2 ≤ · · · , τM† =

∨
n≥0

τM†,αn .

Proof. It follows from the definition of !αn , we have

S!M = S!αnM, s!M = s!αnM

for all n ∈ N, and

τ!α0
M ≤ τ!α1

M ≤ τ!α2
M ≤ · · · , τ!M =

∨
n≥0

τ!αnM

Hence, by continuity of the composition, the coproduct and the monodal product of s-finite kernels,
we have

SM† = SM†,αn , sM† = sM†,αn

for all n ∈ N, and

τM†,α0 ≤ τM†,α1 ≤ τM†,α2 ≤ · · · , τM† =
∨
n≥0

τM†,αn .

By induction on n ∈ N, we show that we have

itern(M) ' M†,αn ,

which is realized by fn. For the base case, we have M†,∅ ' iter0(M) because these Mealy ma-
chines M†,∅ and iter0(M) are behaviorally equiavalent to empI,X. The induction step follows from
Lemma 11.8.

Corollary 11.1. For any Mealy machine M : !X _ X,

M ◦ !M† ' M†.

Proof. By Proposition 9.1, we have

SM◦!(M†) = SM◦!(M†,αn ), sM◦!(M†) = sM◦!(M†,αn ),

and
τM◦!(M†) =

∨
n∈N

τM◦!(M†,αn ).
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Therefore, by Lemma 11.8 and Lemma 11.9, the following diagram commutes:

X− × SN
M

X+⊗(u′M◦(SM×φ′M))∧
//

∨
n∈N τM◦!(M†,αn+1)

��

X− × SN
M∨
n∈N τM†,αn+1

��

X− × SN
M

X+⊗(u′M◦(SM×φ′M))∧
// X− × SN

M .

It is easy to see that u′M ◦ (SM × φ′M) preserves the initial states. Hence, M ◦ !(M†) ' M†.

11.1.4 Commutativity Modulo Observational Equivalence

Definition 11.1. For terms ` M, N : A, we say that M is observationally equivalent to N when for
all context C[−], if C[M]⇒∞ µ, then C[N]⇒∞ µ.

In this sectin, as an application of our GoI semantics, we show that for all ` M : A, ` N : B and
x : A, y : B ` L : C,

let x be M in let y be N in L

is observationally equivalent to

let y be N in let x be M in L.

To prove this equivalence, let O′d be a binary relation between closed terms of type Real and
probabilistic Mealy machines from I to J⊗ !R by

(M,M) ∈ O′d ⇐⇒ (M,M) ∈ Od and (Condition1) and (Condition2)

where (Condition 1) is: for any A ∈ Σ((1+N×S)+∅)×SM
such that

A = {((•, (◦, (n, u))), s) | ((•, (◦, (n, u))), s) ∈ A},

and for any s ∈ SM, τM(((◦, (◦, ∗)), s), A) = 0; (Condition 2) is: for any A ∈ Σ((1+N×S)+∅)×SM
such

that
A = {((•, (•, ∗)), s) | ((•, (•, ∗)), s) ∈ A},

and for any (n, u) ∈ N × S, for any s ∈ SM, τM(((◦, (•, (n, u))), s), A) = 0. We then inductively
define binary relations

TA ⊆ {closed values of type A} × {Mealy machines from I to JAK}
T>A ⊆ {evaluation contexts x : A ` E[x] : Real} × {Mealy machines from !JAK to J⊗ !R}
T A ⊆ {closed terms of type A} × {Mealy machines from I to J⊗ !JAK}

by replacing Od in the definition of SA, S
>
A and SA with O′d. Then we can prove basic lemma for

this logical relation.

Lemma 11.10 (Basic Lemma). Let ∆ = (x : A1, . . . , xn : An) be a context.

• For any term ∆ ` M : A and for any (Vi, Ni) ∈ TAi for i = 1, 2, . . . , n, we have

(M{V1/x1, . . . , Vn/xn}, JMKd ◦ (!N1 ⊗ · · · ⊗ !Nn)) ∈ T A.

• For any value ∆ ` V : A and for any (Vi, Ni) ∈ TAi for i = 1, 2, . . . , n, we have

(V{V1/x1, . . . , Vn/xn}, LMMd ◦ (!N1 ⊗ · · · ⊗ !Nn)) ∈ TA.

Proof. Almost equivalent to the proof of Lemma 11.4.
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Corollary 11.2. For any ` M : A,

• for any A ∈ Σ((1+N×JAK+d )+∅)×SM
such that

A = {((•, (◦, (n, a))), s) | ((•, (◦, (n, a))), s) ∈ A},

and for any s ∈ SM, τM(((◦, (◦, ∗)), s), A) = 0;

• for any A ∈ Σ((1+N×JAK+d )+∅)×SM
such that

A = {((•, (•, ∗)), s) | ((•, (•, ∗)), s) ∈ A},

and for any (n, a) ∈ N× JAK−d , for any s ∈ SM, τM(((◦, (•, (n, a))), s), A) = 0.

By Corollary 11.2 and by the definition of composition of probabilistic Mealy machines, we see
that if

S1 ⊗ S2
k⊗S2
// S1 ⊗ S2

∼=
// S2 ⊗ S1

h⊗S1
// S2 ⊗ S1

∼=
// S1 ⊗ S2 = S1 ⊗ S2

k⊗h
// S1 ⊗ S2

(1)
then

Jlet x be M in let y be N in LKd = Jlet y be N in let x be M in LKd (2)

where k and h are s-finite kernels given by restricting the domain and the codomain of τJMKd and
τJNKd respectively. Because of commuativity for s-finite kernels [32], the equality (1) is true. Hence,
(2) holds. Then by adequacy, we see that

let x be M in let y be N in L

is observationally equivalent to

let y be N in let x be M in L.

12 Conclusion

We introduced a denotational semantics for PCFSS, a higher-order functional language with
sampling from a uniform continuous distribution and scoring. Following [28], we considered two
operational semantics, namely a distribution-based operational semantics, which associates terms
with distributions over real numbers, and a sampling-based operational semantics, which associates
each term with a weight along every probabilistic branch. Our main results are adequacy theorems
for both kinds of operational semantics, and it follows from these theorems that sampling-based op-
erational semantics is essentially equivalent to distribution-based operational semantics. Another
consequence of adequacy theorems is the possibility of diagrammatic reasoning for observational
equivalence of programs. It follows from the observation in Section 5.5 and the adequacy theorems,
that diagrammatic equivalence for denotation of terms implies observational equivalence. It would
be interesting to explore possible connections between our work and other works on diagrammatic
reasoning for probabilistic computation, such as [48, 49].

At this point, our language does not support any normalisation mechanism as a first class
operator. However, capturing inference algorithms such as the Metropolis-Hastings algorithm [50,
51], which is structured around a number of interactions between programs and their environment,
seems plausible. Exploring the relationships between “idealised” normalisation mechanisms and
such “approximating” normalisation mechanisms from the point of view of GoI is an interesting
topic for future work.
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