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ABSTRACT

In this paper, we discuss the problem of modeling a graph
signal on a directed graph when observing only partially the
graph signal. The graph signal is recovered using a learned
graph filter. The novelty is to use the random walk operator
associated to an ergodic random walk on the graph, so as to
define and learn a graph filter, expressed as a polynomial of
this operator. Through the study of different cases, we show
the efficiency of the signal modeling using the random walk
operator compared to existing methods using the adjacency
matrix or ignoring the directions in the graph.

Index Terms— Graph signal processing, random walks,
filtering.

1. INTRODUCTION

The interest in the analysis and exploitation of data repre-
sented by graphs is becoming increasingly significant, partly
due to the affluence of such data in various fields such as neu-
rosciences, biology or social networks. To better process, an-
alyze and exploit these graph data, developing relevant and
efficient mathematical and computational methods is helpful.

In recent years, a new mathematical framework has been
developed called graph signal processing [1, 2, 3]. The aim
of this framework is to generalize the fundamental concepts
of classical signal processing, such as filtering, Fourier trans-
form or wavelets, and it considers graph data as a signal on
graph.

A main challenge of graph signal processing is the deter-
mination of a suitable Fourier basis for signals on a directed
graph. A few approaches have emerged, either based on Jor-
dan’s decomposition of the adjacency matrix [4] or recently
constructed through non-convex optimization problems [5, 6].
Recently, we have proposed an appropriate frequency analy-
sis based on the eigenvectors of the random walk operator,
showing that they constitute a new Fourier-type basis for sig-
nals defined on directed graphs [7].

We focus on a problem of signal modeling, where we
learn a model that allows the reconstruction of a signal’s miss-
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ing values given a small number of known values. This prob-
lem is related to the semi-supervised learning framework [8],
except we assume the whole signal known to learn the model.
Hence, our model would be better suited for instance for a
lossy compression application. Here, the focus is rather on
the comparison of different models based on different graph
signal processing frameworks. The problem can be studied
using the graph Laplacian [9] whose main limitation is to
apply only to undirected graphs with real and non-negative
edges, or a graph signal processing framework based on the
adjacency matrix [2].

We develop signal modeling on directed graphs, leverag-
ing directed graph signal processing using random walks [7].
We show how to learn the parameters of a polynomial fil-
ter based on the random walk operator to model a signal,
then how it allows us to recover it when it is only partially
known, on a small number of vertices. We also consider other
reference operators combining the random walk and its re-
versed version. We study numerically, on an example based
on the political blogs dataset [10], the efficiency and advan-
tage of the proposed approaches, and compare them to exist-
ing works.

2. RANDOM WALKS ON DIRECTED GRAPHS

Let G “ pV, Eq be a weighted directed graph with cardinality
|V| “ N . The graph G is represented by its weighted adja-
cency matrix A “ taiju1ďi,jďN P RNˆN` . We assume that G
is strongly connected.

A random walk [11] on G is a (possibly non-reversible)
Markov chain X “ pXnqně0 on the finite state space V .
From a graph theory point of view, the random walk oper-
ator P P RNˆN` is defined as P “ D´1A, where D “

diagtd1, ¨ ¨ ¨ , dNu, the diagonal matrix of the out-degrees of
the vertices and A the adjacency matrix, with di “

řN
j“1 aij ,

for all i “ 1, ¨ ¨ ¨ , N .
We assume throughout this paper that the random walk

X is ergodic, that is irreducible and aperiodic [11]. Conse-
quently, the random walk X admits a unique stationary dis-
tribution π [11]. We define the time reversed ergodic random
walk X ˚ with stationary distribution π [12] characterized by
the following operator



P˚ “ Π´1PJΠ,

where Π “ diagtπ1, ¨ ¨ ¨ , πNu is the diagonal matrix of the
stationary distribution.

From the non-reversible X , with transition matrix P and
unique stationary measure π, it is known how to construct the
additive reversibilization [13] of X , whose transition matrix
is the average between P and its time reversed P˚. It is ex-
pressed as

P̄ “
P`P˚

2
. (1)

P̄ is reversible with unique stationary distribution π.
A novelty here is to define and consider the more general

class P̄ of convex combinations between P and P˚:

P̄ “
"

P̄α : P̄α “ p1´ αqP` αP˚
ˇ

ˇ

ˇ

ˇ

α P r0, 1s

*

. (2)

The elements P̄α P P̄ are non-reversible except for α “ 1{2,
namely P̄1{2 “ P̄. Still, they share the same stationary dis-
tribution π, and we will show that it can be useful to consider
them as reference to defined filters on directed graphs.

3. PARAMETRIC MODELING OF GRAPHS
SIGNALS

In this section, we consider a way of modeling the relation-
ships between values of a graph signal using a graph filter.
The model is expressed as a graph filter that takes a few val-
ues of the graph signal and reconstructs the other values. A
possible application of such a model could be the lossy com-
pression of the signal, where knowing only the graph, the co-
efficients of the graph filter and a few signal values enable the
reconstruction of the whole signal.

3.1. Problem formulation

A graph filter H is expressed as a polynomial finite sum of a
reference operator R, that is

H “

K
ÿ

k“0

θkR
k, θk P R, @k “ 0, ¨ ¨ ¨ ,K. (3)

The coefficients of the graph filter are learned by solving
the following optimization problem:

pθ “ argmin
θ“tθkuKk“0PRK`1

E

„

}f0 ´

K
ÿ

k“0

θkR
kY }2µ



, (4)

where f0 is the original graph signal, Y “ rY1, ¨ ¨ ¨ , YN s
J P

`2pV, µq is a multivariate random variable indexed on the ver-
tex set V . The random variables Yk, k “ 1, ¨ ¨ ¨ , N can be

expressed as Yk “ εkf0k, where the εk are assumed inde-
pendent and Bernoulli distributed with parameters δk: εk „
Berpδkq. The random variable ε̄ defined as

ε̄ “
1

N

N
ÿ

i“1

εi, (5)

is the proportion of known values of f0 in Y . Y can be
viewed as a random sampling of the graph signal f0 and HY
as a reconstruction of f0 from these samples. The optimiza-
tion problem (4) corresponds to the minimization of the re-
construction error given such a set of random samples.

3.2. Solution of the problem

The solution of (4) can be expressed as

pθ “ Z´1MQJf0,

with M “ diagtµ1, ¨ ¨ ¨ , µNu, Z the matrix where each entry
Zk` is expressed as

Zk` “ Tr
`

rRksJMR`EpY Y Jq
˘

, @tk, `u P v0,Kw2,

and Q “ rq0, ¨ ¨ ¨ , qKs P RNˆpK`1q where each vector qj is

qj “ RjEpY q, @j P v0,Kw.

The resulting estimation of the filter is

pH “

K
ÿ

k“0

pθkR
k, pθk P R, @k “ 0, ¨ ¨ ¨ ,K. (6)

4. AN EXPLORATION OF MODELING ACCURACY
WITH DIFFERENT GRAPH OPERATORS

The reconstruction quality using the previous approach de-
pends on several factors: the choice of reference operator R,
the order of the filter K and the random sampling strategy
defined by the Bernoulli parameters δk. Here, we evaluate
primarily the influence of R and compare two possible sam-
pling strategies.

As an example, we consider the dataset of the political
blogs of the 2004 US presidential campaign [10]. The dataset
consists of 1224 political blogs where each political blog has
a political orientation, either republican or democrat. This
dataset is modeled as a directed graph G “ pV, Eq where each
vertex v P V corresponds to a blog and an edge between two
vertices tvi, vju indicates the presence of hyperlinks from the
blog associated to the vertex vi to the vertex vj . This graph is
unweighted. The political orientations of blogs are modeled
by a graph signal f0 “ tf0pv1q, ¨ ¨ ¨ , f0pvN qu where each
vertex vi has a label f0pviq P t´1, 1u characterizing its polit-
ical orientation.
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Fig. 1. (Case 1) Left: Reconstruction of the graph signal f 10
on the subgraph G1. Right: Reconstruction of the graph signal
f 10 on the symmetrized version of G1.

The directed graph G associated to the political blogs is
not strongly connected. In our theoretical framework, we only
consider strongly connected graphs. Hence, we will first con-
sider the largest strongly connected subgraph of G, denoted
by G1 “ pV 1, E 1q which is made up of |V 1| “ N 1 “ 793
vertices (roughly 65% of the vertex set V) and its associated
graph signal f 10. In 4.3, we will extend the method to G.

As the chosen signal takes values only in t´1, 1u, we will
compare the reconstruction accuracy using a proportion of
correctly reconstructed labels obtained via

f̂ “ signp pHY q.

4.1. Signal modeling on G1

In this section, we solve the problem (4) by learning a poly-
nomial graph filter with K “ 10 on G1. We consider vari-
ous possible reference operators: those for directed graphs,
in the set C “ tAnorm,P, P̄u where Anorm is a normalized
version of the the adjacency matrix whose spectral norm is
equal to one, P the random walk operator and P̄ its additive
reversibilization; and those for undirected (or symmetrized)
graphs, in the set C̃ “ tAsym,Psymu where Asym is the nor-
malized version of the symmetrized adjacency matrix pA `

AJq{2 and Psym the random walk operator based on Asym.
The random variables Yj , j “ 1, ¨ ¨ ¨ , N 1 are distributed in
one of the two following cases:

Case 1: Random variables Yj “ εjf
1
0pvjq where εj „ Berppq

with p the proportion of known labels.

Case 2: Random variables Yj “ εjf
1
0pvjqwhere εj „ Berpαπjq,

such that
ř

j Epεjq “ pN 1 with p the proportion of
known labels.

The proportions of correctly reconstructed labels are mea-
sured for various p values using 500 realizations of Y .

Numerical simulations: Case 1

We evaluate the reconstruction performance of the graph sig-
nal f 10 in figure 1. For all proportions p of known labels,
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Fig. 2. (Case 2) Left: Reconstruction of the graph signal f 10
on the subgraph G1. Right: Reconstruction of the graph signal
f 10 on the symmetrized version of G1.

the average rate of correctly reconstructed labels in the graph
signal f 10 from a learned polynomial graph filter of P or P̄
is significantly better than the one based on a learned poly-
nomial graph filter of Anorm in the case where we consider
either the subgraph G1 or its symmetrized version. Further-
more, the reconstruction performance using a filter based on
P is slightly better than using a filter based on P̄.

Numerical simulations: Case 2

The reconstruction performance is shown in figure 2. We ob-
serve a significantly better performance using a filter based
on P or P̄ than based on Anorm in the case where we con-
sider either the subgraph G1 or its symmetrized version and a
slightly better performance using P rather than P̄. We notice
the reconstruction performance based on Anorm has a large
variability and even decreases for larger p.

Case 1 vs. Case 2

The reconstruction performance using a filter based on P or P̄
is slightly better when the samples in Y are selected accord-
ing to a distribution proportional to the stationary distribution
π (case 2) than when the distribution is uniform (case 1). This
is expected as vertices with larger πk values correspond to
better-connected blogs, which are likely to have an influence
on a larger number of other blogs. Although the reconstruc-
tion performance using a filter based on Anorm is better in
case 2 than in case 1, the large variability and the poorer per-
formance at large p in case 2 suggest that these filters provide
generally poorer models of the signal.

4.2. Signal modeling on G1 with P̄α P P̄

Here we consider the same problem as in the previous section
but now compare the performance using reference operators
P̄α P P̄ . The random variables Yj , j “ 1 ¨ ¨ ¨ , N 1 are dis-
tributed as Yj “ εjf

1
0pvjq where εj „ Berpαπjq, such that

ř

j Epεjq “ pN 1.
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Fig. 3. Reconstruction of the graph signal f 10 on the subgraph
G1.

Numerical simulations

We evaluate the reconstruction performance of f0 as a func-
tion of α in figure 3. We notice that the reconstruction per-
formances using a filter based on P̄α, α » 0.3 are the best
except for the rates p “ t0.01, 0.02u. We notice poorer per-
formance overall when α increases from α “ 0.5 to α “ 1.
This suggests that, for this signal, graph filters based on P̄α

perform better when the convex combination ofP andP ˚ in-
volves more the forward random walk, i.e. α P p0, 0.5q, than
the backward one, i.e. α P p0.5, 1q.

4.3. Signal modeling on G

We now consider the same problem on the whole graph G.
The random variables Yj , j “ 1 ¨ ¨ ¨ , N are distributed as
Yj “ εjf0pvjq, εj „ Berppq.

As some vertices in G have an out-degree equal to zero,
we cannot create a transition matrix directly from the adja-
cency matrix. To overcome this problem, we propose two
approaches that make the graph strongly connected and the
associated random walk ergodic:

1. Rank-one perturbation: from the original adjacency
matrix A, we construct a new adjacency matrix Aε as
follows

Aε “ A` εJ,

where J “ 11J{N is a rank-one matrix and ε is small.
The weak perturbation of the adjacency matrix A by
the matrix J ensures that the random walk on G is
ergodic with stationary measure πε and its associated
transition matrix Pε is well-defined. For our experi-
ments, we choose ε “ 10´4.

2. Construction of the Google matrix of G [14]. The con-
struction is in two steps. Firstly, we construct an adja-
cency matrix Ã from A by adding one for all dangling
nodes, that is nodes with no out-edges. From Ã we can
construct the transition matrix S. Secondly, we define
the Google matrix PG as

PG “ p1´ γqS` γJ.

with γ “ 0.85 r14s and stationary measure πG.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Rate of known labels

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
e

c
o

n
s
tr

u
c
ti
o

n
 a

c
c
u

ra
c
y

Graph signal reconstruction G

A
norm

P
ǫ

P
rev

ǫ

P
G

P
rev

G

Fig. 4. Reconstruction of the graph signal f0 on G.

For each proportion of known labels p, the good recon-
struction rates are derived by averaging 500 graph signals re-
alizations of Y . We consider the set of reference operators
F “ tAnorm,Pε,PG, P̄ε, P̄Gu.

Numerical simulations

The reconstruction performance is shown in the figure 4.
For all p values, the reconstruction performance using filters
based on Anorm is significantly worse than with all other ref-
erence operators. Compared to the other reference operators,
Anorm is the only one that can be used without modifying the
graph to make it strongly connected. Still, its performance is
always worse.

Among the other reference operators, we notice a clearly
better performance generally when using the reversibiliza-
tions P̄ε and P̄G compared to the non-reversible random
walks Pε and PG. This differs from the results on G1 where
both would perform similarly.

Finally, the reconstruction performance does not de-
pend as much on the approach we use to make the graph
strongly connected. It seems though that the Google ap-
proach slightly outperforms the rank-one approach, both for
the non-reversible random walks and their reversibilizations.

5. CONCLUSION

We studied parametric modeling on directed graphs using
graph filters. Our approach based on the random walk oper-
ator is suitable on directed as well as undirected graphs. We
formulated the problem and derived a closed-form solution.
Experiments on a dataset of political blogs showed that the
signal modeling based on the random walks operators outper-
forms the one based on the adjacency matrix. In addition, the
parameter α in the convex combination between the random
walk operator and its adjoint is seen as a tunable parame-
ter that can improve the modeling. The set P̄ might be an
alluring set of reference operators for convolutional neural
networks [15, 16] on directed graphs.
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