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INTRODUCTION

The interest in the analysis and exploitation of data represented by graphs is becoming increasingly significant, partly due to the affluence of such data in various fields such as neurosciences, biology or social networks. To better process, analyze and exploit these graph data, developing relevant and efficient mathematical and computational methods is helpful.

In recent years, a new mathematical framework has been developed called graph signal processing [START_REF] David I Shuman | The emerging field of signal processing on graphs: Extending highdimensional data analysis to networks and other irregular domains[END_REF][START_REF] Sandryhaila | Discrete signal processing on graphs[END_REF][START_REF] Ortega | Graph signal processing[END_REF]. The aim of this framework is to generalize the fundamental concepts of classical signal processing, such as filtering, Fourier transform or wavelets, and it considers graph data as a signal on graph.

A main challenge of graph signal processing is the determination of a suitable Fourier basis for signals on a directed graph. A few approaches have emerged, either based on Jordan's decomposition of the adjacency matrix [START_REF] Sandryhaila | Discrete signal processing on graphs: Frequency analysis[END_REF] or recently constructed through non-convex optimization problems [START_REF] Shafipour | A digraph fourier transform with spread frequency components[END_REF][START_REF] Sardellitti | On the graph fourier transform for directed graphs[END_REF]. Recently, we have proposed an appropriate frequency analysis based on the eigenvectors of the random walk operator, showing that they constitute a new Fourier-type basis for signals defined on directed graphs [START_REF] Sevi | Multiresolution analysis of functions on directed networks[END_REF].

We focus on a problem of signal modeling, where we learn a model that allows the reconstruction of a signal's miss-This work was supported by the ANR-14-CE27-0001 GRAPHSIP grant and the ACADEMICS Grant in the Scientific Breakthrough Program of the IDEXLYON.

ing values given a small number of known values. This problem is related to the semi-supervised learning framework [START_REF] Zhu | Semi-supervised learning literature survey[END_REF], except we assume the whole signal known to learn the model. Hence, our model would be better suited for instance for a lossy compression application. Here, the focus is rather on the comparison of different models based on different graph signal processing frameworks. The problem can be studied using the graph Laplacian [START_REF] Zhu | Semi-supervised learning with graphs[END_REF] whose main limitation is to apply only to undirected graphs with real and non-negative edges, or a graph signal processing framework based on the adjacency matrix [START_REF] Sandryhaila | Discrete signal processing on graphs[END_REF].

We develop signal modeling on directed graphs, leveraging directed graph signal processing using random walks [START_REF] Sevi | Multiresolution analysis of functions on directed networks[END_REF]. We show how to learn the parameters of a polynomial filter based on the random walk operator to model a signal, then how it allows us to recover it when it is only partially known, on a small number of vertices. We also consider other reference operators combining the random walk and its reversed version. We study numerically, on an example based on the political blogs dataset [START_REF] Lada | The political blogosphere and the 2004 us election: divided they blog[END_REF], the efficiency and advantage of the proposed approaches, and compare them to existing works.

RANDOM WALKS ON DIRECTED GRAPHS

Let G " pV, Eq be a weighted directed graph with cardinality |V| " N . The graph G is represented by its weighted adjacency matrix A " ta ij u 1ďi,jďN P R N ˆN `. We assume that G is strongly connected.

A random walk [START_REF] Brémaud | Markov chains: Gibbs fields[END_REF] on G is a (possibly non-reversible) Markov chain X " pX n q ně0 on the finite state space V. From a graph theory point of view, the random walk operator P P R N ˆN `is defined as P " D ´1A, where D " diagtd 1 , ¨¨¨, d N u, the diagonal matrix of the out-degrees of the vertices and A the adjacency matrix, with d i " ř N j"1 a ij , for all i " 1, ¨¨¨, N .

We assume throughout this paper that the random walk X is ergodic, that is irreducible and aperiodic [START_REF] Brémaud | Markov chains: Gibbs fields[END_REF]. Consequently, the random walk X admits a unique stationary distribution π [START_REF] Brémaud | Markov chains: Gibbs fields[END_REF]. We define the time reversed ergodic random walk X ˚with stationary distribution π [START_REF] Montenegro | Mathematical aspects of mixing times in markov chains[END_REF] characterized by the following operator

P ˚" Π ´1P J Π,
where Π " diagtπ 1 , ¨¨¨, π N u is the diagonal matrix of the stationary distribution.

From the non-reversible X , with transition matrix P and unique stationary measure π, it is known how to construct the additive reversibilization [START_REF] Allen | Eigenvalue bounds on convergence to stationarity for nonreversible markov chains, with an application to the exclusion process[END_REF] of X , whose transition matrix is the average between P and its time reversed P ˚. It is expressed as

P " P `P2 . (1) 
P is reversible with unique stationary distribution π.

A novelty here is to define and consider the more general class P of convex combinations between P and P ˚:

P "

"

Pα : Pα " p1 ´αqP `αP

˚ˇα P r0, 1s * . (2) 
The elements Pα P P are non-reversible except for α " 1{2, namely P1{2 " P. Still, they share the same stationary distribution π, and we will show that it can be useful to consider them as reference to defined filters on directed graphs.

PARAMETRIC MODELING OF GRAPHS SIGNALS

In this section, we consider a way of modeling the relationships between values of a graph signal using a graph filter. The model is expressed as a graph filter that takes a few values of the graph signal and reconstructs the other values. A possible application of such a model could be the lossy compression of the signal, where knowing only the graph, the coefficients of the graph filter and a few signal values enable the reconstruction of the whole signal.

Problem formulation

A graph filter H is expressed as a polynomial finite sum of a reference operator R, that is

H " K ÿ k"0 θ k R k , θ k P R, @k " 0, ¨¨¨, K. (3) 
The coefficients of the graph filter are learned by solving the following optimization problem:

p θ " argmin θ"tθ k u K k"0 PR K`1 E " }f 0 ´K ÿ k"0 θ k R k Y } 2 µ  , (4) 
where f 0 is the original graph signal, Y " rY 1 , ¨¨¨, Y N s J P 2 pV, µq is a multivariate random variable indexed on the vertex set V. The random variables Y k , k " 1, ¨¨¨, N can be expressed as Y k " ε k f 0k , where the ε k are assumed independent and Bernoulli distributed with parameters δ k : ε k " Berpδ k q. The random variable ε defined as

ε " 1 N N ÿ i"1 ε i , (5) 
is the proportion of known values of f 0 in Y . Y can be viewed as a random sampling of the graph signal f 0 and HY as a reconstruction of f 0 from these samples. The optimization problem (4) corresponds to the minimization of the reconstruction error given such a set of random samples.

Solution of the problem

The solution of ( 4) can be expressed as

p θ " Z ´1MQ J f 0 ,
with M " diagtµ 1 , ¨¨¨, µ N u, Z the matrix where each entry Z k is expressed as

Z k " Tr `rR k s J MR EpY Y J q ˘, @tk, u P v0, Kw 2 ,
and Q " rq 0 , ¨¨¨, q K s P R N ˆpK`1q where each vector q j is q j " R j EpY q, @j P v0, Kw.

The resulting estimation of the filter is

p H " K ÿ k"0 p θ k R k , p θ k P R, @k " 0, ¨¨¨, K. (6) 

AN EXPLORATION OF MODELING ACCURACY WITH DIFFERENT GRAPH OPERATORS

The reconstruction quality using the previous approach depends on several factors: the choice of reference operator R, the order of the filter K and the random sampling strategy defined by the Bernoulli parameters δ k . Here, we evaluate primarily the influence of R and compare two possible sampling strategies.

As an example, we consider the dataset of the political blogs of the 2004 US presidential campaign [START_REF] Lada | The political blogosphere and the 2004 us election: divided they blog[END_REF]. The dataset consists of 1224 political blogs where each political blog has a political orientation, either republican or democrat. This dataset is modeled as a directed graph G " pV, Eq where each vertex v P V corresponds to a blog and an edge between two vertices tv i , v j u indicates the presence of hyperlinks from the blog associated to the vertex v i to the vertex v j . This graph is unweighted. The political orientations of blogs are modeled by a graph signal f 0 " tf 0 pv 1 q, ¨¨¨, f 0 pv N qu where each vertex v i has a label f 0 pv i q P t´1, 1u characterizing its political orientation. 

Reconstruction accuracy

Graph signal reconstruction symmetrized version of G'

A sym P sym The directed graph G associated to the political blogs is not strongly connected. In our theoretical framework, we only consider strongly connected graphs. Hence, we will first consider the largest strongly connected subgraph of G, denoted by G 1 " pV 1 , E 1 q which is made up of |V 1 | " N 1 " 793 vertices (roughly 65% of the vertex set V) and its associated graph signal f 1 0 . In 4.3, we will extend the method to G. As the chosen signal takes values only in t´1, 1u, we will compare the reconstruction accuracy using a proportion of correctly reconstructed labels obtained via f " signp p HY q.

Signal modeling on G 1

In this section, we solve the problem (4) by learning a polynomial graph filter with K " 10 on G 1 . We consider various possible reference operators: those for directed graphs, in the set C " tA norm , P, Pu where A norm is a normalized version of the the adjacency matrix whose spectral norm is equal to one, P the random walk operator and P its additive reversibilization; and those for undirected (or symmetrized) graphs, in the set C " tA sym , P sym u where A sym is the normalized version of the symmetrized adjacency matrix pA ÀJ q{2 and P sym the random walk operator based on A sym . The random variables Y j , j " 1, ¨¨¨, N 1 are distributed in one of the two following cases: Case 1: Random variables Y j " ε j f 1 0 pv j q where ε j " Berppq with p the proportion of known labels.

Case 2: Random variables Y j " ε j f 1 0 pv j q where ε j " Berpαπ j q, such that ř j Epε j q " pN 1 with p the proportion of known labels.

The proportions of correctly reconstructed labels are measured for various p values using 500 realizations of Y .

Numerical simulations: Case 1

We evaluate the reconstruction performance of the graph signal f 1 0 in figure 1. For all proportions p of known labels, the average rate of correctly reconstructed labels in the graph signal f 1 0 from a learned polynomial graph filter of P or P is significantly better than the one based on a learned polynomial graph filter of A norm in the case where we consider either the subgraph G 1 or its symmetrized version. Furthermore, the reconstruction performance using a filter based on P is slightly better than using a filter based on P.

Numerical simulations: Case 2

The reconstruction performance is shown in figure 2. We observe a significantly better performance using a filter based on P or P than based on A norm in the case where we consider either the subgraph G 1 or its symmetrized version and a slightly better performance using P rather than P. We notice the reconstruction performance based on A norm has a large variability and even decreases for larger p.

Case 1 vs. Case 2

The reconstruction performance using a filter based on P or P is slightly better when the samples in Y are selected according to a distribution proportional to the stationary distribution π (case 2) than when the distribution is uniform (case 1). This is expected as vertices with larger π k values correspond to better-connected blogs, which are likely to have an influence on a larger number of other blogs. Although the reconstruction performance using a filter based on A norm is better in case 2 than in case 1, the large variability and the poorer performance at large p in case 2 suggest that these filters provide generally poorer models of the signal.

Signal modeling on G 1 with Pα P P

Here we consider the same problem as in the previous section but now compare the performance using reference operators Pα P P. The random variables Y j , j " 1 ¨¨¨, N 1 are distributed as Y j " ε j f 1 0 pv j q where ε j " Berpαπ j q, such that ř j Epε j q " pN 1 . 

Numerical simulations

We evaluate the reconstruction performance of f 0 as a function of α in figure 3. We notice that the reconstruction performances using a filter based on Pα , α » 0.3 are the best except for the rates p " t0.01, 0.02u. We notice poorer performance overall when α increases from α " 0.5 to α " 1. This suggests that, for this signal, graph filters based on Pα perform better when the convex combination of P and P ˚involves more the forward random walk, i.e. α P p0, 0.5q, than the backward one, i.e. α P p0.5, 1q.

Signal modeling on G

We now consider the same problem on the whole graph G. The random variables Y j , j " 1 ¨¨¨, N are distributed as Y j " ε j f 0 pv j q, ε j " Berppq.

As some vertices in G have an out-degree equal to zero, we cannot create a transition matrix directly from the adjacency matrix. To overcome this problem, we propose two approaches that make the graph strongly connected and the associated random walk ergodic:

1. Rank-one perturbation: from the original adjacency matrix A, we construct a new adjacency matrix A as follows A " A ` J, where J " 11 J {N is a rank-one matrix and is small. The weak perturbation of the adjacency matrix A by the matrix J ensures that the random walk on G is ergodic with stationary measure π and its associated transition matrix P is well-defined. For our experiments, we choose " 10 ´4. For each proportion of known labels p, the good reconstruction rates are derived by averaging 500 graph signals realizations of Y . We consider the set of reference operators F " tA norm , P , P G , P , PG u.

Construction of the

Graph signal reconstruction G

Numerical simulations

The reconstruction performance is shown in the figure 4. For all p values, the reconstruction performance using filters based on A norm is significantly worse than with all other reference operators. Compared to the other reference operators, A norm is the only one that can be used without modifying the graph to make it strongly connected. Still, its performance is always worse.

Among the other reference operators, we notice a clearly better performance generally when using the reversibilizations P and PG compared to the non-reversible random walks P and P G . This differs from the results on G 1 where both would perform similarly.

Finally, the reconstruction performance does not depend as much on the approach we use to make the graph strongly connected. It seems though that the Google approach slightly outperforms the rank-one approach, both for the non-reversible random walks and their reversibilizations.

CONCLUSION

We studied parametric modeling on directed graphs using graph filters. Our approach based on the random walk operator is suitable on directed as well as undirected graphs. We formulated the problem and derived a closed-form solution. Experiments on a dataset of political blogs showed that the signal modeling based on the random walks operators outperforms the one based on the adjacency matrix. In addition, the parameter α in the convex combination between the random walk operator and its adjoint is seen as a tunable parameter that can improve the modeling. The set P might be an alluring set of reference operators for convolutional neural networks [START_REF] Michael M Bronstein | Geometric deep learning: going beyond euclidean data[END_REF][START_REF] Atwood | Diffusionconvolutional neural networks[END_REF] on directed graphs.
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 11 Fig. 1. (Case 1) Left: Reconstruction of the graph signal f 1 0 on the subgraph G 1 . Right: Reconstruction of the graph signal f 1 0 on the symmetrized version of G 1 .
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 21 Fig. 2. (Case 2) Left: Reconstruction of the graph signal f 1 0 on the subgraph G 1 . Right: Reconstruction of the graph signal f 1 0 on the symmetrized version of G 1 .
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 3 Fig. 3. Reconstruction of the graph signal f 1 0 on the subgraph G 1 .
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 4 Fig. 4. Reconstruction of the graph signal f 0 on G.

  Google matrix of G[START_REF] Amy | Google's PageRank and beyond: The science of search engine rankings[END_REF]. The construction is in two steps. Firstly, we construct an adjacency matrix à from A by adding one for all dangling nodes, that is nodes with no out-edges. From à we can construct the transition matrix S. Secondly, we define the Google matrix P G as P
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G " p1 ´γqS `γJ.

with γ " 0.85 r14s and stationary measure π G .