Keywords: Medical endoscope, optimal actuator location, linear quadratic optimization, port Hamiltonian system

published or not. The documents may come    

Optimal actuator location for electro-active polymer actuated endoscope

Optimal actuator location for electro-active polymer actuated endoscope ⋆ Yongxin Wu * Yann Le Gorrec *

INTRODUCTION

The theoretical modeling and control of medical endoscopes have been studied since the last century [START_REF] Anderson | Tensor Arm Manipulator Design[END_REF]. In recent years, technological progresses made possible the use of continuum robots for different applications such as: laser manipulators, catheters and microendoscopes (Robert J. [START_REF] Webster | Design and kinematic modeling of constant curvature continuum robots: A review[END_REF]. Actuated micro-endoscopes have been developed for endonasal skull base surgery in [START_REF] Chikhaoui | Kinematic Modeling of an EAP Actuated Continuum Robot for Active Micro-endoscopy[END_REF] with embedded actuators able to provide additional degrees of freedom to the system. In this paper, the bending of the endoscope is preformed by electro-active polymer (EAP) actuators. One of the most important EAP actuators are Ionic Polymer Composites (IPMC) whose attractive properties such as: low actuation voltage, ease of fabrication, relatively high strain and so on ... have been experimentally pointed out in [START_REF] Shahinpoor | Ionic polymermetal composites: I. fundamentals[END_REF].

The modeling of medical endoscopes has been considered in [START_REF] Chikhaoui | Kinematic Modeling of an EAP Actuated Continuum Robot for Active Micro-endoscopy[END_REF] by a kinematic approach. The main body of the endoscope is a flexible structure and the IPMC actuators consist in patches of poly-electrolyte gel and metal electrodes plated by a chemical process. The modeling of such kind of system naturally leads to a complex multi physical system which is often governed by partial differential equations (PDEs). The port Hamiltonian framework is a very powerful approach for the modeling and control of mechanical, electro-mechanical and multi physical systems [START_REF] Duindam | Modeling and Control of Complex Physical Systems -The Port-Hamiltonian Approach[END_REF]. Port Hamiltonian modeling is based on energy exchanges between the different components of the systems. It has been recently extended to distributed parameters systems described by partial differential equations (PDEs). The port Hamilto- nian framework is well suited for the modeling of interconnected multiphysical systems and then particularly well adapted for the modeling of medical endoscopes. Moreover, modeling and control of flexible structures by using the port Hamiltonian framework have been widely studied in the last decade (Macchelli and Melchiorri, 2004b,a) and the port Hamiltonian modeling of IPMC soft actuators has been introduced in [START_REF] Nishida | Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator[END_REF]. The actuators being coated outside of the medical endoscope (shown in Fig. 1), this control problem can be regarded as the distributed control of a distributed parameter system and one has to decide the best location of actuators. This naturally leads to the optimal actuator location problem. This problem has been firstly introduced in the context of distributed parameters system in [START_REF] Slemrod | Sensors and controls in the analysis of distributed systems (a. el jai and a. j. pritchard)[END_REF]. The author in [START_REF] Morris | Linear-quadratic optimal actuator location[END_REF] proposes to minimize the linear quadratic cost function in order to choose the optimal actuators location. We can also find the other criteria to find the optimal actuators location in the review article (van de [START_REF] Van De Wal | A review of methods for input/output selection[END_REF].

The organization of this paper is the following. In Section 2, we introduce the port Hamiltonian modeling of the endoscope with its distributed control. The optimal actuator location is considered by minimizing the linear quadratic cost functional in Section 3. In Section 4is given the discretized model of the endoscope and this model is validated through several simulations. At last, we give the conclusion of this work and some remarks for future works.

PORT HAMILTONIAN MODELING OF ENDOSCOPE

A simplified model of a compliant endoscope used for medical examination [START_REF] Chikhaoui | Kinematic Modeling of an EAP Actuated Continuum Robot for Active Micro-endoscopy[END_REF] is presented in Fig 2 . The inner tube is actuated by electro-active polymers (EAP) caught on the body of the endoscope. The modeling of EAP can be found in [START_REF] Nishida | Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator[END_REF]. In this paper we do not represent the physical The compliant inner tube is modeled as an infinite dimensional Timoshenko beam model. In the following subsections we discuss the modeling of this compliant structure and its distributed control.

EAP actuators

Inner tube (Timoshenko Beam) 

Timoshenko beam

The distributed parameters port Hamiltonian formulation of Timoshenko beam has been represented in [START_REF] Macchelli | Modeling and control of the Timoshenko beam. the Distributed Port Hamiltonian approach[END_REF][START_REF] Jacob | Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces[END_REF]. This representation has been widely studied for the boundary control problem [START_REF] Villegas | Stability and stabilization of a class of boundary control systems[END_REF][START_REF] Ramrez | Exponential stabilization of boundary controlled port-hamiltonian systems with dynamic feedback[END_REF] as well as for the distributed control problem [START_REF] Macchelli | Port Hamiltonian Systems -A unified approach for modeling and control finite and infinite dimensional physical systems[END_REF] of beams. Let consider the port Hamiltonian representation of the Timoshenko beam as follows:

ẋ(t) = (P 1 ∂ ∂z + P 0 ) J Lx(t) (1) 
with the operator:

L =        K 0 0 0 0 1 ρ 0 0 0 0 EI 0 0 0 0 1 I ρ        , (2) 
and the matrices:

P 1 =    0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0    , P 0 =    0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0    . (3) 
The state (energy) variables are the shear displacement x 1 = ∂w ∂z (z, t) -φ(z, t), the transverse momentum distribution x 2 = ρ(z) ∂w ∂t (z, t), the angular displacement x 3 = ∂φ ∂z (z, t) and the angular momentum distribution x 4 = I ρ ∂φ ∂t (z, t) for z ∈ (a, b), t ≥ 0, where w(z, t) is the transverse displacement and φ(z, t) is the rotation angle of the beam. The coefficients ρ, I ρ , E, I and K are the mass per unit length, the angular moment of inertia of a cross section, Young's modulus of elasticity, the moment of inertia of a cross section, and the shear modulus respectively, and the state space X = L 2 (a; b; R 4 ). The energy of the beam is expressed in terms of the energy variables,

H = 1 2 ˆb a (Kx 2 1 + 1 ρ x 2 2 + EIx 2 3 + 1 I ρ x 2 4 )dz = 1 2 ˆb a x(z) T (Lx)(z)dz = 1 2 x 2 L (4)
The medical endoscope is clamped at one end while the other end is free. The endoscope is actuated in its domain by the use of EAP patches but does not have any control at the boundary. Thus, the boundary conditions of the endoscope are Kx 1 (b, t) = EIx 3 (b, t) = 0 ∀t ≥ 0 and

1 ρ x 2 (a, t) = 1 Iρ x 4 (a, t) = 0 ∀t ≥ 0 , The domain of the operator J is D(J ) =      x ∈ H 1 (0, 1; R n ) x 2 (a, t) = 0 x 4 (a, t) = 0 x 1 (b, t) = 0 x 3 (b, t) = 0 , ∀t ≥ 0      ⊂ X
(5) The operator J = P 1 ∂ ∂z + P 0 defined by the matrices P 1 = P T 1 and P 0 = -P T 0 is a first order skew adjoint differential operator acting on the state space X with the boundary condition (5). We also consider the material of the endoscope is uniform, i.e. ρ, I ρ , E, I and K are constant. Hence the operator L is self-adjoint and coercive.

Distributed control of Timoshenko beam

As previously mentioned, the endoscope is controlled by the EAP actuators caught on its body. In this section, we discuss the distributed control of the inner tube body (Timoshenko beam).

Assume the EAP actuators can provide uniform torques. We place the EAP actuators on the different small intervals

I i = [a i , b i ] of the beam (on the spatial domain [a, b]).
The torque given by each EAP can be written as b

i (z)u i (t) with b i (z) = 1 if z ∈ I bi and b i (z) = 0 elsewhere.
The torque given by each EAP is b i (z)u i (t) on the i-th on the small interval

I i = [a i , b i ] of the spatial space [a, b] i.e. b i (z) = 1 if z ∈ I bi
and b i (z) = 0 elsewhere. Thus the input operator and input are:

B(z)u(t) = i    0 0 0 b i (z)    u i (t) =    0 0 0 b(z)    u(t) (6) 
where B :

C i → X, b(z) = [b 1 (z), • • • , b i (z), • • • ] and u(z) = [u 1 (z), • • • , u i (z), • • • ] T .
Example 1. Consider that three EAP actuators are placed on the three small intervals of the beam I 1 = [0, 0.1c], I 2 = [0, 4c, 0.5c] and I 1 = [0.9c, 1c] with c = b-a 10 . The three inputs given by the three actuators are u 1 (t), u 2 (t) and u 3 (t). Thus the distributed control is given by

Bu =    0 0 0 0 0 0 0 0 0 b 1 (z) b 2 (z) b 3 (z)    u 1 (t) u 2 (t) u 3 (t) (7) where b i (z) = 1 if z ∈ I i = 0 if z / ∈ I i i ∈ {1, 2, 3}. ( 8 
)
The output is power conjugated to the input, i.e.

y = B * Lx(t) (9) 
The input-output model of the endoscope can be described by the following port Hamiltonian formulation :

ẋ(t) = J Lx(t) + Bu(t) y(t) = B * Lx(t) (10) 
The energy balance equation can be easily computed by using the total energy of the system (4) and the system (10):

∂H ∂t = y T u. (11) 

LINEAR QUADRATIC OPTIMAL LOCATION

In this section, we discuss the optimal actuators placement that minimizes a quadratic performance criterion. Before analyzing the optimal location problem, let recall the linear-quadratic regulator problem [START_REF] Curtain | An introduction to Infinite-Dimensional Linear System Theory[END_REF]. The linear-quadratic optimal control design consists to find a control law u(t) that minimizes the cost functional:

J co (u, x 0 ) = ˆ∞ 0 ( x (t) , Qx (t) + u (t) , Ru (t) ) dt (12 
) x(t) ∈ X is the state variable defined in (1). The state and control weighting operators Q : X → X and R : U → U are bounded, symmetric and positive definite. Definition 2. The system (10) with cost functional ( 12) is optimizable if for every x 0 ∈ X, there exists u ∈ L 2 ([0, ∞); U) such that the cost is finite.

Definition 3. The pair (Q 1/2 , J L) is detectable if there exists F : Y → X such that J L -F C generates an exponentially stable semigroup. Theorem 4. [START_REF] Curtain | An introduction to Infinite-Dimensional Linear System Theory[END_REF] If the system (10) with cost functional ( 12) is optimizable and detectable, then the cost function has a minimum for every x 0 ∈ X. Furthermore, there exists a self-adjoint non-negative operator P : X → X such that min

u∈L2([0,∞];U ) J co (u, x 0 ) = x 0 , P x 0 (13)
The operator P is the non-negative unique solution of the Riccati equation: (J L) * P + P J L -P B T RBP + Q x = 0 (14) with x ∈ D(L). Defining K = R -1 B * P , the optimal control is u = -Kx(t) and J L -BK generates an exponentially stable semigroup. Definition 5. The pair (J L, B) is stabilizable if there exists K : U → X such that J L -BK generates an exponentially stable semigroup.

Let us now consider m actuators of which the location can be varied over the compact set Ω. We parametrize their location by r. The input operator is denoted as B(r) and depends on the parameter r. This parameter r is a vector of length m with components in Ω so r is varied on the space denoted by Ω m . Hence for each r we have an optimal control problem (12) which we denote by J r co (u, x 0 ) corresponding to the optimal cost x 0 , P (r)x 0 . Normally, the initial condition x 0 is not fixed. In this paper, we consider that the optimal location minimizes the cost function associated to the worst choice of the initial condition (Curtain and Zwart, 1995, Lemma A.3.70), i.e. we choose r in order to minimize max

x 0 ∈ X x 0 = 1 min u∈L2([0,∞];U ) J r co (u, x 0 ) = max x 0 ∈ X x 0 = 1 x 0 , P x 0 = P (r) . (15) 
We denote the performance at location r, µ(r) = P (r) and the optimal performance μ = inf r∈Ω m P (r) .

Theorem 6. [START_REF] Morris | Linear-quadratic optimal actuator location[END_REF] Let B(r) : U → X, r ∈ Ω m , be a family of input operators such that for any

r 0 ∈ Ω m lim r→r0 B(r) -B(r 0 ) = 0. ( 17 
)
Assume that (J L, B(r)) are all exponentially stabilizable and that (Q 1/2 , J L) is detectable where Q 1/2 : X → Y is compact. If U and Y are finite dimensional, then there exists an optimal actuator location r such that r 1 = inf r∈Ω m r 1 = μ (18)

Theorem 6 shows that we can find the optimal actuators location if the input operators B(r) and the operator Q 1/2 are compact. Riccati equations have unique non-negative solutions, then the optimal location with performance μ = inf r∈Ω m P (r) exists. This result is proven following Theorem 3.1 of [START_REF] Curtain | Compactness and nuclearity of the hankel operator and internal stability of infinite-dimensional state linear systems[END_REF].

COMPUTATION OF THE OPTIMAL LOCATION AND SIMULATION RESULTS

In this section, we discuss the optimal location of EAP actuators for the control of the beam position.

We first focus on the one actuator case. We then discuss two different situations. First, we consider the optimal actuator location when the power conjugate output of the port Hamiltonian system is measured. Second, we consider the optimal actuator location when the output signal is measured at the middle of the beam.

The system (10) can be represented as:

ẋ(t) = J Lx(t) + B(r)(z)u(t) (19)
The input operator B(r) depends on the actuator location r. We denote ∆ the length of the actuator. Thus the input operator can be written as:

B(r) =    0 0 0 b r (z)    with b r (z) =      1, |r -z| < 1 ∆ 0, |r -z| > 1 ∆ . (20)
The power conjugated output is y(t) = B * (r)Lx(t), ( 21) which also depends on the actuator location r. Consider the state weighting operator Q = LB(r)B * (r)L and the input weighting operator R = I, the cost functional (12) becomes:

J co (u, x 0 ) = ˆ∞ 0 ( y(t), y(t) + u(t), u(t) ) dt. ( 22 
)
The optimal objective is to minimize the norm of the response over time. The Riccati equation associated with this optimal problem is ((J L) * P + P J L -P B(r)B * (r)P + LB(r)B * (r)L) x = 0 (23) with x ∈ D(L). Since the operator Riccati equation ( 23) cannot be solved in practice, we need an approximation of the system (19) to compute the control law. We discuss the discretization of the system (10) in the next paragraph.

We use the mixed-finite element discretization method proposed in [START_REF] Golo | Hamiltonian Discretization of Boundary Control Systems[END_REF]. The idea of this method is to approximate flows and efforts with different functions in order to preserve the physical meaning of each variable and the geometric structure of the system. In the case of the Timoshenko beam, defined on a one-dimensional spatial domain, the effort variables (torque) correspond to some zero (differential) forms (functions) and the flow variables (angular velocities) correspond to some one (differential) forms respectively. This spatial discretization method has been applied to different physical models, the reader can read [START_REF] Hamroun | A portcontrolled Hamiltonian approach to geometric reduction of distributed parameters systems -application to the shallow water equations[END_REF][START_REF] Baaiu | Structure-preserving infinite dimensional model reduction application to adsorption processes[END_REF] for more details and [START_REF] Macchelli | Port-based modelling and simulation of mechanical sys-tems with rigid and flexible links[END_REF] for a specific application to the Timoshenko beam. The explicit finite dimensional port Hamiltonian approximation of the Timoshenko beam is given by: ẋd

= J d ∂H d ∂x d + B d (r)u (24) 
where

J d = -J T d ∈ R 4N
with N the number of infinitesimal subsections used for the discretization, H d = 1 2 x T d L d x d is the Hamiltonian function with L d the approximation matrix of operator L. The following matrices present the discretized structure operator of the infinite dimensional model :

J d =    0 M 0 0 M T 0 0 0 0 0 0 M 0 0 M T 0    P1 +    0 0 0 -Φ 0 0 0 0 0 0 0 0 Φ T 0 0 0    P2 (25) 
where the sub-matrices are:

M =      -1 1 0 • • • 0 0 -1 1 . . . . . . . . . . . . . . . . . . 1 0 • • • 0 0 -1      with M ∈ R N×N (26) Φ = diag(β, • • • , β) with Φ ∈ R N ×N (27)
where β is the size of the infinitesimal section. The matrix B d (r) is the approximation of the input operator B(r):

B d (r) =    0 0 0 b r    ∈ R 4N (28) 
where the vector b r ∈ R N depends on the actuator location r. By using approximation (24) of system (19), we can get an approximate solution P d from the resolution of the following finite dimensional Riccati equation:

(J d L d ) T P d + P d J d L d -P d B d (r)B T d (r)P d +L d B d (r)B T d (r)L d = 0. ( 29 
)
We consider now the numerical simulation of this optimal actuator location. The parameters used for this simulation are given in Tab. 1. These are the real parameters of the experimental setup built in department AS2M of Institute FEMTO-ST (shown in Fig. 3). Actuat !¥ @"w#$ Fig. 3. Clamped flexible beam experimental setup We illustrate the optimal actuator location for system (19) with the LQ cost function ( 22). The actuator is ten times shorter than the beam i.e. ∆ = b-a 10 . The optimal actuator location is computed by using the approximation (24) with different numbers of infinitesimal subsection (N ). We vary N from 10 to 200. The optimal actuator location is illustrated in Fig 4 . In this simulation result, we see that in the power conjugated input-output case, i. e. Y = B * (r)Lx, the optimal actuator location is at the clamped side of the beam. Actuator locations We consider now the second case of study where the measurement is the displacement at the middle of the beam. In this situation, the output of the system is y

2 (t) = B * Lx(t), (30) with B 
=    0 0 0 b(z)    with b(z) = 1, z ∈ I 0, z / ∈ I ( 31 
)
where I is a small interval I = [0.4c, 0.5c], c = b-a 10 . The cost functional of the LQ problem can be written as follows:

J co (u, x 0 ) = ˆ∞ 0 ( y 2 (t), y 2 (t) + u(t), u(t) ) dt. ( 32 
)
with state weighting operator Q = LBB * L. Then the objective becomes to minimize the norm of the response within the fixed interval I = [0.4c, 0.5c] over time.

We illustrate the optimal actuator location of the above LQ optimal problem by Fig. 6. We can see the optimal actuator location is not the same as the one shown in Fig. 4 because of the change of the LQ cost functional.

The optimal actuator location we find is colocated to the measurement. In Fig. 7, we show the LQ-performances P for the different actuator locations. The variation of the LQ norm P (r) has been computed for N = 60. This simulation result shows that we have to place the actuator in the interval I = [0.4c, 0.5c] in order to minimize the norm of the response over time in the same interval. This results in colocated input and output. After several simulations (which are not shown in this paper), the optimal actuator locations are always collocated to the output measurements. Now we consider two actuators. We suppose that the measurements are the displacement at the intervals I = [0.2c, 0.3c] and I = [0.5c, 0.6c]. Fig. 8 shows that the We have formulated the endoscope and its distributed control as an abstract system by the port Hamiltonian approach. Then we have considered a LQ optimal actuator location problem for this system. This optimal problem consists in the minimization of the LQ cost functions which are related to the actuator locations. This method has been illustrated by numerical simulations. The parameters of a real experimental setup have been used in this simulation.

The ongoing work is the implementation of this method on the experimental benchmark in order to compare the experimental results with the numerical ones. Since the EAP can also be used as deformation sensors, we will consider both optimal sensor/actuator locations in a future work.
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 1 Fig.1. EAP actuated Endoscope model of the EAP and consider only the distributed forces and torques applied on the body of the inner tube. The compliant inner tube of the endoscope can be regarded as a flexible beam. One end of this beam is clamped while the other one is free. The actuators and the beam are interconnected through the power conjugated variables. The interconnection relation and causality are indicated also in Fig 2.The compliant inner tube is modeled as an infinite dimensional Timoshenko beam model. In the following subsections we discuss the modeling of this compliant structure and its distributed control.

  Fig. 2. Simplified EAP actuated Endoscope

  Fig. 4. Optimal location
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 5 Fig. 5. Variation of LQ performance P with respect to actuator location
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 7 Fig. 6. Optimal location

  Fig. 8. Actuators locations
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 1 Parameters of the beam

	Parameters of beam and actuator	Value (unit)
	Length L	30 cm
	Width b		2 cm
	Thickness h	2 mm
	Young's modulus E	0.2 GP a
	Mass density ρ	920 kg/m 2
	Actuator length ∆	3 cm
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