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MASSICCC?

massiccc.lille.inria.fr

SaaS: Software as a Service
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MASSICCC??

A high quality and easy to use web platform
where are transfered mature research clustering (and more) software

towards (non academic) professionals
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Here is the computer you need!
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Clustering?

Detect hidden structures in data sets
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Clustering everywhere1

1Rexer Analytics’s Annual Data Miner Survey is the largest survey of data mining, data science, and analytics
professionals in the industry (survey of 2011)
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Data sets structure
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Large data sets2

2S. Alelyani, J. Tang and H. Liu (2013). Feature Selection for Clustering: A Review. Data Clustering:
Algorithms and Applications, 29
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An opportunity for detecting weak signal
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Todays features: full mixed/missing
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Notations

Data: n individuals: x = {x1, . . . , xn} = {xO , xM} in a space X of dimension d

Observed individuals O

Missing individuals M

Aim: estimation of the partition z and the number of clusters K
Partition in K clusters G1, . . . ,GK : z = (z1, . . . , zn), zi = (zi1, . . . , ziK )′

xi ∈ Gk ⇔ zih = I{h=k}

Mixed, missing, uncertain

Individuals x Partition z ⇔ Group
? 0.5 red 5 ? ? ? ⇔ ???
0.3 0.1 green 3 ? ? ? ⇔ ???
0.3 0.6 {red,green} 3 ? ? ? ⇔ ???
0.9 [0.25 0.45] red ? ? ? ? ⇔ ???
↓ ↓ ↓ ↓

continuous continuous categorical integer
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Parametric mixture model

Parametric assumption:
pk(x1) = p(x1;αk)

thus

p(x1) = p(x1;θ) =
K∑

k=1

πkp(x1;αk)

Mixture parameter:

θ = (π,α) with α = (α1, . . . ,αK )

Model: it includes both the family p(·;αk) and the number of groups K

m = {p(x1;θ) : θ ∈ Θ}

The number of free continuous parameters is given by

ν = dim(Θ)

Clustering becomes a well-posed problem. . .
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The clustering process in mixtures

1 Estimation of θ by θ̂

2 Estimation of the conditional probability that xi ∈ Gk

tik(θ̂) = p(Zik = 1|Xi = xi ; θ̂) =
π̂kp(xi ; α̂k )

p(xi ; θ̂)

3 Estimation of zi by maximum a posteriori (MAP)

ẑik = I{k=arg maxh=1,...,K tih(θ̂)}

4 Model selection: BIC, ICL, . . .
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Only continuous features: 14 models on Σk

Σk = λk
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Only categorical variables: latent class model

Categorical variables: d variables with mj modalities each, xji ∈ {0, 1}mj and

xjhi = 1 ⇔ variable j of xi takes level h

Conditional independence:

p( i ;αk) =
d∏

j=1

mj
∏

h=1

(αjh
k )

x
jh
i

and
αjh
k = p( jh

i = 1|zik = 1)

with αk = (αjh
k ; j = 1, . . . , d; h = 1, . . . ,mj )
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Mixing continuous and categorical data: full local independence

Combine continuous and categorical data

1 = ( cont
1 , cat

1 )

The proposed solution is to mixed both types by inter-type conditional independence

p(x1;αk) = p(xcont1 ;αcont
k )× p(xcat1 ;αcat

k )

In addition, for symmetry between types, intra-type conditional independence

Only need to define the univariate pdf for each variable type!

Continuous: Gaussian

Categorical: multinomial
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Estimation of θ by complete-likelihood

Maximize the complete-likelihood over (θ, z)

%c (θ; x, z) =
n∑

i=1

K∑

k=1

zik ln {πkp(xi ;αk)}

Equivalent to traditional methods

Metric M = I M free Mk free
Gaussian model [πλI ] [πλC ] [πλkCk ]

Bias of θ̂: heavy if poor separated clusters

Associated optimization algorithm: CEM (see later)

CEM with [πλI ] is strictly equivalent to K -means

CEM is simple et fast (convergence with few iterations)
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Estimation of θ by observe-likelihood

Maximize the observe-likelihood on θ

%(θ; x) =
n∑

i=1

ln p(xi ; θ)

Convergence of θ̂, asymptotic efficiency, asymptotically unbiased

General algorithm for missing data: EM

EM is simple but slower than CEM

Interpretation: it is a kind of fuzzy clustering
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Principle of EM and CEM

Initialization: θ0

Iteration noq:
Step E: estimate probabilities tq = {tik (θ

q)}

Step C: classify by setting tq = MAP({tik (θ
q)})

Step M: maximize θ
q+1 = arg maxθ !c (θ; x, t

q)

Stopping rule: iteration number or criterion stability

Properties
⊕: simplicity, monotony, low memory requirement

&: local maxima (depends on θ0), linear convergence (EM)
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Prostate cancer data (without mixing data)

Individuals: n = 475 patients with prostatic cancer grouped on clinical criteria
into two Stages 3 and 4 of the disease

Variables: d = 12 pre-trial variates were measured on each patient, composed by
eight continuous variables (age, weight, systolic blood pressure, diastolic blood
pressure, serum haemoglobin, size of primary tumour, index of tumour stage and
histolic grade, serum prostatic acid phosphatase) and four categorical variables
with various numbers of levels (performance rating, cardiovascular disease history,
electrocardiogram code, bone metastases)

Model: cond. indep. p(x1;αk) = p(x1;αcont
k ) · p(x1;αcat

k )
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Prostate cancer data (without missing data)

Variables Continuous Categorical Mixed
Error (%) 9.46 47.16 8.63
True \ estimated group 1 2 1 2 1 2
Stage 3 247 26 142 131 252 21
Stage 4 19 183 120 82 20 182
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Continuous data
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Continuous data
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Mixed data
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Full mixed data: conditional independence everywhere3

The aim is to combine continuous, categorical, integer data, ordinal, ranking and
functional data

1 = ( cont
1 , cat

1 , int
1 , . . .)

The proposed solution is to mixed all types by inter-type conditional independence

p(x1;αk) = p(xcont1 ;αcont
k )× p(xcat1 ;αcat

k ) × p(xint1 ;αint
k )× . . .

In addition, for symmetry between types, intra-type conditional independence

Only need to define the univariate pdf for each variable type!

Continuous: Gaussian

Categorical: multinomial

Integer: Poisson

. . .

3MixtComp software on the MASSICCC platform: https://massiccc.lille.inria.fr/
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Missing data: MAR assumption and estimation

Assumption on the missingness mecanism

Missing At Randon (MAR): the probability that a variable is missing does not
depend on its own value given the observed variables.

Observed log-likelihood. . .

%(θ; xO) =
n∑

i=1

log

(
K∑

k=1

πkp(
O
i ;αk )

)

= ln








K∑

k=1

πk

∫

xM
i

p(xOi , x
M
i ;αk)dx

M
i

︸ ︷︷ ︸

MAR assumption
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SEM algorithm4

A SEM algorithm to estimate θ by maximizing the observed-data log-likelihood

Initialisation: θ(0)

Iteration nb q:

E-step: compute conditional probabilities p( M , | 0; θ(q))

S-step: draw ( M(q), (q)) from p( M , | 0;θ(q))

M-step: maximize θ
(q+1) = arg maxθ ln p(xO , M(q), (q); θ)

Stopping rule: iteration number

Properties: simpler than EM and interesting properties!
Avoid possibly difficult E-step in an EM

Classical M steps

Avoids local maxima

The mean of the sequence (θ(q)) approximates θ̂

The variance of the sequence (θ(q)) gives confidence intervals

4MixtComp software on the MASSICCC platform: https://massiccc.lille.inria.fr/
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Prostate cancer data (with missing data)5

Individuals: 506 patients with prostatic cancer grouped on clinical criteria into
two Stages 3 and 4 of the disease

Variables: d = 12 pre-trial variates were measured on each patient, composed by
eight continuous variables (age, weight, systolic blood pressure, diastolic blood
pressure, serum haemoglobin, size of primary tumour, index of tumour stage and
histolic grade, serum prostatic acid phosphatase) and four categorical variables
with various numbers of levels (performance rating, cardiovascular disease history,
electrocardiogram code, bone metastases)

Some missing data: 62 missing values (≈ 1%)

We forget the classes (Stages of the desease) for performing clustering

Questions
How many clusters?

Which partition?

5Byar DP, Green SB (1980): Bulletin Cancer, Paris 67:477-488
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Data upload without preprocessing
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Run clustering analysis
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It is running on the (Inria) cloud. . .
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Several quick result overviews. . . without post-processing

36/79



Introduction Model-based clustering Mixmod in MASSICCC MixtComp in MASSICCC BlockCluster Conclusion

Variable significance on global partition

+ similarity between variables
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Variable “Age” difference between clusters
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Variable “SG” difference between clusters
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Variable “BM” difference between clusters
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Individual cluster separation (with the cluster weight)

41/79



Introduction Model-based clustering Mixmod in MASSICCC MixtComp in MASSICCC BlockCluster Conclusion

Two strategies in competition

Strategy “mice6 + MixtComp”: MixtComp on the dataset completed by mice

> data.imp=mice(data)
> data.comp.mice=complete(data.imp)

Strategy “full MixtComp”: MixtComp on the observed (no completed) dataset

Partition quality with K = 2

Strategy mice + MixtComp full MixtComp
% misclassified 12.8 8.1

6http://cran.r-project.org/web/packages/mice/mice.pdf
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Choosing K with the ICL criterion
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. . .may lose some cluster information when imputation before clustering
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Scoring cancer data following the clustering task
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Curve “cookies” data set

The Kneading dataset comes from Danone Vitapole Paris Research Center and
concerns the quality of cookies and the relationship with the flour kneading process7.
There are 115 different flours for which the dough resistance is measured during the
kneading process for 480 seconds. One obtains 115 kneading curves observed at 241
equispaced instants of time in the interval [0; 480]. The 115 flours produce cookies of
different quality: 50 of them have produced cookies of good quality, 25 produced
medium quality and 40 low quality.

7Lévéder et al, 04
45/79



Introduction Model-based clustering Mixmod in MASSICCC MixtComp in MASSICCC BlockCluster Conclusion

Upload curves data
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Run a clustering task with three clusters
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Overview of the three clusters of cookies
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High-dimensional (HD) data8

8S. Alelyani, J. Tang and H. Liu (2013). Feature Selection for Clustering: A Review. Data Clustering:
Algorithms and Applications, 29
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Bias/variance in HD: reduce variance, accept bias

A two-component d-variate Gaussian mixture with intra-dependency:

π1 = π2 =
1

2
, X1|z11 = 1 ∼ Nd (0,Σ), X1|z12 = 1 ∼ Nd (1,Σ)

Each variable provides equal and own separation information

Theoretical error decreases when d grows: errtheo = Φ(−‖µ2 − µ1‖Σ−1/2)

Empirical error rate with the (true) intra-correlated model worse with d

Empirical error rate with the (false) intra-independent model better with d!
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Some alternatives for reducing variance

Dimension reduction in non-canonical space (PCA-like typically)

Dimension reduction in the canonical space (variable selection)

Model parsimony in the initial HD space (constraints on model parameters)

But which kind of parsimony?
Remember that clustering is a way for dealing with large n

Why not reusing this idea for large d?

Co-clustering
It performs parsimony of row clustering through variable clustering
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From clustering to co-clustering

[Govaert, 2011]
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Notations

i : the cluster of the row i

j : the cluster of the column j

( i ,wj ): the block of the element ij (row i , column j)

z = ( 1, . . . , n): partition of individuals in K custers of rows

w = ( 1, . . . , d ): partition of variables in L clusters of columns

( ,w): bi-partition of the whole data set

Both space partitions are respectively denoted by Z and W

Restriction

All variables are of the same kind (research in progress for overcoming that. . . )

54/79



Introduction Model-based clustering Mixmod in MASSICCC MixtComp in MASSICCC BlockCluster Conclusion

The latent block model (LBM)

Generalization of some existing non-probabilistic methods

Extend the latent class principle of local (or conditional) independence

Thus xij is assumed to be independent once zi and wj are fixed (α = (αkl )):

p(x|z,w;α) =
∏

i,j

p(xij ;αzi wj )

π = (πk) : vectors of proba. πk that a row belongs to the kth row cluster

ρ = (ρk ) : vectors of proba. ρk that a row belongs to the lth column cluster

Independence between all zi and wj

Extension of the traditional mixture model-based clustering (α = (αkl )):

p(x; θ) =
∑

(z,w)∈Z×W

∏

i,j

πzi ρwj p(xij ;αziwj )
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Distribution for different kinds of data

[Govaert and Nadif, 2014] The pdf p(·;αziwj ) depends on the kind of data xij :

Binary data: xij ∈ {0, 1}, p(·;αkl ) = B(αkl )

Categorical data with m levels:
xij = {xijh} ∈ {0, 1}m with

∑m
h=1 xijh = 1 and p(·;αkl ) = M(αkl ) with αkl = {αkjh}

Count data: xji ∈ N, p(·;αkl ) = P(µkνlγkl )9

Continuous data: xji ∈ R, p(·;αkl ) = N (µkl ,σ2
kl )

9The Poisson parameter is here split into µk and νl the effects of the row k and the column l respectively and
γkl the effect of the block kl . Unfortunately, this parameterization is not identifiable. It is therefore not possible to
estimate simultaneously µk , νl and γkl without imposing further constraints. Constraints∑

k πkγkl =
∑

l ρlγkl = 1 and
∑

k µk = 1,
∑

l νl = 1 are a possibility.
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Extreme parsimony ability

Model Number of parameters
Binary dim(π) + dim(ρ) + KL

Categorical dim(π) + dim(ρ) + KL(m − 1)
Contingency dim(π) + dim(ρ) + KL
Continuous dim(π) + dim(ρ) + 2KL

Very parsimonious so well suitable for the (ultra) HD setting

nb. param.HD = nb. param.classic ×
L

d

Other advantage: stay in the canonical space thus meaningful for the end-user
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Binary illustration: easy interpretation

[Govaert, 2011]
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Binary illustration: user-friendly visualization

[Govaert, 2011]

n = 500, d = 10, K = 6, L = 4
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MLE estimation: log-likelihood(s)

Remember Lesson 3: first estimate θ, then deduce estimate of ( , )

Observed log-likelihood: %(θ; ) = ln p( ; θ)

MLE:
θ̂ = arg max

θ
%(θ; )

Complete log-likelihood:

%c(θ; x, z,w) = ln p( , , ;θ)

=
∑

i,k

zik log πk +
∑

k,l

wjl log ρl +
∑

i,j,k,l

zikwjl log p(x
j
i ;αkl )

Be careful with asymptotics. . .

If ln(d)/n → 0, ln(n)/d → 0 when n → ∞ and d → ∞, then the MLE is consistent
[Brault et al., 2017]
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MLE estimation: EM algorithm

E-step of EM (iteration q):

Q(θ, θ(q)) = E [%c (θ; x, z,w)| ; θ(q)]

=
∑

i,k

p(zi = k|x; θ(q))
︸ ︷︷ ︸

t
(q)
ik

lnπk +
∑

j,l

p(wi = l |x;θ(q))
︸ ︷︷ ︸

s
(q)
jl

ln ρl

+
∑

i,j,k,l

p(zi = k,wj = l |x;θ(q))
︸ ︷︷ ︸

e
(q)
ijkl

ln p(xij ;αkl )

M-step of EM (iteration q): classical. For instance, for the Bernoulli case, it gives

π(q+1)
k =

∑

i t
(q)
ik

n
, ρ(q+1)

l =

∑

j s
(q)
jl

d
, α(q+1)

kl =

∑

i,j e
(q)
ijkl xij

∑

i,j e
(q)
ijkl
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MLE: intractable E step

e
(q)
ijkl is usually intractable. . .

Consequence of dependency between ijs (link between rows and columns)

Involve KnLd calculus (number of possible blocks)

Example: if n = d = 20 and K = L = 2 then 1012 blocks

Example (cont’d): 33 years with a computer calculating 100,000 blocks/second

Alternatives to EM

Variational EM (numerical approx.): conditional independence assumption

p(z,w|x;θ) ≈ p(z|x;θ)p(w|x; θ)

SEM-Gibbs (stochastic approx.): replace E-step by a S-step approx. by Gibbs

z|x,w; θ and w|x, z;θ
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MLE: variational EM (1/2)

Use a general variational result from [Hathaway, 1985]

Maximizing %(θ; ) on θ is equivalent to maximize %̃c(θ; , e) on (θ, e)

%̃c(θ; , e) =
∑

i,k

tik lnπk +
∑

j,l

sjl ln ρl +
∑

i,j,k,l

eijkl ln p(xij ;αkl )

where e = (eijkl ), eijkl ∈ {0, 1},
∑

k,l eijkl = 1, tik =
∑

j,l eijkl , sjl =
∑

i,k eijkl

Of course maximizing %(θ; ) or %̃c (θ; , e) are both intractable

Idea: restriction on e to obtain tractability eijkl = tik sjl

New variables are thus now t = (tik ) and s = (sjl )

As a consequence, it is a maximization of a lower bound of the max. likelihood

max
θ

%(θ; ) ≥ max
θ,t,s

%̃c (θ; , e)
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MLE: variational EM (2/2)

Approximated E-step

Q(θ, θ(q)) ≈
∑

i,k

t
(q)
ik lnπk +

∑

j,l

s
(q)
jl ln ρl +

∑

i,j,k,l

t
(q)
ik s

(q)
jl ln p(xij ;αkl )

We called it now VEM

Also known as mean field approximation

Consistency of the variational estimate [Brault et al., 2017]
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MLE: local maxima

More local maxima than in classical mixture models

It is a consequence of many more latent variables (blocks)

Thus: either many VEM runs, or use the SEM-Gibbs algorithm
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MLE: SEM-Gibbs

We have already seen the SEM algorithm in Lesson 3 (thus we do not detail more)

It limits dependency to starting point, so it limits local maxima

The S-step: a draw ( (q), (q)) ∼ p( , | ;θ(q)) instead an expectation

But it is still intractable, thus use a Gibbs algorithm to approx. this draw

Approximated S-step
Two easy draws

(q) ∼ p( | (q−1), ; θ(q))

and
(q) ∼ p( | (q), ; θ(q))

Rigorously speaking, many draws within the S-step should be performed

Indeed, Gibbs has to reach a stochastic convergence

In practice it works well while saving computation time
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MLE: degeneracy

More degenerate situations than in classical mixture models

It is again a consequence of many more latent variables (blocks)

The Bayesian regularization (instead MLE) can be an answer
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Illustration of a degenerate situation
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Bayesian estimation: pitch

Everything passes by the posterior distribution of θ

p(θ| ) ∝ p( |θ)
︸ ︷︷ ︸

log-likelihood

p(θ)
︸︷︷︸

prior

Then, take (for instance) the MAP as a θ estimate (use a VEM like algo. . . )

θ̂ = argmax
θ

p(θ| )
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Bayesian estimation: limiting degeneracy

Interest for avoiding degeneracy is the prior: it acts as a penalization term

Typical choices are Dirichlet for π and ρ (with independence between π, ρ, α)

p(θ) = p(π)
︸ ︷︷ ︸

DK (a,...,a)

× p(ρ)
︸︷︷︸

DL(a,...,a)

× p(α)
︸ ︷︷ ︸

model dependent

The Dirichlet distribution is conjugate, thus easy calculus

Control degeneracy frequency with the a value:

a = 1: uniform prior, so θ̂ is strictly the MLE (no regularisation)
a = 1/2: Jeffreys prior, classical (no informative prior) but may favor degeneracy
a = 4: a rule of thumb working well for limiting degeneracy frequency

70/79



Introduction Model-based clustering Mixmod in MASSICCC MixtComp in MASSICCC BlockCluster Conclusion

Bayesian estimation: prior overview
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Document clustering (1/2)

Mixture of 1033 medical summaries and 1398 aeronautics summaries

Lines: 2431 documents

Columns: present words (except stop), thus 9275 unique words

Data matrix: cross counting document×words

Poisson model
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Document clustering (2/2)

p(ẑ /= z) ≤ 2n exp
{

−
1

8
d
[

min
k %=k′

|τk − τk′ |

︸ ︷︷ ︸

overlap

]}

+ K(1−min
k

πk)
n

Results with 2×2 blocs

Medline Cranfield
Medline 1033 0
Cranfield 0 1398
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Running BlockCluster
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Running BlockCluster
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Running BlockCluster
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Running BlockCluster
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Outline

1 Introduction

2 Model-based clustering

3 Mixmod in MASSICCC

4 MixtComp in MASSICCC

5 BlockCluster in MASSICCC

6 Conclusion
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Use probabilistic modelling as a mathematical guideline

Use the MASSICCC platform for user-friendly implementation

https://massiccc.lille.inria.fr/
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