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On the existence of two interior-point methods for linear programming following two different paths, and it implications

Recently, the central-path log-barrier methods (and more generally interiorpoint methods relying on central-path framework) have been proven not strongly polynomial on worse case linear program instances. A potential bypass could be to consider interior-point but not-central-path methods. In particular, this paper remarks the existence of two kind of interior-point based methods for linear feasibility which are equivalent from complexity point of view but with slightly different mechanisms. The main contribution of this paper is numerical experiments which proves that the paths followed by those two algorithms are not equal on all instances.

Introduction and motivation

The development of central-path log-barrier methods for linear programming dates back to 1980 with for example [START_REF] Renegar | A polynomial-time algorithm, based on newton's method, for linear programming[END_REF]. This framework has even been recently improved with an efficient data-structure [10] (which is a deterministic version of [START_REF] Michael B Cohen | Solving linear programs in the current matrix multiplication time[END_REF]). Using [10], a linear program related to a matrix A ∈ R M ×N with N variables, M = O(N ) constraints (matrix not too flat), and with total binary size L can be solved in less than O(N ω L) operations (where ω is the exponent of matrix multiplication/inversion).

Due to this low complexity, those algorithms are overwhelmingly the stateof-the-art of linear programming. However, this central-path framework could be challenged by recent negative result [START_REF] Xavier Allamigeon | Log-barrier interior point methods are not strongly polynomial[END_REF]: the classical central-path log-barrier methods are not strongly polynomial as 2 M steps could be required to deal with the curvatures of the central paths of worse case instances (while still being polynomial as those instances have L ≥ 2 M ). Even more, [START_REF] Xavier Allamigeon | No selfconcordant barrier interior point method is strongly polynomial[END_REF] proves that any algorithm whose current point makes line-move into the central-path of those instances is not strongly polynomial.

But, those negative results only holds for methods following the classical central-path. So, it could be interesting to consider as-efficient interior-point not-central-path algorithms for linear programming.

Indeed, there exists methods for linear program designed to deal with specific families of linear program instance in strongly polynomial times [9] for combinatorial matrix or Chubanov algorithm [START_REF] Chubanov | A polynomial algorithm for linear optimization which is strongly polynomial under certain conditions on optimal solutions[END_REF] or even the simplex for markov decision process [START_REF] Post | The simplex method is strongly polynomial for deterministic markov decision processes[END_REF]. But those methods are not related to interior point ones.

One potential example is [START_REF] Chan-Hon-Tong | A new algorithm for linear programming in critical systems[END_REF] which introduces the self-concordant Perceptron algorithm and makes the conjecture that it does not follow the central-path. Yet, this statement is not trivial as [START_REF] Chan-Hon-Tong | A new algorithm for linear programming in critical systems[END_REF] works with linear feasibility (rather than linear programming) without exploiting entirely the behavior of Newton descent on self-concordant barrier functions.

In this context, the contribution of this paper is to introduce and compare numerically two correctly equivalent methods for linear feasibility: one inspired by central-path log-barrier and one inspired by self-concordant Perceptron. The main result is that the paths followed by the two algorithms is not always the same in those numerical experiments.

Of course, there may exist worse case instances for both those algorithms simultaneously. But, the fact that those algorithms follows different paths (while having equivalent complexity) still opens a potential bypass to [START_REF] Xavier Allamigeon | Log-barrier interior point methods are not strongly polynomial[END_REF][START_REF] Xavier Allamigeon | No selfconcordant barrier interior point method is strongly polynomial[END_REF] negative results.

2 Two equivalent but different solvers for linear feasibility

Linear feasibility

Linear feasibility is the problem of finding x ∈ X A = {x ∈ R N , Ax > 0} given A ∈ R M ×N with the assumption that X A ̸ = ∅ (where 0 is the vector filled with 0). Let stress that if there exists x, Ax > 0, then, there exists χ, Aχ ≥ 1 (because one could form χ by dividing x by the minimal component of Ax which is strictly positive by assumption). As recalled in [START_REF] Chan-Hon-Tong | A new algorithm for linear programming in critical systems[END_REF], given a linear feasibility solver, one is able to solve general linear programming with same complexity (only strongly polynomial pre/post operations are required).

However, this requires in practice many steps of pre-processing. For example, linear feasibility solvers are allowed to have undefined behavior on input instances which does not satisfy core assumption X A ̸ = ∅. So, without assumption, the pre-processing should take the input (which can be unbounded or without admissible point) and cast it into a 16 times more constraint-variables matrix with four-times total binary size to ensure that the resulting A matrix verifies X A ̸ = ∅. Thus, despite it is theoretically true that linear feasibility is strongly polynomially equivalent to linear programming, this equivalent is not practical.

But, the only scope of this paper is to focus on [START_REF] Xavier Allamigeon | No selfconcordant barrier interior point method is strongly polynomial[END_REF] recent negative results. For this purpose, considering linear feasibility is not an issue.

Then, this paper offers two correctly-comparable algorithms based on selfconcordant theory for linear feasibility: one inspired by classical central-path log-barrier method and one inspired by self-concordant Perceptron.

Self-concordant theory

The two methods considered in this paper are based on self-concordant theory which describes a class of functions on which Newton descent performs efficiently. Due to the volume of this theory, this paper only states some key results, but a complete overview can be found in [START_REF] Nemirovski | Interior point polynomial time methods in convex programming[END_REF].

Notation: this paper uses log to represent log 2 i.e. log(2) = 1.

If Ψ(x) is a self-concordant function (mainly any sum of quadratic, linear, constant and -log term), with a minimum Ψ * , then, the Newton descent starting from x start allows to compute x ϵ such as Ψ(x ϵ ) -

Ψ * ≤ ε in O(Ψ(x start ) -Ψ * + log log( 1 ε
)) damped Newton steps. Each step of this descent is:

• λ Ψ (x) ← (∇ x Ψ) T (∇ 2 x Ψ) -1 (∇ x Ψ) • x ← x - 1 1+λΨ(x) (∇ 2 x Ψ) -1 (∇ x Ψ)
Even more, if Φ θ is a family of functions parameterized by θ which weights a linear term, with in addition of a common M self concordant function (e.g. a sum of M log terms). Then, the minimum of Φ (1± O(1) √ M )θ can be approximate from the minimum of Φ θ with O(1) Newton steps.

This way, the minimum of 2 L c T x- A m x). The point is that from the 2 L -related minimum one could form the solution of the linear program min

x,Ax≤b c T x. This is the core idea of the classical central-path log-barrier methods where the central-path is the set of minimums for the different values of the weight θ of the linear objective.

Theorem

Scope

The two algorithms considered in this paper are not original as it: there are direct application of self concordant theory [START_REF] Nemirovski | Interior point polynomial time methods in convex programming[END_REF] for linear feasibility. The contribution of this paper is to compare their paths (numerically) in next section. However as linear feasibility is not classical, this section describes precisely those algorithms. Let first recall that solving linear feasibility is the ability to produce x ∈ X A given a matrix A ∈ Z M ×N such that X A = {x ∈ R N , Ax ≥ 1} ̸ = ∅ with a number of steps depending on M and L the total binary size of A.

Claims

Let F, G be the two families of self-concordant functions:

F θ (v) = v T AA T v 2 1 T AA T 1 + θ 2 1 T v - m∈{1,...,M } log(v m ) (1) 
G θ (x) = θ1 T Ax - m∈{1,...,M } log(A m x + 1) (2) 
Claim 1: For all θ > 0, both F θ and G θ have a minimum which will be written ω(θ) and χ(θ)

Claim 2:

χ(1) = 0 and F 1 (1) -F 1 (ω(1)) ≤ M Claim 3: Both AA T ω(2 -L ) > 0 and Aχ(2 -L ) > 0 Remark: considering previous claims, the self concordant theory (see 2.2) allows to produce v, x such that AA T v > 0 and Ax > 0 with O( √ M L) Newton steps by decaying θ from 1 to 2 -L with factor (1-O(1) √ M ) performing O(1) Newton steps to approximate ω((1 -O(1) √ M )θ) and χ((1 -O(1) √ M )θ) from ω(θ) and χ(θ).

Lemmas required by the theorem

Lemma 1

For all θ ∈]0, 1], let f θ (t) = θt -log(t) and g θ (t) = θt -log(t + 1), then g θ (t) ≥ log(θ) and f θ (t) ≥ log(θ).
Proof f θ and g θ are trivially lower bounded as they goes to infinity on the extremity of their domains. As smooth convex functions, they have thus a minimum which is reached when θ -

1 t = f ′ θ (t) = 0 and θ -1 t+1 = g ′ θ (t) = 0 leading to f * θ = 1 + log(θ) ≥ log(θ) and g * θ = 1 -θ + log(θ) ≥ log(θ).
Lemma 2

∀A ∈ Z M ×N with total binary size L such that X A ̸ = ∅, the problems min p∈R N ,Ap≥1

1 T Ap (3) min q∈R N ,Aq≥1 q T q (4)
are well defined, and any optimal solutions p * , q * verify 1 T Ap * ≤ 2 L and (q * ) T (q * ) ≤ 2 L . Proof As X A ̸ = ∅ both problems admits feasible vectors. Then, both problem are bounded: by 4M for eq.3 and 0 for eq.4. Finally, some optimal solutions of these problems can be written as a linear systems extracted from A, thus, all the corresponding components can be written as a fraction of sub-determinant of A (due to Cramer rules) so 1 T Ap * and (q * ) T (q * ) are bounded by the maximal determinant extracted from A i.e. bounded by 2 L .

Proof of the theorem

2.5.1 Proof of claim 1 By construction, F θ (v) ≥ m∈{1,...,M } f θ (v m ) (as v T AA T v ≥ 0) and G θ (x) ≥ m∈{1,...,M } g θ (A m x). Then, seeing lemma 1, ∀θ ∈]0, 1], both F θ (v) ≥ M log(θ) and G θ (x) ≥ M log(θ).
Let just remark that A T 1 = 0 is impossible: let consider q * the solution of eq.4, then, (q 1)) ≤ M implying that only O(M ) Newton steps are required to initialize the algorithm (consisting of alternating Newton step and θ = 1 decaying) with a sufficient approximation of ω(1).

* ) T A T 1 = (Aq * ) T 1 ≥ 1 T 1 = M so F θ is well defined as (q * ) T A T 1 = (q * ) T 0 = 0 is impossible. 2.5.2 Proof of claim 2 Trivially, (∇G 1 ) 0 = 1 T A -1 T A = 0 so 0 = min x G 1 (x) = χ(1). Similarly, F 1 (v) ≥ m∈{1,...,M } v m -log(v m ) = m∈{1,...,M } f 1 (v m ) >= 0. So F 1 (ω(1)) ≥ 0, but, F (1) = 1 2 + M 2 . So F (1) -F (ω(

Proof of claim 3

For G θ :

Let consider a proof by contradiction: if there exists k,

A k χ(2 -L ) ≤ 0, then, let consider G 2 -L (χ(2 -L )+p * )-G 2 -L (χ(2 -L ))
where p * is any optimal solution from eq.3 problem.

Then,

G 2 -L (χ(2 -L ) + p * ) -G 2 -L (χ(2 -L )) = 1 T Ap * 2 L - m∈{1,...,M } [log(A m χ(2 -L ) + A m p * + 1) -log(A m χ(2 -L ) + 1)] < 1 T Ap * 2 L -log(A k χ(2 -L ) + A m p * + 1) -log(A k χ(2 -L ) + 1) (because Ap * ≥ 1,
so it strictly increase all log terms -but the increase could be small for m

̸ = k) < 1 -log( A k χ(2 -L )+1+1 A k χ(2 -L )+1 ) (because 1A T p ≤ 2 L seeing lemma 2) < 1 -1 = 0 (because 1+δ δ ≥ 2, ∀δ ∈]0, 1]) So G 2 -L (χ(2 -L )+p * )-G 2 -L (χ(2 -L )) < 0. This is a contradiction as χ(2 -L ) is expected to be the minimum of G 2 -L . So Aχ(2 -L ) > 0 For F θ : By definition of ω, (∇F θ ) ω(θ) = 0. Yet, ∀m ∈ {1, ..., M }, ((∇F θ ) ω(θ) ) m = A m A T ω(θ) + θ 2 -1 ω(θ)m
. So, if ω(θ) is higher bounded independently from θ, then, as soon as θ will be lower than this bound, one would have

A m A T ω(θ) = 1 ω(θ)m -θ 2 > 0. For bounding ω(θ), let first remark that ∀θ ∈]0, 1], ω(θ) T AA T ω(θ) 1 T AA T 1 ≤ 4M because otherwise F θ ( ω(θ)
2 ) ≤ F θ (ω(θ)) -3M + M : -3M because the quadratic term is higher than 4M and divided by 4 and +M because -

m log( ω(θ) 2 ) = M - m log(ω(θ)).
Independently ∀v ≥ 0, one could consider q * solution of eq.4 and the quantity (q * ) T A T v. Then:

• (q * ) T A T v ≤ ||q * || 2 v T AA T v (Cauchy inequality) • (q * ) T A T v = (Aq * ) T v ≥ 1 T v So, ∀v ≥ 0, (1 T v) 2 ≤ v T AA T v (q * ) T q * .
Combining, the bound on v and the fact that ω(θ) T AA T ω(θ)

1 T AA T 1
≤ 4M and using the lemma 2 ensuring (q * ) T q * ≤ 2 L , this leads to ∀θ ∈]0, 1], ω(θ) ≤ 2 -L 1.

In particular, for θ = 2 -L , (∇F

2 -L ) ω(2 -L ) = 0 leads to ∀m ∈ {1, ..., M }, A m A T ω(2 -L ) = 1 ω(2 -L )m -2 -L-1 > 1 2 -L-1 > 0.
3 Main results: numerical experiments on paths related to those two families Importantly, the previous section is only relevant for completeness and understanding: those F and G algorithms are not really new, and thus, not interesting by itself. But, the goal of this paper is that the paths induced by F and G have been found numerically different on some instances. This point is interesting as it is the beginning to bypass negative results from [START_REF] Xavier Allamigeon | No selfconcordant barrier interior point method is strongly polynomial[END_REF].

Comparing paths

The idea is to compare the set of A T ω(θ) and the set of χ(ν) to check if they are equivalent. If not, then the fact that there exists instance with high curvature of {χ(ν)} ν∈]0,1] has no impact on the complexity of an algorithm following

{A T ω(θ)} θ∈]0,1] .
Precisely, as it is hard to compare those two sets from geometrical point of view, an idea is to check if those two sets are close at some point. Indeed, a point z is in the area of quadratic convergence of a function

G ν iff ∃ν ∈]0, 1], (∇ z G ν ) T (∇ 2 z G ν )(∇ z G ν ) ≤ 1 4 (5) 
So, this paper offers to check overlap between the F path and the G path by considering for all θ:

min ν∈]0,1] ∇ ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) G ν ) T (∇ 2 ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) G ν )(∇ ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) G ν (6) 
The idea of considering ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) is to check for colinearity between χ(ν) and A T ω(θ) rather than equality. Indeed, A T ω(θ) tends to have O(M ) norm while χ(ν) tends to have a O( 1 θ ) norm. Yet, if A T ω(θ) is exactly χ(ν) with just a different scale, then, ||χ(ν)|| ||A T ω(θ)|| A T ω(θ)F= χ(ν). Code used for those experiments is in appendix. Importantly, this code is not designed for solving efficiently linear program or linear feasibility: the purpose is only to consider eq.6.

Results on random instances

This paper offers first to consider random instances. Those instance are built around two vector α, β such that 1 T A ||1 T A|| ≈ α, but, with the constraint that ∃k, A k ||A k || α ≈ -1, and, with the constraint that Aβ > 0.

First, there exists a small proportion (around 5%) of random instances for which the two paths are completely separated i.e. ∀θ,

min ν∈]0,1] (∇ ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) G ν ) T (∇ 2 ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) G ν )(∇ ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) G ν ) > 1 4 .
For most instances, there exists θ values for which ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) enters the G path. Yet, this is even more informative because, contrary to what could be though the fact that the F path overlap the G one at some point does not force the F path to continue to follow the G one.

This proves that F and G paths are both different and that the mechanism of the optimization of each family is different from the other. Thus, the curvature of the G path has no influence of the behavior of F minimization.

Results on hard instances

The code also implements the hard instance found in [START_REF] Xavier Allamigeon | Log-barrier interior point methods are not strongly polynomial[END_REF] i.e. b > 0, x 1 -t 2 b > 0, x 2 -tb > 0 x 2r > 0, x 2r-1 > 0 ∀1 ≤ j < r: t 1-1/2 j (x 2j-1 + x 2j -tx 2j+2 ) > 0, max(tx 2j-1 , tx 2j ) -x 2j+1 > 0 and the additional constraint ϵb -x 1 > 0 (to force x 1 to be close to 0 which is the optimal value).

However, even for small value of r (and moderate value of t), the difference between χ and ω is important leading to numerical issue when considering

(∇ ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) G ν ) T (∇ 2 ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) G ν )(∇ ||χ(ν)|| ||A T ω(θ)|| A T ω(θ) G ν ).
Yet, this shows again that χ and ω are significantly different.

Other feature highlighting potential difference

In addition to numerical results from previous section, it is also interesting to see that F and G behave differently regarding the number of small/large components of Aχ or AA T ω.

Indeed, the minimum of G θ is lower when a larger numbers of A k χ(θ) are large. Thus, considering uniquely the values of G, the convergence could be faster when the problem is highly constrained as most A k χ tend to be small during all the optimization. Inversely, the minimum of F θ is lower when a small number of A k A T ω(θ) are large. Indeed, ω(θ) k large implies

A k A T ω(θ) high as A k A T ω(θ) = 1 ω(θ) k -1 2θ
. Thus, considering uniquely the values of F , the convergence could be faster when the problem is low constrained as most A k χ tend to be high during all the optimization.

Off course, the optimization does not depend of the value of F, G (this will be the case only if each Newton step was providing the minimal improvement). Yet, this highlights that different mechanisms take place if F and G.

Perspectives

First, this paper does not claim that hard instances could not make both F and G minimization not strongly polynomial. Yet, it just remark that the paths induced by F and G are not always the same (numerically). Despite this claim could be strengthen by formal argument about the difference between F and G, this still invites to look for interior-point not-central-path algorithm.

This could be the beginning of a bypass of [START_REF] Xavier Allamigeon | No selfconcordant barrier interior point method is strongly polynomial[END_REF] negative result.
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Source code of numerical experiments
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  d o u b l e ( ) f o r k i n r a n g e ( 1 0 0 0 ) : i f s o l u t i o n (A, x ) : p r i n t ( " done " ) b r e a k dg = DG(A, t h e t a , x ) d2g = D2G(A, x ) d 2 g i n v = t o r c h . i n v e r s e ( d2g ) l 2 = ( dg * t o r c h . mv( d 2 g i n v , dg )

  = [ ] t h e t a = 1 AT = t o r c h . t r a n s p o s e (A, 1 , 0 ) AAT = t o r c h . matmul (A, AT) v = t o r c h . o n e s (A . s h a p e [ 0 ] ) . d o u b l e ( ) * 0 . 1 f o r k i n r a n g e ( 1 0 0 0 ) : i f s o l u t i o n (A, t o r c h . mv(AT, v ) ) : p r i n t ( " done " ) b r e a k d f = DF(A, t h e t a , v , AAT) d 2 f = D2F (A, v , AAT) d 2 f i n v = t o r c h . i n v e r s e ( d 2 f ) l 2 = ( d f * t o r c h . mv( d 2 f i n v , d f ) ) . sum ( ) l = t o r c h . s q r t ( l 2 ) v = v -1 / ( 3 + 3 * l ) * t o r c h . mv( d 2 f i n v , d f )

1 #

 1 ( ) ) i f t o r c h . mv(A, A T v s c a l e d ) . min ( ) > -1: p r o x i m i t y . append ( ( lambdaG (A, nu , A T v s c a l e d ) , nu ) ) p r o x i m i t y = s o r t e d ( p r o x i m i t y ) p r i n t ( t h e t a , p r o x i m i t y [ 0 : 2 ] ) p r i n t ( " now w i t h h a r d i n s t a n c e s " ) r = 3 t = 1 0 0 0 n u m v a r s = 2 * r + 1 num eqns = 3 * r + 3 A = t o r c h . z e r o s ( ( num eqns , n u m v a r s ) ) . d o u b l e ( ) c o u n t e r = 0 # hack >0 A [ c o u n t e r , 0 ] = 1 c o u n t e r += -x1 > -t ˆ2 b e c o m e s -x1 + h a c k * t ˆ2 > 0 A [ c o u n t e r , 1 ] = -1 A [ c o u n t e r , 0 ] = t * * 2 c o u n t e r += 1 # x2 < t b e c o m e s -x1 + h a c k * t ˆ2 > 0 A [ c o u n t e r , 2 ] = -1 c o u n t e r += 1 # x {2 r -1} > 0 A [ c o u n t e r , 2 * r -1 ] = 1 c o u n t e r += 1 # x {2 r } > 0 A [ c o u n t e r , 2 * r ] = 1 c o u n t e r += 1 f o r j i n r a n g e ( 1 , r ) :

  r , 2 * j ] = t * * ( 1 -1 / ( 2 * * j ) ) c o u n t e r += 1 # x1 < 0 . 0 0 0 0 0 0 1 h a c k ( b e c a u s e 0 i s o b v i o u s l y t h e o p t i m a l v a l u e ) A [ c o u n t e r , 0 ] = 0 . 0 0 0 0 0 0 1 A [ c o u n t e r , 1 ] = -1 c o u n t e r += 1 p r i n t ( " s o l v i n g w i t h G" ) a l l t h e t a X = [ ] t h e t a = 1 x = t o r c h . z e r o s (A . s h a p e [ 1 ] ) . d o u b l e ( ) f o r k i n r a n g e ( 1 0 0 0 ) : i f s o l u t i o n (A, x ) : p r i n t ( " done " ) b r e a k dg = DG(A, t h e t a , x ) d2g = D2G(A, x ) d 2 g i n v = t o r c h . i n v e r s e ( d2g ) l 2 = ( dg * t o r c h . mv( d 2 g i n v , dg )

  = [ ] t h e t a = 1 AT = t o r c h . t r a n s p o s e (A, 1 , 0 ) AAT = t o r c h . matmul (A, AT) v = t o r c h . o n e s (A . s h a p e [ 0 ] ) . d o u b l e ( ) * 0 . 1 f o r k i n r a n g e ( 1 0 0 0 ) : i f s o l u t i o n (A, t o r c h . mv(AT, v ) ) : p r i n t ( " done " ) b r e a k d f = DF(A, t h e t a , v , AAT) d 2 f = D2F (A, v , AAT) d 2 f i n v = t o r c h . i n v e r s e ( d 2 f ) l 2 = ( d f * t o r c h . mv( d 2 f i n v , d f ) ) . sum ( ) l = t o r c h . s q r t ( l 2 ) v = v -1 / ( 3 + 3 * l ) * t o r c h . mv( d 2 f i n v , d f )

  ( ) ) i f t o r c h . mv(A, A T v s c a l e d ) . min ( ) > -1: p r o x i m i t y . append ( ( lambdaG (A, nu , A T v s c a l e d ) , nu ) ) p r o x i m i t y = s o r t e d ( p r o x i m i t y ) p r i n t ( t h e t a , p r o x i m i t y [ 0 : 2 ] )