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We report an experimental study of the dynamics of two coupled magnetic dipoles. The experi-
ment consists in two coplanar permanent disk magnets separated by a distance d, each allowed to
rotate on fixed parallel axis - each magnets axis being perpendicular to its dipolar moment vector.
A torque of adjustable strength can be externally applied to one of the magnets, the other magnet
being free. The driving torque may be time independent or temporally fluctuating. We study the
influence of the parameters of the driving torque on the dynamics of the coupled system, in par-
ticular the emergence of dynamical regimes like stochastic reversals. We report transitions between
stationary and stochastic reversal regimes. All the observed features can be understood by a simple
mechanical dynamical model. The transition between statistically stationary regimes and rever-
sals is explained introducing an effective potential energy incorporating both the coupling between
magnets and the external driving. Relations between this simple experimental model with macro-
scopic models of magnetic spins coupling, as well as with chaotic reversals of turbulent dynamos are
discussed.

I. INTRODUCTION

Multi-stable stochastic processes play a crucial role
in many fundamental problems in all fields of science
(physics, chemistry, geophysics, biology, etc.) [1]. In such
processes a dynamical system can transit between stable
deterministic states separated by an energy barrier; the
transition is generally activated by natural or external
fluctuations (stochastic noise) promoting the escape of
the system from one state to the other. The investigation
of the probability of such escape events is a classical and
complex problem (known as Kramers problem [2]), and
an active research field of multi-stable stochastic systems.
It depends on many aspects, such as the amplitude of the
energy barrier between stable states, the type of activat-
ing noise (additive, multiplicative), the correlation time
and the colour of the noise. In particular, multi-stable
stochastic systems are omnipresent in spin systems or
magnetic dipole-dipole interaction. For instance, finite
size ensembles of magnetic dipoles exhibit transitions be-
tween ferromagnetic phases and chaotic regimes (zero av-
erage magnetisation) at zero temperature as shown in [3],
the transition being dependent on the number of dipoles
and on the strength of the coupling [4]. Similar tran-
sitions are often observed in fluid mechanics systems.
For instance, closed turbulent flows generated between
counter-rotating impellers (so called von Kármán flows)
are known to exhibit hysteresis and multi-stability [5]
with transitions between states activated by turbulent
fluctuations. Recent experiments by de la Torre & Bur-
guete [6] have shown for instance that a perfectly sym-

metric von Kármán flow can exhibit such transitions be-
tween two asymmetric flow configurations (the global
symmetry being then statistically recovered). Another
example is given by the long term Lagrangian dynamics
of a large particle in symmetric von Kármán flows [7],
which have been shown to be preferentially trapped in
two stable attractors (in the close vicinity of each im-
peller), with rare and sudden transitions between both
sides of the flow activated by turbulent fluctuations. Such
transitions have also been reported in dynamo experi-
ments. In these systems involving electrically conducting
fluids, an instability converting kinetic energy into mag-
netic energy is at the origin of the growth of a large-scale
magnetic field. Reversals between two opposite polari-
ties of the magnetic field have for instance been observed
in the homogeneous von Kármán Sodium (VKS) experi-
ment [8], as well in the semi-synthetic Bullard-von Kár-
mán dynamo setup [9].

The present study explores the possibility to revisit
some generic properties of the influence of noise on such
multistable systems by considering a simple table-top ex-
periment with two coupled magnetic dipoles. The free
dynamics of two coupled, identical, frictionless magnetic
dipoles has already been described by [10] with analyt-
ical solutions depending on initial conditions. We con-
sider here a similar geometry but with coupled dipoles
having distinct moments of inertia and we incorporate
losses. Moreover, in the present study, the angular po-
sition of one of the dipoles is forced by a driving torque
(which could be the realization of a stochastic noise), the
other dipole being free. The study is in the same vein
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as the one reported in [11] which highlighted magnetic
frustration at a macroscopic scale, with an ensemble of
macroscopic magnetic dipoles. The article is organised
as follows: first, in section 2, we describe the setup of the
table-top experiment. In section 3, the computation of
the fixed points of the system are detailed. The different
dynamical regimes obtained for specific parameters are
explained in section 4 and a phenomenological model is
given in section 5 to explain qualitatively the observed
regimes. Arguments are given in section 6 to compare
our model experiment with the dynamical regimes ob-
served in dynamo experiments. In particular, our table-
top experiment shares similar statistical properties with
the reversals observed in the VKS experiment, such as
transitions between stationary dynamos and reversals,
distribution of the waiting time between reversals, as well
as the relative influence of the noise on the dynamics.

II. EXPERIMENTAL SETUP

The experimental setup is schematically displayed in
figure 1. Two Neodynum-Iron-Bore dipolar magnets are
fixed at the tip of two rotating parallel shafts. These
magnets are very thin circular plates (of diameter 30
mm, thickness 1 mm) magnetised along one diameter,
with dipolar moments M1 and M2 respectively. Both
magnets are set in the same vertical plane (x, y) (per-
pendicular to their rotation axis) and separated by a dis-
tance d. Note that the distance d sets the amplitude
of the coupling between the two magnets and can be
modified at will. The angular positions of each dipo-
lar magnet are denoted θ1 and θ2, relative to the refer-
ence horizontal axis x (see figure 1-(a)). When magnets
are left interacting without external driving, the stable
fixed points are θ1 = θ2 = 0 (mod π) and the unsta-
ble fixed points are θi = ±π/2 (mod π). When an ex-
ternal torque is applied to shaft 1 such that θ1 > 0, it
leads to a stable equilibrium angle θ2 < 0, as displayed
in figure 1. Such an external torque is applied by a mag-
netic driving system added to the opposite end of shaft
1 (on which M1 is set) – the magnetic nature of the
drive was designed to avoid additional mechanical fric-
tion. The driving system is also schematically displayed
in figure 1 and consists of a quadrupolar stator/rotor-
like system. The rotor is composed of small permanent
magnets while the stator is composed of eight coils. The
currents in these coils impose the strength of the max-
imum torque applied to shaft 1 as well as preferential
orientations for θ1. This is achieved by driving currents
Ii in coil i as I1 = I5 = −I3 = −I7 = I0 cosα and
I2 = I6 = −I4 = −I8 = I0 sinα: the maximum strength
of the externally applied torque is thus proportional to
I0 and the preferential orientation of θ1 is α/2 (mod π)
(reached when the driving torque overcomes the coupling
between the magnets). Figure 1 displays the situation
with α = π/2 (with the external driving torque domi-
nating over the dipolar magnets interaction) for which

θ1 = α/2 = π/4. The choice of this quadrupolar forc-
ing has been favored since (i) the strength and direction
of the driving torques can be independently set, (ii) the
modulus π of fixed points is preserved (see next section).
Note that both I0 and α may explicitly depend on time.

The present study focuses on the experimental obser-
vation of the relative influence of the coupling between
the two magnets and of the external driving torque on
the dynamics of the system – the coupling being con-
trolled by the distance d for a fixed couple of magnets
and the driving by the current in the external coils (both
the amplitude I0 and the angle α).
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FIG. 1. (Color online) (a) 2D schematic view of the interac-
tion of the two magnets studied in this article (b) Schematic
of the experimental setup

Currents in the coils are driven by two bipolar current
amplifiers Maxon LSC30/2, feeding the odd and even
coils up to Imax

0 = 2 A. These amplifiers are controlled
by analog outputs of a National Instruments PCIe 6321
digitised at 400 Hz. Around each dipolar magnets, the
projections of the magnetic field created by the dipolar
moments M1 and M2 along the x horizontal axis (at
locations H1 and H2) and along the y vertical axis (at
locations V1 and V2) are measured using AnalogDevices
22151 Hall effect sensors, sampled at a rate of 400 Hz by
National Instruments PCIe 6321 analog digitisers. The
angular positions θ1 and θ2 of the interacting magnets
are then computed from these measurements after a cal-
ibration procedure. Details about the experiment are
provided as in appendix A.

The dynamics of the system is described by a set of
2 coupled differential equations (see appendix A for de-
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tailed calculations) in their normalised form:

J∗
1

d2θ1
dt2

= A sin (α− 2θ1)− sin θ2 cos θ1 − 2 sin θ1 cos θ2

−F ∗
1

dθ1
dt
−K∗

1 sign

(
dθ1
dt

)
, (1)

J∗
2

d2θ2
dt2

= − sin θ1 cos θ2 − 2 sin θ2 cos θ1

−F ∗
2

dθ2
dt
−K∗

2 sign

(
dθ2
dt

)
, (2)

with J∗
i , F ∗

i and K∗
i respectively denoting the moments

of inertia of shaft i, the fluid friction coefficient and the
solid friction coefficient acting on shaft i, normalised by
the coupling strength µ0M1M2/4πd

3. Introducing D as
an effective driving efficiency of the magnetic drive, A de-

notes the normalised driving torque as
DI0

µ0M1M2/4πd3

– in other words A is the ratio between the maximum
driving torque DI0 and the coupling between the two
magnets.

When the system is uncoupled (infinite d) or when one
of the shafts is kept static, the dynamics simplifies as
a second order differential equation with damping. In
that case, each of the parameters of equations A1 and
A2 can be determined by fitting experimental data with
a second order model system. These measurements are
straightforward and are described in appendix B.

III. COMPUTATION AND MEASUREMENT OF
STATIONARY FIXED POINTS

Stationary fixed points of the system (A1, A2) can be
computed as solutions of the system:

A
3

sin (α− 2θ1) + sin θ2 cos θ1 = 0 (3)

sin θ1 cos θ2 + 2 sin θ2 cos θ1 = 0 (4)

and fixed points depend on the values of A (or equiva-
lently on I0 and d) and α.

It is also instructive to investigate the nature of these
stationary fixed points from an energy point of view.
It is convenient to introduce an effective potential en-
ergy from which the conservative dynamics of the system
can be derived. The interaction potential, normalised by
µ0M1M2/4πd

3 reads:

Vint = −3 cos θ1 cos θ2 + cos(θ2 − θ1),

from which the normalised torque applied by magnet

2 on magnet 1 is computed as Γ21 = −∂Vint
∂θ1

and the

normalised torque applied by magnet 1 on magnet 2 as

Γ12 = −∂Vint
∂θ2

Equivalently, the normalised potential accounting for
the driving torque applied to magnet 1 by the driving

system reads:

Vdrive = −A
2

cos(α− 2θ1),

from which the normalised driving torque acting on mag-

net 1 is computed Γdrive = −∂Vdrive
∂θ1

. We thus intro-

duce a normalised effective potential energy V accounting
for both the coupling between magnets and the external
drive as:

V = −3 cos θ1 cos θ2 + cos(θ2 − θ1) +
A
2

cos(α− 2θ1) +C

where the constant C is adjusted for the minimum value
of V to be zero.

From system (3)-(4), it is readily checked that eight
fixed points exist for (θ1, θ2) and that if θ01 and θ02 are
solution of the above system, then θ01 + π and θ02 + π
are also solutions. The quadrupolar driving scheme thus
preserves the modulus π of the stationary fixed points.
However, in the present setup, only four fixed points are
easily accessible to the dynamics of the system. This can
be understood by investigating the evolution of potential
V in the configuration space (θ1, θ2) which is displayed
in figure 2 without driving (i.e. A = 0). Two stable fixed
points correspond to global minima of potential V and
are displayed as white circles (θ1 = θ2 = 0 (mod 2π) and
θ1 = θ2 = ±π (mod 2π)). The two reachable unstable
fixed points, which are saddle points in the configura-
tion space (θ1, θ2), are displayed as white crosses. Four
other unstable fixed points (either saddle points or global
maxima) are displayed as black diamonds, with potential
values respectively 3 and 4 ( i.e. 3 and 4 times larger
than the potential of the two saddle points displayed as
white crosses). In the context of our study, the dynam-
ics will be confined in the dark energy valley of figure
2 - along the diagonal θ2 ∼ −θ1 when A ∼ 0 - and the
four fixed points at higher potential (black diamonds) are
never observed (see figure 5). From the initial eight fixed
points, only four of them (two stable and two unstable
ones) are thus accessible. The situation remains similar
when considering cases for which A 6= 0; as shown below,
the potential landscape is modified, however the dynam-
ics is still confined to low energy valleys of the potential
landscape.

Let us now focus on the stable fixed points in the more
general situation for which α, the preferential orientation
of magnet 1 occurring from the driving torque, and A,
the strength of the driving torque, are non zero. When
α 6= 0, two asymptotic behaviours are identified:

• A � 1: when the coupling between the two inter-
acting magnets dominates over the driving, θ1 → 0
(mod π) (in the experiment, for vanishing values of
I0 and finite d value).

• A � 1: when the driving dominates over the cou-
pling between the two interacting magnets, θ1 →
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FIG. 2. (a)Evolution of potential V in the configuration
space (θ1, θ2) when A = 0; contour lines for 0.2, 0.6, 1, 2,
3 and 3.6 energy values. (b) Fixed points as in (a) and asso-
ciated magnets M1,M2 configurations: stable fixed points
(white circles), unstable saddle points (white crosses) and
non-accessible unstable fixed points (black diamonds).

α/2 (mod π) (in the experiment, for large I0 val-
ues at finite d).

For a given value of the interaction length (d = 45 mm),
the stationary stable fixed points θi have been measured
as a function of A and systematically compared to the so-
lutions computed for system (3, 4) for several values of α
- three of which are displayed in Figure 3. Experimental
points are displayed as symbols together with the solu-
tions of system (3, 4), displayed as full lines (black filled
symbols and black full line for θ1 and open red symbols
and red line for θ2). The agreement is very good, within
the error bars of the experimental data. The asymptotic
limits are clearly observed, especially for the largest val-
ues of α. Note that the relation for fixed points according
to equation 4 reads tan θ1 = −2 tan θ2 since the driving
torque is applied only onM1.
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FIG. 3. Color online. Evolution of experimental and theo-
retical fixed points as a function of the normalised driving
amplitude A for three values of α: θ1 (experiment: full black
symbols) and θ2 (experiment: open red symbols).

This evolution of the stable fixed points as a function
of A can also be understood from the evolution of the
potential landscape V (θ1, θ2). Figure 4 shows the evo-

lution of of V for 6 values of A and α/2 = 1.56 (cor-
responding to the experimental points black circles in
figure 3). Both the amplitude of the potential and the
shape of the potential landscape as a function of θ1 and
θ2 are modified. In particular global minima are observed
around θ1 ∼ θ2 ∼ 0 mod(π) at low values of A (below
0.5), which correspond to the stable fixed points of fig-
ure 2. When A increases, a shift of the global minima
towards θ1 ∼ α/2 (mod π) and tan(θ2) = − tan(θ1)/2 is
observed. In particular, for A > 2 in figure 4, the energy
landscape drastically changed as compared to the A = 0
case: the low energy valley is no more along the diagonal
θ1 ∼ −θ2, but has shifted toward vertical lines around
θ1 ∼ α/2 (mod π). The potential barrier between stable
fixed points increases as A increases (note the colorscales
in figure 4). This can be understood in the following
way: when A � 1, the driving torque is dominant and
magnet 1 barely rotates around its axis even if magnet
2 rotates. In this configuration, the unstable fixed point
with the lowest energy is now θ1 ∼ θ2; this unstable fixed
point is now easily accessible to the system.
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FIG. 4. Evolution of potential V in the configuration space
(θ1, θ2), for increasing values of A from top left to bottom
right and α/2 = 1.56.

IV. DYNAMICS WITH TIME-VARYING
DRIVING

Let us now investigate the dynamics of the coupled
system (A1,A2) with a time-varying driving. Several
choices may be made for the time-dependent variation
of the driving torque through time-variation of the driv-
ing current I0 or the driving angle α. In the remaining of
the paper α is kept constant and time-dependence arises
from the amplitude of the driving current I0 - or equiv-
alently A at constant d. Since similar dynamics have
been obtained for time-dependent phase and/or time-
dependent magnitude of the driving torque, we will focus
on cases with time dependent magnitude of the driving
torque without any loss of generality. A(t) was chosen as
the digital realisation of a delta-correlated gaussian pro-
cess, with average 〈A〉 and standard deviation Ã. This
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choice was motivated by the observation of non-trivial
dynamics even in the presence of such simple noise real-
isations. The choice of the nature of the noise is further
discussed in the conclusion, in particular when discussing
the possible application of this analogue model to turbu-
lent systems, for which the fluctuations are much more
complex than gaussian delta-correlated noise. The angle
α/2 = 1.3 was chosen as a typical value (quantitatively
identical regimes were obtained for values of α/2 in the
range [π/8;π/2]).

We first consider the influence of the standard devi-
ation of the driving Ã for a fixed time averaged value
〈A〉 and fixed interacting distance (d = 45 mm). Let us
first investigate the case where the driving fluctuations
are kept very small (i.e. small values of Ã). The interact-
ing magnets then fluctuate around their stable stationary
fixed points and typical time series of θ1(t) and θ2(t) are
given in figure 5(a-b). The associated (θ1(t), θ2(t)) con-
figuration space is displayed in figure 5(c), and shows that
the dynamics is confined to the potential well centered on
(θ1 ∼ 0.6, θ2 ∼ −0.33). The trajectory of the fluctuating
system is confined to an island in the configuration space
and no reversals are observed. This results in a constant
large scale dipolar magnetisation of the system, with fluc-
tuations around the time-average dipole strength. The
amplitude of the noise is large enough to explore loca-
tions in the configuration space where the potential is
non zero close to stable fixed point (black circle), but it
is too weak to drive the system toward the nearest unsta-
ble fixed points (white crosses). For higher values of the
driving noise amplitude Ã, the dynamics is more complex
and reversals of the magnets orientation can be observed.
Typical time series of θ1(t) and θ2(t) in this regime are
given in figure 5(d-e). The system now explores regions
close to the unstable fixed points. This is evidenced when
investigating the dynamics of the reversals displayed in
figure 5(d-e) in the (θ1(t), θ2(t)) configuration space as
given in figure 5(f). In this situation, the noise ampli-
tude is strong enough to drive the system close to the
unstable fixed points (white crosses), eventually leading
to reversals of the magnets orientations. The trajectory
is no more confined to an island. The system explores
potential wells around the stable fixed points (black cir-
cles) during long intervals, leading to dense trajectories
in the vicinity of these stable fixed points. However, the
noise is strong enough to drive the system close to the un-
stable fixed points for short periods of time, before the
trajectory is confined again close to a new stable fixed
point. From figures 5(c) and (f), it is also clear that the
dynamics is confined to valleys of low potential values –
darker regions – as schematically explained in figure 2(b).
This dynamics results in the occurrence of two opposite
large-scale dipolar magnetisations (i.e. the dipolar struc-
ture can be oriented towards the x direction or the −x
direction), with stochastic reversals between these two
states. A video displaying the dynamics of such regimes
is provided as a supplementary material at [URL will be
inserted by publisher]. It shows the view of the magnets

(where the red dot locates the north pole of the magnet),
together with the time-evolution of angular positions θ1
and θ2 and of the x-component of the magnetic field,
measured with a Hall effect sensor halfway between the
two magnets axes.
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series for α/2 = 1.3. (c,f) Corresponding trajectory in config-
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V ). Left column: statistically stationary regime, Right col-
umn: reversals. See text for details.

Let us now investigate in greater details the evolution
of the dynamics as a function of both the time-averaged
value 〈A〉 and the standard deviation Ã of the normalized
driving torque. The experimental evolution of the time-
averaged angular position 〈θ1〉 of magnet 1 as a function
of 〈A〉 is displayed as dots in figure 6(a) - an evolution
in very good agreement with the stable fixed points com-
puted from system (3)-(4) plotted as a full black line.
The evolution of θ̃1, the standard deviation of the fluc-
tuations of the angular position of magnet 1 around 〈θ1〉
is displayed in figure 6(b) as a function of 〈A〉 for several
values of the driving fluctuations Ã. Let us first exam-
ine the case for which the amplitude of the noise is weak
enough so that the dynamics is confined to potential wells
around the fixed points in the (θ1, θ2) configuration space
(as in figure 5(c)). This is for instance the case for the
green (vertical) crosses in figure 6(b), for which Ã = 0.35.
The standard deviation θ̃1 first increases when 〈A〉 is in-
creased up to 0.66 and then decreases for higher values
of 〈A〉. Similar behaviours are observed for higher values
of Ã: the evolution of θ̃1 normalised by Ã nearly collapse
onto a single curve as shown in the inset of figure 6(b).
We provide a phenomenological explanation of these fea-
tures in next section. In this regime, the interacting mag-
nets fluctuate around their mean angular positions 〈θ1〉
and 〈θ2〉 without reversals. For higher values of the driv-
ing noise amplitude Ã, we already mentioned more com-
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plex dynamics, with magnets orientation reversals. For
sufficiently large driving noise, the system may explore
regions close to the unstable fixed points (displayed in
figure 6(a) as a dashed line). These reversals are only
observed for a narrow range of 〈A〉 values, displayed as
arrows in figure 6(b). We will describe in details the case
for which Ã = 0.79 – purple squares in figure 6(b). For
values of 〈A〉 up to 0.7, the fluctuations of the angular
position θ̃1 remain below 3π/16 and the regimes corre-
spond to statistically stationary regimes (with magnets
fluctuating around their mean angular positions). For
higher values of 〈A〉 (between 0.75 and 1.2), stochastic
reversals of the magnets orientation are observed. In this
regime, the angular positions switches randomly between
two angular positions - with a large level of fluctuations.
These positions correspond to the stationary fixed points
and each reversal consist in a rapid rotation of angle nπ,
n being an unsigned integer. The extent of these regimes
is depicted as a full arrow in figure 6(b) (since reversals of
the magnets occur, the standard deviation is no longer an
illustrative variable to consider for these regimes). Then,
as 〈A〉 is further increased, the system do not exhibit re-
versals any longer and the system recovers a statistically
stationary dynamics, with a decreasing evolution of θ̃1
with 〈A〉.
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points computed from equations 3-4 and experiments (circles)
and (b) evolution of the standard deviation θ̃1 as a function
of 〈A〉 for various Ã values. The distance is kept constant
d = 45 mm and α/2 = 1.3.

The first observation is that stochastic reversals
can be observed with a gaussian white noise driving
if the noise amplitude is sufficiently large. A second
observation, is that the extent of the occurrence of
these reversals depends on the driving noise amplitude.

A third observation is that, close to the onset of
existence of stochastic regimes - i.e. for the smallest
noise amplitude where reversals have been observed
- these regimes are bounded by statistically station-
ary regimes as a function of 〈A〉 when Ã is kept constant.

The determination of the extent of the regimes where
reversals are observed as depicted in figure 6(b) is some-
what abritrary. This can be best understood from the
analysis of figure 7(a) which displays the evolution of the
mean waiting time 〈Tr〉 between reversals as a function
of 〈A〉 for a fixed value of Ã = 1.14 and d = 45 mm.
For these parameters, the situation is similar to the one
presented in figure 6(b): reversals are bounded by statis-
tically stationary regimes. Data presented in figure 7(a)
where obtained from 86400 seconds (24 hours) long time
series. The first observation is that reversals are more
frequent in the center of the occurrence region than at
its boundary. The second observation is that the mean
waiting time between reversals rapidly increases as 〈A〉 is
decreased or increased to values corresponding to the sta-
tistically stationary regimes. Whether the mean waiting
time between reversals diverges or not as 〈A〉 approaches
the values for which no reversals occur cannot be stated
definitely from these data (this would require extremely
long time series), but divergence is compatible with the
evolution depicted in figure 7(a). Boundaries between
regimes should thus be defined as when the mean time
between reversals diverges. However, given the evolution
provided in figure 7(a), a precise determination of bound-
aries between regimes in the parameter space (〈A〉, Ã) for
various values of d is a rather difficult task (which would
require a very large number of extremely long time se-
ries – a task out of reach of this study). We provide
in figure 7(b) an estimate of these boundaries from the
analysis of finite length time series (at least two reversals
over 480 seconds long time series) for three values of the
coupling distance d and a fine scan in the (〈A〉, Ã) pa-
rameter space. Let us first focus on the case d = 45 mm,
which corresponds to the (blue) squares. In this figure,
the lower and upper threshold in 〈A〉 for the occurrence
of stochastic reversals are plotted as a function of Ã – this
corresponds to the extent of the full arrows in figure 6(b).
Schematically, three distinct regimes are observed for a
given amplitude of the driving noise (equivalently Ã): (i)
for the lowest values of the driving noise, only statisti-
cally stationary regimes are observed (left hand side of
figure 7(b)), (ii) for moderate amplitude of the driving
noise, reversals are bounded by statistically stationary
regimes as 〈A〉 increases, (iii) for large amplitude of the
driving noise, reversals are observed when 〈A〉 is below
a threshold, while statistically stationary regimes are ob-
served above. We provide a phenomenological explana-
tion of this sequence in next section. The influence of
the coupling strength on the occurrence of the stochas-
tic regimes is also displayed in figure 7(b), for two other
values of the coupling distance d, namely 40 mm (black
stars) and 55 mm (empty red circles). A first striking
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observation is that the onset of stochastic regimes is ob-
served for lower values of the noise when the coupling
is stronger. A second observation is that for a given
value of the noise amplitude, the window of occurence for
theses regimes is smaller for stronger coupling. Finally,
the time statistics of waiting time between reversals is
studied through their probability distribution functions
(pdf) displayed in figure 7(c). These pdf have been com-
puted from 259200 seconds long (72 hours) time series
for 〈A〉 = 0.97 and 324000 seconds long (90 hours) for
the other two values of 〈A〉 . These pdf are compati-
ble with an exponential distribution on a first approxi-
mation, with characteristic times (or equivalently mean-
waiting times between reversals) τ = 56.2; 12.1 and 26.3
s respectively for 〈A〉 = 0.44, 0.97, 1.36.

0 1 2 3
0

1

2

3

4

5

˜

d = 40 mm
d = 45 mm
d = 50 mm

0 0.4 0.8 1.2 1.6 2

10
1

10
2

10
3

T
r
(s
)

0 100 200 300 400
-14

-12

-10

-8

-6

-4

T
r
 (s)

ln
(p

d
f)

= 0 .44

= 0 .97

= 1 .36

a) b) c)

FIG. 7. (a) Evolution of the mean waiting time between re-
versals 〈Tr〉 as a function of 〈A〉, for Ã = 1.14. (b) Estimated
boundaries between regimes in the (Ã,〈A〉) parameter space
for α/2 = 1.3. (c) Probability density function of waiting
times between reversals for Ã = 1.14, and d = 45 mm for the
three values of 〈A〉. See text for details.

V. PHENOMENOLOGICAL MODEL

In this section, we analyze the features of the cou-
pled stochastic system in a simplified framework which
explains qualitatively most of the experimental observa-
tions. This analysis relies on the interpretation of the
potential energy V introduced earlier. In the presence of
fluctuations of the driving torque, the potential V can
then be written as the sum of two contributions: a time
averaged potential 〈V 〉 and a noise η.

V (t) = 〈V 〉+ η(t),

where

〈V 〉 = −3 cos θ1 cos θ2+cos(θ2−θ1)+
〈A〉
2

cos(α−2θ1)+C,

and

η(t) =
A(t)− 〈A〉

2
cos(α− 2θ1),

Let us now make the approximation that the energy
landscape is set by the time-average value of the poten-
tial 〈V 〉, while the fluctuations of the driving act as a

noise which allows to reach locations of the configuration
space where the potential is positive. In the real system,
fluctuations of the driving indeed modify the instanta-
neous energy landscape, but, for the sake of simplicity,
we neglect these modifications at leading order. Under
our approximation, trajectories in the (θ1, θ2) configura-
tion space evolve within the time average potential 〈V 〉.
We assume that excursions in the (θ1, θ2) configuration
space are restricted to locations where the value of the
mean potential is lower than a maximal value propor-
tional to η̃ where η̃ is the standard deviation of the noise.
The evolution of isocontours of the potential as a func-
tion of 〈A〉 thus provide useful insight of the expected
dynamics of the system; these are displayed in figure 8.
For each value of 〈A〉, three isolines are represented, re-
spectively 0.5 (full line), 0.66 (dash-dotted line) and 1.01
(dotted line). We will assume that these isocontours rep-
resent the accessible locations in the (θ1, θ2) configura-
tion space for increasing values of the driving noise. The
analysis of each of the three cases allows for providing
a phenomenological understanding of the stationary and
reversals regimes, their evolutions and the transitions be-
tween them as described in figure 7(b).

We will first focus on the evolution of isocontours for
potential 〈V 〉 = 0.5 (full lines). For all values of 〈A〉,
isocontours separate islands around a stable fixed point.
The noise is not strong enough to drive the system close
to an unstable fixed point: the dynamics of the system is
restricted to fluctuations around one of the stable fixed
points. This is the situation encountered when Ã < 0.7
in figure 6: no reversals are observed whatever the value
of 〈A〉. The trends observed in figure 6(b) for the evolu-
tion of θ̃1 (namely increasing with 〈A〉 at low values and
decreasing with 〈A〉 at large values) can also be under-
stood from the evolution of the isocontours of the poten-
tial landscape. Indeed, the extent of the islands – and
thus the accessible range of θ1 values – first increases
with 〈A〉 (at low values), and then decreases with 〈A〉
(for larger values). Let us now consider the isocontours
for potential 0.66 (dash-dotted lines). For 〈A〉 values be-
low 0.4 and above 1.3, the potential isocontours separate
islands around stable fixed points: no reversals are ob-
served (similarly to the evolution depicted in figure 6(b)
for Ã = 0.88 at the lowest and highest values of 〈A〉).
On the contrary, when 0.4 ≤ 〈A〉 ≤ 1.3, isocontours en-
compass both stable fixed points. In this 〈A〉 interval,
the noise amplitude is strong enough to explore vicini-
ties of the unstable fixed points and leads to reversals
of the magnets orientation. Once again, the evolution
of θ̃1 as a function of 〈A〉 for the stationary regimes can
be understood from the extent of the isocontour islands.
Finally, isocontours for potential 1.01 (dotted lines) show
a connexion between stable fixed points as long as 〈A〉
is below 1.7, allowing for reversals of the magnets ori-
entations. For values of 〈A〉 above 1.7, the isocontours
separate islands around stable fixed points, and statisti-
cally stationary regimes are recovered. While the direct
computation of the relation between the amplitude of
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the fluctuations of the driving current Ĩ0 and the maxi-
mum potential value accessible to the system is a difficult
task, the above rationale gives an accurate understand-
ing of the observed dynamics and reproduces the three
regimes described above, as well as the evolution of θ̃1
in the (〈A〉, Ã) parameter space. Regime (ii) described
above (namely that for moderate values of the driving
noise, reversals are bounded by statistically stationary
regimes when modifying the time-averaged value of the
driving) can be understood the following way: for inter-
mediate values of 〈A〉, adding a driving torque to magnet
1 strongly modifies the energy landscape and lowers the
energy gap between stable and unstable fixed points and
eases the observation of reversals.

VI. DISCUSSION AND CONCLUSION

We reported the rich dynamics displayed by a sim-
ple table-top experiment involving the coupling of two

macroscopic magnetic dipoles in presence of a driving
torque on one of the magnet - which preserves a π-
rotation symmetry of the fixed points of the system.
The accessible fixed points are accurately determined in-
troducing an effective potential accounting for both the
coupling and the driving. In the presence of fluctuations
of the driving torque, two distinct behaviours are ob-
served: the dipoles fluctuate around their stable fixed
points (typically for low amplitudes of the fluctuations)
or they can display stochastic reversals between stable
fixed points (when fluctuations are strong enough to drive
the system close to unstable fixed points). The mapping
of these two regimes in the parameter space is accurately
described when considering an energy argument: the dy-
namics is then restricted to locations in the configuration-
space for which the effective potential energy is lower
than a threshold (related to the energy of the fluctua-
tions). For low energy of the fluctuations, the dynam-
ics is restricted to disjoint basins of attraction close to
the stable fixed points. For higher fluctuation energies,
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these basins become connected (now including an un-
stable fixed point) and the dynamics displays stochastic
reversals with Poisson-distributed waiting time between
reversals.

Our table-top experiment was built somehow in the
spirit of the one in [11]. It could be considered as a
building block of a macroscopic experiment of a finite
number of interacting dipoles, as reported numerically
in [3, 4]. Our driving scheme preserves symmetries and
could be used to mimic defects in the lattice and/or noise
mimicking thermal fluctuations. It could also be used as
a macroscopic benchmark for the dynamical studies of
slow-relaxing low-dimensional magnetic systems, such as
one dimensional single-chain magnets [12].

The present experiment has also been designed to de-
velop a simple model of the dynamics of chaotic reversals
of the turbulent liquid metal dynamo experiment VKS
(Von Kármán Sodium) - in which liquid sodium is set
into motion in a cylindrical container by the rotation of
coaxial impellers fitted with blades. Under specific pa-
rameters, the observed magnetic field can exhibit com-
plex dynamics, including random and sudden reversals
between opposite polarities [13]. A model has been pro-
posed [14] which explains the occurrence of such rever-
sals as a stochastic transition (activated by the turbulent
fluctuations of the flow) between two large scale mag-
netic modes. In turn, these large scale modes (dipole and
quadrupoles) and their stability properties can be under-
stood from the interaction between dipoles localised in
the vicinity of each ferromagnetic impeller (such as two
parallel or anti-parallel localised dipoles) [15]. The table-
top experiment described in the present article was in-
spired by this interpretation: each of the magnet dipole
represents one of the localised dynamo, and the time-
dependent driving models the influence of large-scale
turbulent fluctuations (which are modeled by gaussian
white noise). The present experiment shares very sim-
ilar behaviours with the ones observed in the VKS ex-
periment, such as (i) existence of pockets of dynamical
regimes bounded by stationary regimes [16], (ii) Pois-
son distribution of the waiting time between reversals [8],
(iii) divergence of the waiting time between reversals at
the transition between stationary and dynamical regimes.
This setup thus allows to understand, in a very simpli-
fied framework, the relative influence of the coupling be-
tween the two localised modes and the fluctuations of the
driving on the occurrence of reversals. In particular, we
showed a counter-intuitive result: a higher level of fluctu-
ations is required to obtain reversals when the coupling
strength between the two magnets decreases (i.e. the
coupling distance increases). However, keeping in mind
the comparison between the present work with the actual
MHD system, several points are worth being mentioned :
(i) in the present system, the localised dipoles have con-
stant amplitude and are only allowed to rotate, whereas
in the case of the actual MHD dynamo, the amplitude
also fluctuates; (ii) the noise mimicking turbulent fluctu-
ations is imposed here as gaussian white noise and only

on one of the dipoles. Our results show that in spite of its
simplicity and apparent naiveness, this simple system re-
produces correctly some basic dynamical features of the
magnetic field in VKS.

Evolution of this simple experiment could also be im-
plemented in views of providing quantitive understanding
of other stochastic phenomena. For instance, a sponta-
neous bifurcation between symmetric and and asymmet-
ric flow configurations have been reported in fully turbu-
lent vonKarman flows subject to multistability [5]. Simi-
lar bifurcations might be observed in our simple table-top
experiment when driving both magnets with independent
stochastic torques and would open ways to provide simple
analysis of the dynamics of complex systems.
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Appendix A: System Differential equation

1. Torque applied to shaft 1 by the drive

In this appendix, the system of differential equations
describing the coupled dynamics of the rotating shafts
is determined. Let us first describe the driving scheme.
It consists of a quadrupolar permanent magnet fixed on
shaft 1 upon which a torque is imposed by an external
quadrupolar magnetic field created by current circulation
in 8 coils arranged around the quadrupolar permanent
magnet (see Figure 1 of the mauscript). The quadrupolar
permanent magnet, of magnetic moment Mq is aligned
with the dipolar moment M1 (if θ1 = 0, the outgoing
directions of the magnetic field-lines from the permanent
quadrupolar magnet are 0 and π, relative to axis x). It
is assembled from 4 small dipolar cylindrical segments
magnets of moment 0.354 Am2. The 8 coils create a
magnetic field Qcoils, of amplitude Qcoils and whose out-
going field lines are oriented at an angle α/2 (modulus π)
relative to the x axis . This is achieved by driving cur-
rents Ii in coil i as I1 = I5 = −I3 = −I7 = I0 cosα and
I2 = I6 = −I4 = −I8 = I0 sinα. The strength of the ex-
ternally applied magnetic field Qcoils is then proportional
to the current I0. The angle α/2 sets a preferential ori-
entation for magnet 1 (reached when I0 → ∞ for finite
d). The driving torque applied by the external magnetic
quadrupolar field Qcoils on the quadrupolar permanent
magnet reads

Γdrive = QcoilsMq sin (2 (α/2− θ1)) = DI0 sin (α− 2θ1)

With D an effective driving efficiency accounting for the
coupling between the quadrupolar permanent magnetic
field and the applied quadrupolar magnetic field.
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2. Torque applied to shaft 1 by the drive

The full mechanical system is obtained when applying
Newton’s laws to each of the two shafts.
Torque applied by magnet 2 on magnet 1 reads

Γ21 =M1×B2 = −µ0M1M2

4πd3
(sin θ2 cos θ1 + 2 sin θ1 cos θ2)

Similarly, the torque applied by magnet 1 on magnet
2 reads

Γ12 =M2×B1 = −µ0M1M2

4πd3
(sin θ1 cos θ2 + 2 sin θ2 cos θ1)

With Ji, Fi and Ki respectively the moments of inertia
of shaft i, the fluid friction coefficient and the solid fric-
tion coefficient acting on shaft i, the coupled dynamics
of the system is then described by the set of 2 differential
equations (A1, A2)

J1
d2θ1
dt2

= DI0 sin (α− 2θ1)− µ0M1M2

4πd3
(sin θ2 cos θ1 + 2 sin θ1 cos θ2)

−F1
dθ1
dt
−K1sign

(
dθ1
dt

)
, (A1)

J2
d2θ2
dt2

= −µ0M1M2

4πd3
(sin θ1 cos θ2 + 2 sin θ2 cos θ1)

−F2
dθ2
dt
−K2sign

(
dθ2
dt

)
, (A2)

Appendix B: Parameters identification

All parameters of the differential system (A1,A2) have
been directly measured or identified from the dynamics of
the uncoupled system (i.e. with an infinite d or with one
of the shaft kept static), which simplifies as the dynamics
of a damped second order system.
a. Measurement of Mi: M1 and M2 have been

computed by fitting the evolution of the magnetic field
created by each small dipolar magnet as a function of
the distance z along the axis of magnetisation from the
center of the magnet. The theoretical calculation gives

B =
µ0M1

2πz3
. The logarithmic evolution is linear for z >

25 mm and givesM1 =M2 = 0.775 Am2.
b. Measurement of Ji, Fi, Ki and D: Mechanical

parameters were estimated from the relaxation dynam-
ics of uncoupled or coupled shafts in the presence of a
magnetic field.
1) A first set of measurements can be performed in the
presence of a uniform, static magnetic field. Three dif-
ferent configurations were studied:

• A uniform, static, dipolar magnetic field Bout is
applied from external large electrical coils in a
Helmholtz configuration along the reference hori-
zontal axis around the small permanent magnet,

for one single shaft. The uncoupled dynamics of
shaft i is then

Ji
d2θi
dt2

= −M1Bout sin θi−Fi
dθi
dt
−Kisign

(
dθi
dt

)
(B1)

• When shaft j is maintained at a fixed angular po-
sition θj = 0, a static dipolar magnetic field Bj

(created by the permanent magnet j) is applied to
the small permanent magnet on shaft i. The sys-
tem considered here is the one displayed in figure 1,
for which one of the two shaft is set static. The dy-
namics of shaft i is then

Ji
d2θi
dt2

= −µ0M1M2

2πd3
sin θi − Fi

dθi
dt
−Kisign

(
dθi
dt

)
(B2)

• A static driving quadrupolar magnetic field is ap-
plied from current circulation in the 8 driving coils.
When α = 0, the dynamical equation for the un-
coupled dynamics of shaft 1 is then

J1
d2θ1
dt2

= DI0 sin (−2θ1)−F1
dθ1
dt
−K1sign

(
dθ1
dt

)
(B3)

For all these configurations, the dynamics of a single shaft
is described by a second order differential equation with
damping. The temporal evolution of the relaxation from
θi 6= 0 is then recorded for various values of the magnetic
field setting the resonance frequency (i.e. varying either
Bout, I0 or d for the three cases specified above). An

estimate of the linear relaxation pulsations
√
MiBout

Ji
,√

µ0M1M2

2πd3Ji
or
√

2DI0
Ji

is computed from the temporal

evolution - see for instance figure 9(a) for a typical relax-
ation of uncoupled shaft 1 with an applied Bout around
magnet 1. An estimate of the fluid friction coefficient
Fi is provided by the temporal evolution of ln(θi) (whose
envelope is linear with time at initial stages - see the inset
figure 9(a)). Eventually, the solid friction coefficient Ki

is estimated from the latest stage of the temporal evolu-
tion of the envelope of θi, which is linearly decreasing at
latest times - see figure 9(a). From these first-guess esti-
mates, a least square fitting method is applied between
the experimental relaxation and numerical integration of
equations (3), (4) or (5). An example of the comparison
between the experimental data and the best fit obtained
is given in figure 9(a).

2) The determination of the coefficients is also made
possible when driving uncoupled shaft 1 with a con-
stant driving current I0 and an harmonic variation of
α = 2A cos(2πft) (shaft 1 has to be uncoupled from shaft
2, i.e. d→∞). In that case the dynamics is governed by

J1
d2θ1
dt2

= DI0 sin (2A cos(2πft)− 2θ1)−F1
dθ1
dt
−K1sign

(
dθ1
dt

)
(B4)
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FIG. 9. a) Dynamics of the relaxation for shaft 1 (uncoupled and in the presence of an external uniform magnetic field
Bout = 144 G). Experimental point and non-linear fit for the estimate of parameters. Inset: same graph in logarithmic scale.
See text for details. b) Evolution of the resonant pulsation ω0 as a function of Bout for both shafts. See text for details. c)
∆θ1/A as a function of f/

√
I0 for 10 values of I0 (from 0.5 to 1.4 A in steps of 0.1 A) and 2 values of A (0.05 and 0.1 rad)

The evolution of the amplitude of the response ∆θ1 is
typical of a resonant second-order system, with a static
- low frequency - response ∆θ1 equal to A and a reso-
nance giving access to the resonance frequency and to
the damping. Typical evolutions of ∆θ1 as a function of
f/
√
I0 are displayed in figure 9(c).

From these methods, the following values for the coef-
ficient have been measured:

• M1 =M2 = 0.775 A.m2.

• J1 = 1.64 10−6 kg.m2, and J2 = 8.3 10−7 kg.m2,
values compatible with rough computation from ge-
ometrical considerations.

• D = 1.45 10−3 T.m2.

• F1/J1 ∼ F2/J2 ∼ 2.2 s−1.

• K1/J1 ∼ 2.8 s−2 and K2/J2 ∼ 7.5 s−2.
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