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PURELY MAGNETIC TUNNELING EFFECT
IN TWO DIMENSIONS

VIRGINIE BONNAILLIE-NOËL, FRÉDÉRIC HÉRAU, AND NICOLAS RAYMOND

Abstract. The semiclassical magnetic Neumann Schrödinger operator on a
smooth, bounded, and simply connected domain Ω of the Euclidean plane is
considered. When Ω has a symmetry axis, the semiclassical splitting of the
first two eigenvalues is analyzed. The first explicit tunneling formula in a pure
magnetic field is established. The analysis is based on a pseudo-differential
reduction to the boundary and the proof of the first known optimal purely
magnetic Agmon estimates.

1. Introduction

1.1. A long-term investigation.

1.1.1. The magnetic Laplacian with Neumann boundary condition. Consider Ω a
smooth, open, and simply-connected set of the plane. This article is devoted to the
spectral analysis of the magnetic Laplacian Lh defined as the self-adjoint operator
associated with the quadratic form

Qh(ψ) =

∫
Ω

|(−ih∇−A)ψ|2dx .

defined for ψ ∈ H1
A(Ω) ⊂ L2(Ω), the set for which Qh(ψ) is finite. In this article,

the magnetic field is B = ∇ × A = 1 and, by gauge invariance, we can choose
A = (0,−x1). The domain of Lh is

Dom(Lh) =
{
ψ ∈ H1

A(Ω) : (−ih∇−A)2ψ ∈ L2(Ω) ,

n · (−ih∇−A)ψ = 0 on Γ = ∂Ω
}
,

where n is the outward pointing normal to the boundary. In this paper, L will
denote the half-length of the boundary.

N. R. and F. H. are deeply grateful to the Mittag-Leffler Institute where part of the ideas
of this article were discussed. N. R. also thanks Bernard Helffer, Pierig Keraval and Johannes
Sjöstrand for many stimulating discussions.
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1.1.2. From superconductivity to semiclassical analysis. The original motivation to
study the spectrum of Lh is the mathematical study of superconductivity. In par-
ticular, the asymptotic description of the third critical field (in the large magnetic
field limit) is related to the groundstate energy of Lh. For an overview of this vast
subject, the reader is referred to the book [7]. Independently of superconductivity,
the subject has acquired a life of its own (see the book [24]). Let us only point out
some contributions directly related to the present framework. In [11], the ground
state energy is analyzed and the following asymptotic formula is established

λ1(h) = Θ0h− C1κmaxh
3
2 + o(h

3
2 ) , (1.1)

where κmax is the maximum of the curvature of Γ, and Θ0 ∈ (0, 1) and C1 > 0
are related to the de Gennes operator (see [11, Appendix A]). This operator is
defined as follows. Consider, for all ξ ∈ R, Lξ the Neumann realization on R+

of the operator D2
t + (ξ − t)2. The eigenvalues of Lξ are simple and denoted by

(µn(ξ))n>1. It is known (see [5]) that µ1 has a unique and non-degenerate minimum
at some ξ0 > 0. We will denote by uξ the positive L2-normalized ground state.
Then,

Θ0 = min
ξ∈R

µ1(ξ) , C1 =
u2
ξ0

(0)

6
. (1.2)

In relation with (1.1), Helffer and Morame also proved that the first eigenfunctions
are somehow localized near the boundary points of maximal curvature (see [11,
Theorem 10.6] and the numerical simulation of the ground state when Ω is an
ellipse, Figure 1). In contrast with [11] where only the groundstate energy is
considered, in [6], all the low lying eigenvalues are considered in the semiclassical
limit when the curvature has a unique and non-degenerate minimum. Fournais
and Helffer establish that, for all n > 1,

λn(h) = Θ0h− C1κmaxh
3
2 + (2n− 1)C1Θ

1
4
0

√
3k2

2
h

7
4 + o(h

7
4 ) , (1.3)

with k2 = −κ′′(s0) where κ is the curvature as a function of the curvilinear coor-
dinate and s0 the point of maximal curvature.

1.1.3. Magnetic WKB constructions. In relation with (1.3), we may wonder how
the corresponding eigenfunctions behave and if we can accurately describe them
in the semiclassical limit. It has been an open question for many years to know if
the eigenfunctions could be written in a WKB form. A positive and very explicit
answer has been given in [3] (see also Section 2.4.2 where we recall the result). It
turned out that the magnetic operator is deeply connected to an effective electric
operator acting on the boundary. Letting

v(s) = C1(κmax − κ(s)) > 0 ,
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Figure 1. Modulus of the ground state when Ω is an ellipse.

the analysis there revealed the crucial role of the following effective eikonal equation

v(s)− µ′′1(ξ0)

2
ϕ′(s)2 = 0 . (1.4)

1.1.4. An effective eikonal equation. The remarkable feature of the aforementionned
WKB analysis is that the eikonal equation (1.4) is the same, up to a local change
of gauge, as the one obtained when considering the following purely electric Hamil-
tonian acting on L2(R/(2LZ)),

L eff
h =

µ′′1(ξ0)

2

(
h

1
2D2

s + V (s)
)
, V (s) =

2v(s)

µ′′1(ξ0)
.

Let us denote by (λeff
n (h))n>1 the sequence of its eigenvalues.

If v has exactly two symmetric non-degenerate minima at sr ∈ (−L, 0) and
s` ∈ (0, L), it is well-known that the low lying spectrum is made of exponentially
close pairs of eigenvalues. In order to describe the corresponding tunneling formula,
we consider

S = min (Su, Sd) , Su =

∫
[sr,s`]

√
V (s) ds , Sd =

∫
[s`,sr]

√
V (s) ds , (1.5)

where [p, q] denotes the arc joining p and q in the “circle” R/(2LZ) counter-
clockwise. The indices u and d refer to the up and down parts of the “circle”
(corresponding to the up and down parts of ∂Ω).

The tunneling formula is

λeff
2 (h)− λeff

1 (h) = 2|w(h)|+ O(h
3
8 e−S/h

1/4

) , (1.6)

where

w(h) = µ′′1(ξ0)h
1
8π−

1
2 g

1
2

(
Au

√
V (0)e−Su/h

1/4

+ Ad

√
V (L)e−Sd/h

1/4
)
, (1.7)
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with

Au = exp

(
−
∫

[sr,0]

(V
1
2 )′(s) + g√
V (s)

ds

)
,

Ad = exp

(
−
∫

[s`,L]

(V
1
2 )′(s)− g√
V (s)

ds

)
,

g = (V ′′(sr)/2)
1
2 = (V ′′(s`)/2)

1
2 .

(1.8)

Such a one dimensional result goes back to [9]. This formula may also be found
in [4] up to a convenient rescaling. The reader might also want to consider the
Bourbaki exposé [25] based on the celebrated Helffer-Sjöstrand theory developped
in [12, 14, 13, 15, 16, 18, 17] (see also the series of works by Simon [26, 27, 28, 29]).
In a periodic framework, flux effects are considered in [23] (see also [4]).

1.1.5. Numerical simulations and conjecture. More than a decade ago, the first
numerical simulations describing magnetic tunneling effects in two dimensions ap-
peared (see for instance [1] in the case of corner domains). For instance, in the
case of the ellipse (see Figure 2), it was rather a surprise to be able to estimate
an exponentially small effect and also to reveal the “oscillation” of λ2(h)− λ1(h),
numerically.

Figure 2. λ2(h)− λ1(h) as a function of 1/h in the case of the ellipse

With these numerical computations arose the following open question:
Is there a theoretical formula to explain Figure 2?
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For more numerical simulations concerning smooth domains with symmetries,
the reader may consult [3, Section 5.3.3] where “camels” (see Figure 3) and el-
lipses are considered. The case of varying (and vanishing) magnetic fields is also
investigated.

Figure 3. Modulus and phase of the groundstate in a camel-like domain

Based on the WKB analysis in pure magnetic fields and the ideas à la Born-
Oppenheimer developped in [3], we end up with the conjecture [2, Conjecture 1.4]
of an explicit formula to describe a purely magnetic tunneling when Ω is an ellipse.
This conjecture has been numerically checked (see Figure 4) and, to the authors’
knowledge, is the first of its kind.

Let us recall this conjecture.

Conjecture 1.1. Assume that Ω is an ellipse. Then, there exists α0 ∈ R such
that

λ2(h)− λ1(h)

=
~→0

h
13
8 A

2
5
2C

3
4
1√
π

(k2µ
′′
1(ξ0))

1
4 (κmax − κmin)

1
2 ×

∣∣∣∣cos

(
L

(
γ0

h
− ξ0

h
1
2

− α0

))∣∣∣∣ e−S/h 1
4

+ o(h
13
8 )e−S/h

1
4 ,

where

S =

√
2C1

µ′′1(ξ0)

∫ L
2

−L
2

√
κmax − κ(s) ds ,

A = exp

−∫
[L
2
,L]

∂s
√
κmax − κ(s)−

√
k2
2√

κmax − κ(s)
ds

 ,

γ0 =
|Ω|
|Γ|

=
|Ω|
2L

, k2 = −κ′′
(
L

2

)
.
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Figure 4. λ2(h)−λ1(h) as a function of 1/h; numerical simulation
(blue) vs our conjecture (dashed)

Here, s denotes the curvilinear coordinate. The points s = −L
2
and s = L

2
cor-

respond to the right point of maximal curvature and to the left point of maximal
curvature, respectively.

The present article proves Conjecture 1.1 and, consequently, establishes the first
explicit formula describing a purely magnetic tunneling effect.

1.2. Statement of the general result. Let us describe the geometric context
of this article.

a1a2

Ω

Figure 5. A domain Ω with two symmetric curvature wells
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Assumption 1.2. Ω is a smooth, open, bounded, connected, and simply-connected
set of the plane. Moreover, it is assumed that Ω is symmetric and that the curvature
has two non-degenerate maxima:
i) Ω is symmetric with respect to the y-axis.
ii) The curvature κ on the boundary Γ attains its maximum at exactly two points

a1 and a2 which are not on the symmetry axis and belong to the same connected
component of the boundary. We write

a1 = (a1,1, a1,2) ∈ Γ and a2 = (a2,1, a2,2) ∈ Γ ,

such that a1,1 > 0 and a2,1 < 0 .
iii) The second derivative of the curvature (w.r.t. arc-length) at a1 and a2 is

negative.

We can now state the main theorem of this article, which gives, to the authors’
knowledge, the first optimal purely magnetic tunneling estimate.

Theorem 1.3. Under Assumption 1.2, we have the tunneling formula

λ2(h)− λ1(h) = 2|w̃(h)|+ o(h
13
8 e−S/h

1
4 ) ,

where

w̃(h) = µ′′1(ξ0)h
13
8 π−

1
2 g

1
2

(
Au

√
V (0)e−Su/h

1/4

eiLf(h) + Ad

√
V (L)e−Sd/h

1/4

e−iLf(h)
)
,

where V (s) = 2C1(κmax−κ(s))
µ′′1 (ξ0)

and

i. f(h) = γ0/h− ξ0/h
1/2 − α0,

ii. α0 is a constant involving the de Gennes operator and the geometry (see
(2.15)),

iii. Au, Ad and g are defined in (1.8).

Remark 1.4. Let us make some remarks about Theorem 1.3. The proof actually
allows to consider slightly more general situations.
i) Theorem 1.3 implies Conjecture 1.1. In the case of the ellipse, we have sr =
−s` = −L

2
and κ(0) = κ(L) = κmin. Moreover, due the additionnal symmetry

with respect to the horizontal axis, we have Au = Ad (see (1.8)) and Su = Sd

(see (1.5)). This additionnal symmetry is thus responsible for the presence of
the cosine in Conjecture 1.1.

ii) The assumption that Ω is bounded is not necessary to establish a tunneling
result. Our strategy also applies to deal with camel-like domains (see Figure
3). In this simpler case, the “down” part in the tunneling formula has to be
removed. Then, there is only one interaction term and no global flux effects.
In particular, no oscillation of λ2(h)− λ1(h) occurs.

iii) The assumption that Ω is simply-connected is not necessary. The possible
holes only contribute to change the value of γ0.
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iv) The fact that we consider the first two eigenvalues, or only a domain with
only one symmetry, is just for the simplicity of the presentation. The same
strategy provides us with tunneling estimates in multiple well situations since
our method reduces the analysis to one dimension electric tunneling (up to
phase shifts).

v) In [29], Simon described the “flea on the elephant effect”. This effect occurs
when the electric potential is slightly perturbed and/or when the symmetry
is broken. In this case, the first two eigenfunctions end up living in separate
wells. In our case, such a phenomenon could be described as well (if we
perturb the geometry of the boundary). In the special case of the ellipse, the
oscillating effect is due to the existence of two minimal geodesics connecting
the two curvature wells: If we slightly perturb the boundary (by keeping the
symmetry) in such a way that Su 6= Sd, this kills one of the minimal geodesics
and the beautiful oscillating effect disappears.

Remark 1.5. The investigation will reveal the microlocal nature of the tunelling
estimate given in Theorem 1.3. It contrasts with the electric tunneling à la Helffer-
Sjöstrand, and even with recent contributions about purely geometric tunneling
[10] and [19] where microlocal analysis is absent.
1.3. Organization and strategy. In Section 2, we explain how the spectral anal-
ysis of Lh can be reduced to the one of an operator Lh,δ on a tubular neighborhood
of the boundary, see Proposition 2.2. Then, Lh,δ is written in the classical tubu-
lar coordinates (s, t) ∈ R/(2LZ) × (0, δ) and rescaled in the transverse variable
t = ~τ , with ~ = h

1
2 . The spectral analysis is then reduced to the one of N~, see

Proposition 2.7.
In Section 3, we consider a “one well problem” by removing the left maximum

and gluing an infinite strip. Then, the resulting operator N~,r can be interpreted as
a pseudo-differential operator with operator valued symbol the principal symbol of
which being the de Gennes operator. Such operators and their spectrum have been
extensively studied by Martinez via Grushin reductions. A concise presentation
can be found in [22]. More details and extensions may also be found in the Ph.
D. thesis of Keraval [20]. To some extent, our presentation will be similar to [21]
where tunneling estimates are provided in the case of partially semiclassical electric
operators. In order to construct a parametrix of N~,r

1, one will need a convenient
symbol class, see Notation 3.2. For that purpose, we will use a microlocal cutoff
function and construct a parametrix for the “microlocalized” operator OpW~ p~ (near
ξ0), see Theorem 3.5.

In Section 4, we use the parametrix to show that tangential elliptic estimates
for N ϕ

~,r may be deduced from the one of an effective pseudo-differential operator
acting on the boundary, see Theorem 4.2.

1and actually of the conjugated operator N ϕ
~,r = eϕ/~

1
2 N~,re

−ϕ/~
1
2 , where ϕ is an appropriate

subsolution of the effective eikonal equation.
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In Section 5, we establish Theorem 5.1. It is devoted to remove the frequency
cutoff function introduced in Section 3.1 up to using the transverse Agmon esti-
mates, and the behavior at infinity of the de Gennes function µ1.

In Section 6, we explain how to deduce optimal tangential Agmon estimates
from Theorem 5.1 (see Corollary 6.1). We also establish slightly rougher tangen-
tial estimates for the “double well operator” N~ from the one well estimates, see
Proposition 6.2.

Section 7 is devoted to the proof of Theorem 1.3. We construct an approximate
basis from the WKB Ansätze attached to each curvature well and compute the
spectrum of the interaction matrix thanks to the accurate WKB approximation
of the ground state in each simple well.

2. A reduction to a tubular neighborhood of the boundary

2.1. Normal Agmon estimates and spectral consequence. The following
proposition is well-known (see [6, Theorem 4.1]). It comes from the fact that
the magnetic Laplacian on Ω with Dirichlet boundary condition is bounded from
below by h since

∀ψ ∈ C∞0 (Ω) ,

∫
Ω

|(−ih∇−A)ψ|2dx > h

∫
Ω

|ψ|2dx .

Proposition 2.1. Let M > 0. There exist C, h0, α > 0 such that, for all h ∈
(0, h0), and all eigenpairs (λ, ψ) of Lh with λ 6 Θ0h+Mh

3
2 ,∫

Ω

e2αdist(x,Γ)/h
1
2 |ψ|2dx 6 C‖ψ‖2 ,

and ∫
Ω

e2αdist(x,Γ)/h
1
2 |(−ih∇−A)ψ|2dx 6 Ch‖ψ‖2 .

This proposition tells us that the first eigenfunctions of Lh are exponentially lo-
calized in a neighbrohood of size h

1
2 of Γ. This invites us to define the new operator

Lh,δ. Consider the (possibly h-dependent) δ-neighborhood of the boundary
Ωδ = {x ∈ Ω : dist(x,Γ) < δ} .

(The dependence of δ w.r.t. h will be precised later.) Then, consider Lh,δ the
self-adjoint realization of (−ih∇−A)2 with the following boundary conditions

n · (−ih∇−A)ψ = 0 , on Γ ,

and
ψ = 0 , on {x ∈ Ω : dist(x,Γ) = δ} ,

where δ < δ0 with δ0 small enough to ensure the smoothness of the boundary of
Ωδ. The quadratic form Qh,δ associated with Lh,δ is defined for all ψ ∈ Vδ,

Qh,δ(ψ) =

∫
Ωδ

|(−ih∇−A)ψ|2dx ,
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with
Vδ = {ψ ∈ H1(Ωδ) : ψ(x) = 0 , on {x ∈ Ω : dist(x,Γ) = δ}} .

The operator Lh,δ still has a compact resolvent and we can consider the non-
decreasing sequence of its eigenvalues (λn(h, δ))n>1 repeated according to their
multiplicity.

Proposition 2.2. Let n > 1. There exist C, h0, α > 0 such that, for all h ∈ (0, h0)
and δ ∈ (0, δ0),

λn(h) 6 λn(h, δ) 6 λn(h) + Ce−αδ/h
1
2 .

Proof. The first inequality follows from the fact that Ωδ ⊂ Ω, the Dirichlet con-
dition and the min-max principle. The second inequality follows from the Agmon
estimates. Indeed, consider an orthonomal family of eigenfunctions (ψj)16j6n as-
sociated with (λj(h))16j6n and let

En(h, δ) = span
16j6n

χδψj .

Here χδ is defined by χδ(x) = χ
(

dist(x,Γ)
δ

)
where χ is a smooth function such that

χ(x) = 1 for x ∈ [0, 1/2) and χ(x) = 0 for x > 1. Thus, En(h, δ) ⊂ Vδ. Consider
ψ̃ ∈ En(h, δ) and write

ψ̃ = χδψ = χδ

n∑
j=1

βjψj .

We have

Qh,δ(χδψ) =

∫
Ω

|χδ(−ih∇−A)ψ − ihψ∇χδ|2dx

6 ‖(−ih∇−A)ψ‖2 + 2h‖(−ih∇−A)ψ‖L2(Ω\Ωδ/2)‖ψ∇χδ‖+ h2‖ψ∇χδ‖2 .

Then, since the (ψj)16j6n are orthogonal eigenfunctions, we get

‖(−ih∇−A)ψ‖2 6 λn(h)‖ψ‖2 .

From Proposition 2.1, we have

‖ψ∇χδ‖ 6 Cδ−1e−αδ/2h
1
2 ‖ψ‖ , ‖(−ih∇−A)ψ‖L2(Ω\Ωδ/2) 6 Ch

1
2 e−αδ/2h

1
2 ‖ψ‖ .

It follows that

Qh,δ(χδψ) 6
(
λn(h) + C(h

3
2 δ−1 + h2δ−2)e−αδ/h

1
2

)
‖ψ‖2 ,

and then

Qh,δ(χδψ) 6
(
λn(h) + C(h+ h

3
2 δ−1 + h2δ−2)e−αδ/h

1
2

)
‖χδψ‖2 .

�
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2.2. Tubular coordinates and truncated operator. We will use the canoni-
cal tubular coordinates (s, t) where s is the arc-length and t the distance to the
boundary. We recall some elementary properties of these coordinates. Let

(−L,L] 3 s 7→M(s) ∈ Γ (2.1)

be a parametrization of Γ. The unit tangent vector of Γ at the point M(s) of the
boundary is given by

T (s) := M ′(s).

We define the curvature κ(s) by the following identity

T ′(s) = −κ(s)n(s),

where n(s) is the unit vector, normal to the boundary, pointing outward at the
point M(s). We choose the orientation of the parametrization M to be counter-
clockwise, so

det(T (s),n(s)) = 1, ∀s ∈ (−L,L].

We introduce the change of coordinates

Φ : R/((2L)Z)× (0, δ) 3 (s, t) 7→ x = M(s)− tn(s) ∈ Ωδ. (2.2)

The determinant of the Jacobian of Φ is given by

m(s, t) = 1− tκ(s). (2.3)

Thanks to this change of coordinates, Lh,δ is unitarily equivalent to Mh,δ the
self-adjoint realization on L2(Γ× (0, δ),mdsdt), of the differential operator

−h2m−1∂tm∂t +m−1
(
−ih∂s + γ0 − t+

κ

2
t2
)
m−1

(
−ih∂s + γ0 − t+

κ

2
t2
)
,

where

m(s, t) = 1− tκ(s) , γ0 =
|Ω|
|Γ|

,

with the boundary conditions

∂tψ(s, 0) = 0 , ψ(s, δ) = 0 .

This fact can be found in [7, Appendix F]. The first eigenfunctions of Mh,δ also
satisfy Agmon estimates (with respect to t).

Proposition 2.3. Let M > 0. There exist C, h0, α > 0 such that, for all h ∈
(0, h0), and all eigenpair (λ, ψ) of Mh,δ with λ 6 Θ0h+Mh

3
2 ,∫

Ω

e2αt/h
1
2 |ψ|2dsdt 6 C‖ψ‖2 ,

and ∫
Ω

e2αt/h
1
2

(∣∣∣(−ih∂s + γ0 − t−
κ

2
t2)ψ

∣∣∣2 + |h∂tψ|2
)

dsdt 6 Ch‖ψ‖2 .
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These estimates invite us to consider an operator on the space domain Γ ×
(0,+∞) instead of Γ× (0, δ). For this we insert cutoff functions in the preceding
operator. Let c be a smooth real function equal to 1 on [0, 1] and 0 for t > 2.
Then, we let

m(s, t) = 1− tc(δ−1t)κ(s) .

Instead of Mh,δ, we consider M h,δ the self-adjoint realization on the Hilbert space
L2(Γ × (0,+∞),mdsdt), of the differential operator with associated eigenvalues
λn(h, δ).

− h2m−1∂tm∂t

+m−1
(
−ih∂s + γ0 − t+ c(δ−1t)

κ

2
t2
)
m−1

(
−ih∂s + γ0 − t+ c(δ−1t)

κ

2
t2
)
,

with Neumann boundary condition on t = 0. Note here that the additional trun-
cation in front of κ is introduced in order to make this term bounded (and later a
lower order term) when t is large.

Using the same truncation trick as in the proof of Proposition 2.2, similar Agmon
type estimates for M h,δ, and the min-max principle, we get the following.

Proposition 2.4. Let n > 1. There exist C, h0, α > 0 such that, for all h ∈ (0, h0)
and δ ∈ (0, δ0),

λn(h, δ) 6 λn(h, δ) 6 λn(h, δ) + Ce−αδ/h
1
2 .

Remark 2.5. Actually, at this stage, we have not proved that the low-lying spec-
trum of M h,δ is discrete. This will be a consequence of the forthcoming analysis.

From now on we fix
δ = h

1
4
−η � h

1
4 ,

for some fixed 0 < η < 1/4. Note that this assumption is sufficient to ensure that
remainder terms appearing in the latter proposition are indeed controlled by the
main term which is of order e−S/h

1
4 for some constant S (see the main statement

in Theorem 1.3).

2.3. The rescaled operator. The exponential localization at the scale h
1
2 near

t = 0 suggests to consider the partial rescaling

(s, t) = (σ, ~τ) , with ~ = h
1
2 .

We also let

a~(σ, τ) = 1− ~τκ(σ)cµ(τ) , cµ(τ) = c(µτ) for µ = ~
1
2

+2η ,

where we recall that η is positive and small, and c is the cutoff function introduced
in the preceding section.

Remark 2.6. The notation µ will be convenient later when expanding the operator
in powers of ~, with coefficients depending on µ.
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Note that
a~ = 1 + O(~

1
2
−2η) .

Upon dividing M h,δ by h, we get the new operator N~ acting on the space L2(Γ×
R+, a~dsdt) = L2(Γ× R+, dsdt), as the differential operator

N~ = −a−1
~ ∂τa~∂τ

+ a−1
~

(
−i~∂σ + ~−1γ0 − τ + ~cµ

κ

2
τ 2
)
a−1
~

(
−i~∂σ + ~−1γ0 − τ + ~cµ

κ

2
τ 2
)

with Neumann condition on τ = 0. Note that
Dom (N~) ={
u ∈ L2(Γ× R+) : −∂2

τu ∈ L2(Γ× R+) ,
(
− i~∂σ + ~−1γ0 − τ

)2
u ∈ L2(Γ× R+) ,

∂τu(·, 0) = 0
}
.

We denote by (νn(~))n>1 its eigenvalues. Using then Propositions 2.2 and 2.4, we
get

Proposition 2.7. Let n > 1. There exist K > S, C, h0 > 0 such that, for all
h ∈ (0, h0),

λn(h)− Ce−K/h
1
4 6 ~2νn(~) 6 λn(h) + Ce−K/h

1
4 .

This means that, in order to estimate the expected splitting between eigenvalues
λ2(h)−λ1(h) of the original operator, we can consider the corresponding splitting
for the reduced and rescaled operator N~ . The rest of the article is devoted to
this problem.

2.4. One well operators.

2.4.1. Definitions. Let us consider the “one well operator” (attached to the right
well). It is geometrically defined by surgery by removing a small neighborhood of
the left curvature maximum, and gluing an infinite strip, see Figure 6. For this we
choose first the curvilinear origin at the intersection of the upper part of Γ and the
vertical axis, and we identify Γ with [s` − 2L, s`]. Note that in these coordinates,
we have sr < 0 < s`. We consider then the following right well differential operator

N~,r,γ0 := −a−1
~ ∂τa~∂τ

+ a−1
~

(
−i~∂σ + ~−1γ0 − τ + ~cµ

κr
2
τ 2
)
a−1
~

(
−i~∂σ + ~−1γ0 − τ + ~cµ

κr
2
τ 2
)
,

(2.4)

acting on L2(R × R+, a~dσdτ) where κr is an appropriate extension of κ defined
as follows:

κr = κ , on Ir,η := (s` − 2L+ η, s` − η) ,
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sr
s`

s = −Ls = L

s = 0

s` − η

s` + η

Figure 6. One well domain attached to the right well

and κr = 0 on (−∞, s` − 2L) ∪ (s` +∞). This extension may be chosen so that
κr has a unique and non-degenerate maximum at sr < 0.

Since the space domain is now simply connected, N~,r,γ0 is unitarily equivalent
to the flux-free operator N~,r := N~,r,0 since eiσγ0/~2N~,r,γ0e

−iσγ0/~2 = N~,r,0. Note
that the domain is the same as the one of the operator with constant magnetic
field on R2

+ = R× R+:

Dom (N~,r) ={
u ∈ L2(R2

+) : −∂2
τu ∈ L2(R2

+) ,
(
− i~∂σ − τ

)2
u ∈ L2(R2

+) , ∂τu(·, 0) = 0
}
.

Let us now consider u~,r a groundstate of the flux-free operator N~,r,0 with well at
sr < 0. The bottom of the spectrum is indeed discrete. Let us briefly explain this.
Firstly, the essential spectrum is [Θ0,+∞), since, at infinity with respect to σ, the
operator coincides with the Neumann magnetic Laplacian on the half-plane, whose
spectrum is [Θ0,+∞). Secondly, one knows (see Theorem 2.8) that the spectrum
below Θ0 is not empty.

The function
φ̌~,r(σ, τ) = e−iγ0σ/~

2

u~,r(σ, τ) (2.5)
is then a groundstate for N~,r,γ0 .

In order to define an operator adapted to the left well, we use the symmetry of
Γ. More precisely, we consider the symmetry operator

Uf(σ, τ) = f(−σ, τ) ,

and define
N~,`,γ0 = U−1N~,r,γ0U .

Note that this operator also corresponds to the following construction. Identifying
Γ with [sr, sr+2L], we can define on R the extended curvature κ`(·) := κr(−·) and
note that it is equal to κ on (sr+η, sr+2L−η) and 0 on (−∞, sr)∪(sr+2L,+∞).
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In this way, κ` has a unique and non-degenerate maximum at s` > 0. The operator
N~,`,γ0 acting on L2(R×R+, a~dσdτ) with well at s` has then the same expression
as the one of N~,r,γ0 . A natural groundstate for N~,`,γ0 is then

φ̌~,` := Uφ̌~,r

and, letting u~,` = Uu~,r, we have

φ̌~,`(σ, τ) = e−iγ0σ/~
2

u~,`(σ, τ) . (2.6)

In the following, we will focus on the right well and find a WKB approximation of
u~,r.

2.4.2. WKB construction. The following fundamental theorem has been estab-
lished in [3, Theorem 5.6 & Section 5.3.2]. Let us recall that

V (s) =
2C1

µ′′1(ξ0)
(κmax − κr(s)) .

In what follows, we consider formal series in the sense of [3, Notation 1.13], where
the neighbourhood on which the approximation (at any given order) occurs can
be taken arbitrarily large but bounded.

Theorem 2.8. Let us consider the following Agmon distance to the right well sr:

Φ(σ) =

∫
[sr,σ]

√
V (σ̃)dσ̃ . (2.7)

There exist formal series (bn(~)n>0 and (δn(~))n>0 such that

bn(~) ∼
∑
j>0

bn,j~
j
2 , δn(~) ∼

∑
j>0

δn,j~
j
2 ,

and
(N~,r − δn(~)) Ψ~,r,n = O(~∞)e−Φ(σ)/~

1
2 ,

with
Ψ~,r,n ∼

~→0
~−

1
8 bn(~)e−Φ(σ)/~

1
2 eiσξ0/~ . (2.8)

Moreover,

δn,0 = Θ0 , δn,1 = 0 , δn,2 = −C1κmax , δn,3 = (2n− 1)C1Θ
1
4
0

√
3k2

2
,

and

bn,0(σ, τ) = fn,0(σ)uξ0(τ) , bn,1(σ, τ) = iΦ′(σ)fn,0(σ)(∂ξuξ)ξ0(τ) + fn,1(σ)uξ0(τ) ,
(2.9)

where fn,0 solves the effective transport equation

µ′′1(ξ0)

2
(Φ′∂σ + ∂σΦ′)fn,0 + F (σ)fn,0 = (2n− 1)C1Θ

1
4
0

√
3k2

2
fn,0 , (2.10)
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fn,1 is a solution of a similar transport equation, and where F is a smooth function
such that F (sr) = 0 and ReF = 0.

Remark 2.9. Let us consider (2.10). We may write fn,0 in the form fn,0(σ) =

eiαn,0(σ)f̃n,0(σ) for some real-valued function αn,0, and where f̃n,0 solves the real
classical transport equation

µ′′1(ξ0)

2
(Φ′∂σ + ∂σΦ′)f̃n,0 = (2n− 1)C1Θ

1
4
0

√
3k2

2
f̃n,0 . (2.11)

Note that f̃1,0(0) be can chosen to be positive and we will assume that it is the
case. Following e.g. [4, Section 2.2] we also choose the normalization ‖Ψ~,r,n‖ = 1
(see also Section 6.2). This gives

f̃ 2
1,0(0) =

( g
π

)1/2

Au , (2.12)

where g and Au are defined in (1.8).
Let us now consider the phase shifts. The αn,0 are chosen so that

µ′′1(ξ0)iΦ′α′n,0 + F = 0 , or, equivalently, Φ′α′n,0 =
iF

µ′′1(ξ0)
.

Since F (sr) = 0 and Φ′ vanishes linearly at sr, we can write

α′n,0(σ) =
iF (σ)

µ′′1(ξ0)Φ′(σ)
, (2.13)

where the right-hand-side can be seen as a real-valued (ReF = 0) smooth function
defined at sr (by using the natural continuous extension). This determines the
phase shift αn,0 up to an additive constant.

At this stage, we fixed the normalization of the WKB Ansatz. Later on, in
Section 6.2, we will take profit of this appropriate normalization, which determines
the functions f̃1,0 and α1,0. This normalization of f̃1,0 is the one that we used in [4,
Section 2.2] when considering the tunneling effect for purely electric Schrödinger
operators on the circle. This will be suitable to recognize, in our final computation,
the interaction term for an electric Hamiltonian. The equation (2.11) is indeed
the same as the one we obtain when performing a WKB construction for the
semiclasssical electric Hamiltonian

µ′′1(ξ0)

2
~D2

σ + v(σ) , v = C1(κmax − κr) . (2.14)

We define

α0 =
α1,0(0)− α1,0(−L)

L
, (2.15)

which is the phase shift appearing in Theorem 1.3
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3. A Grushin problem

In this section, we focus on the one well operator. Let us consider a smooth non-
negative function, with bounded derivative, σ 7→ ϕ(σ) and consider the conjugate
operator

N ϕ
~,r = eϕ/~

1
2 N~,re

−ϕ/~
1
2 ,

still acting on Dom (N~,r).
Explicitly,

N ϕ
~,r = −a−1

~ ∂τa~∂τ

+ a−1
~

(
−i~∂σ − τ + i~

1
2ϕ′ + ~cµ

κr
2
τ 2
)
a−1
~

(
−i~∂σ − τ + i~

1
2ϕ′ + ~cµ

κr
2
τ 2
)
.

In order to lighten the notation, we write κ and N ϕ
~ instead of κr and N ϕ

~,r. In
all what follows we shall use the following notation in order to compare operators
and deal with remainders:

Notation 3.1. For formal operators A, B, C, . . . in L2(R) we say that A = O(B,C)
if there is a constant c > 0 such that for all u in S(R)

‖Au‖ 6 c(‖Bu‖+ ‖Cu‖+ . . .) .

This definition naturally extends to L2(R × R+) and similar pivot spaces when
taking test function satisfying in addition the good boundary conditions.

3.1. A pseudo-differential operator with operator-valued symbol. We no-
tice that N ϕ

~ can be written as an ~-pseudo-differential operator with an operator-
valued symbol n~(σ, ξ) having an expansion in powers of ~ 1

2 :

N ϕ
~ = OpW~ n~ ,

with OpW~ n~ acting on S(Rσ,S(R+,τ )) through the usual quantization formula (see
[20, Definition 2.1.7])

OpW~ n~ u(σ) =
1

(2π~)

∫∫
R2

ei(σ−σ̃)·ξn~

(
σ + σ̃

2
, ξ

)
u(σ̃)dσ̃dξ,

with here
n~ = n0 + ~

1
2n1 + ~n2 + ~

3
2n3 + ~2r̃~ ,

and where after a computation using the usual symbolic rules, we get

n0 = −∂2
τ + (ξ − τ)2 ,

n1 = 2i(ξ − τ)ϕ′ ,

n2 = −ϕ′2 + κcµ∂τ + cµκ(ξ − τ)τ 2 + 2κτcµ(ξ − τ)2 + κτc′µ (τ) ,

Ren3 = 0 ,

r̃~ = O(τ 4, (ξ − τ)2τ 2, (ξ − τ)τ, τ 2∂τ ) .

(3.1)
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In the last expression, the notation O is defined in Notation 3.1. The expansion was
performed with respect to ~, with µ considered a parameter (see Remark 2.6). It
will be explained later how to deal with the remainder r̃~. It involves in particular
powers of τ which can be controlled via the normal localization estimates, and
thus are not really problematic. Note the in (3.1), µ is considered as a parameter
although it may depend on ~.

Now the frequency variable ξ is a priori unbounded, and in the next step of the
analysis, we therefore “truncate” our operator in ξ to get a bounded symbol. Let
us consider a smooth, bounded, and increasing odd function χ such that χ(ξ) = ξ
for ξ ∈ [− ξ0

2
, ξ0

2
]. We let η± = ± limξ→±∞ χ(ξ) and assume that η− ∈ (0, ξ0).

We let, for all ξ ∈ R,
χ1(ξ) = ξ0 + χ(ξ − ξ0) .

Then, the function ξ 7→ µ1(χ1(ξ)) is bounded and still has a unique minimum at ξ0,
which is non-degenerate and not attained at infinity. Note that, by construction,
we have, for all ξ ∈ [ ξ0

2
, 3ξ0

2
], µ1(χ1(ξ)) = µ1(ξ). Since µ1(ξ) < 1 for all ξ > 0 and

η− ∈ (0, ξ0), we also notice that

µ1 ◦ χ1(R) ⊂ [Θ0, 1) . (3.2)

We will consider

OpW~ p~ , with p~(s, ξ) = n~(s, χ1(ξ)) , (3.3)

and notice in particular that the principal operator symbol of OpW~ p~ is

p0(s, ξ) = −∂2
τ + (χ1(ξ)− τ)2 .

For a recent panorama of pseudo-differential operators with operator symbols, we
refer to [20, Chapitre 2] (see also [8, Appendix B]). The introduction of the function
χ1 is inspired by [20, Section 6.3].

3.2. The Grushin problem for the principal operator symbol. Let us first
consider the principal symbol p0 (whose domain is independent of ξ). Let z ∈ C
such that Re z ∈ (Θ0 − ε,Θ0 + ε), with ε > 0 such that Θ0 + ε < 1. Consider the
matrix operator:

P0,z(ξ) :=

(
p0 − z ·vξ
〈·, vξ〉 0

)
∈ S(R2

s,ξ,L (Dom p0 × C, L2(R+)× C)) ,

acting on Dom (p0) × C and valued in L2(R+) × C. Here vξ = uχ1(ξ). We also
denote by Πξ, or simply Π the orthogonal projection on Cvξ.

Notation 3.2. The notation P ∈ S(R2,L (Dom p0 × C, L2(R+)× C)) means that
— P = P (x, ξ) is a family of closed operators whose domain does not depend on

(x, ξ), and whose graph norms are equivalent uniformly in (x, ξ),
— for all α ∈ N2, there exists Cα > 0 such that ‖∂αs,ξP · ‖ 6 Cα‖ · ‖P , uniformly

with respect to (x, ξ), and where ‖ · ‖P is the graph norm of P .
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This class can be thought as a generalization of the standard class of scalar
symbols

S(1) = {p ∈ C∞(R2,C) ,∀α ∈ N2 ,∃Cα > 0 , ‖∂αs,ξp‖ 6 Cα}

to operator-valued symbols. Note however that, contrary to the scalar case, this
is not an algebra. More details can be found in [20, Section 6.3].

Lemma 3.3. For all ξ ∈ R, P0,z(ξ) is bijective and

Q0,z(ξ) := P−1
0,z (ξ) =

(
(p0 − z)−1Π⊥ ·vξ
〈·, vξ〉 z − µ1(ξχ1(ξ))

)
,

and
Q0,z ∈ S(R2

s,ξ,L (L2(R+)× C,Dom p0 × C)) .

Here Π⊥ denotes the orthogonal projection on vξ⊥.

Proof. Let (v, β) ∈ L2(R+)×C and let us look for (u, α) ∈ Dom (p0)×C such that
P0,z(ξ)(u, α)T = (v, β)T . In other words,

(p0 − z)u = v − αvξ , 〈u, vξ〉 = β ,

or

(p0 − z)Π⊥u = v − αvξ − β(p0 − z)vξ = v − αvξ − β(µ1(χ1(ξ))− z)vξ , (3.4)

with 〈u, vξ〉 = β.
The operator p0− z stabilizes (Cvξ)⊥ and induces an operator. Moreover, there

exists c > 0 such that for all u ∈ Dom (p0) ∩ (Cvξ)⊥ and all z ∈ C such that
Re z ∈ (Θ0 − ε,Θ0 + ε),

Re 〈(p0 − z)u, u〉 = 〈(p0 − Re z)u, u〉 > (µ2(χ1(ξ))− Re z)‖u‖2 > c‖u‖2 ,

where we used the self-adjointness of p0, the min-max principle and the fact that
minµ2 > 1 (see [7, Proposition 3.2.2 & Remark 3.2.6]) and Θ0 + ε < 1. Thus,
the operator (p0 − z)|(Cvξ)⊥ is injective with closed range and, by considering the
adjoint, it is bijective. We also notice that

‖(p0 − z)−1Π⊥‖ 6 (µ2(χ1(ξ))− Re z)−1 6 c−1 .

The equation (3.4) has a solution if and only if the r.h.s. belongs to (Cvξ)⊥, that
is

α = 〈v, vξ〉 − β(µ1(χ1(ξ))− z) .

This unique solution is given by

Π⊥u = (p0 − z)−1Π⊥(v − αvξ − β(µ1(χ1(ξ))− z)vξ) = (p0 − z)−1Π⊥v .

Therefore, u = βvξ + (p0 − z)−1Π⊥v.
�
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3.3. Pseudo-differential dimensional reduction and subprincipal terms.
Let us now consider the full symbol

Pz(s, ξ) :=

(
p~ − z ·vξ
〈·, vξ〉 0

)
∈ S(R2

s,ξ,L (Dom p0 × C, L2(R+)× C)) ,

and notice that we can write

Pz = P0,z + ~
1
2P1 + ~P2 + ~

3
2P3︸ ︷︷ ︸

P
[3]
z

+~2R~ ,

where
for j > 1 , Pj =

(
pj 0
0 0

)
, R~ =

(
r~ 0
0 0

)
and from (3.1) and using the fact that χ1(ξ) is now bounded, we can write

p0 = −∂2
τ + (χ1(ξ)− τ)2 ,

p1 = 2i(χ1(ξ)− τ)ϕ′ ,

p2 = −ϕ′2 + κcµ∂τ + cµκ(χ1(ξ)− τ)τ 2 + 2κτcµ(χ1(ξ)− τ)2 + κτc′µ (τ) ,

Re p3 = 0 ,

r~ = O(τ 4, τ 2∂τ ) .

(3.5)

Remark 3.4. Note that in the last expansion at order 3 w.r.t. ~ 1
2 , we do not need

the exact expression of p3 and will use later that it is purely imaginary. The
structure of the last Taylor expansion is rather subtle. Indeed we do not care
about the cutoff in variable τ induced by cµ, but we have to keep in mind that up
to loosing powers of ~, the involved operators are indeed in S(1). This property
allows to do all the computations with test functions in Dom(p0)× C and gives a
meaning to the composition of operators done in the next theorem. In particular,
this expansion is uniform in the parameter µ. Let us notice that the powers of τ
and ∂τ in r~ will be compensated later by the normal decay.

The following theorem gives then an approximated parametrix of operator OpW~ Pz,
that is, in our context, an inverse up to a remainder of order ~2.

Theorem 3.5. Consider the operator symbol

Q[3]
z = Q0,z + ~

1
2Q1,z + ~Q2,z + ~

3
2Q3,z

where Q0,z is given in Lemma 3.3 and
Q1,z = −Q0,zP1Q0,z ,

Q2,z = −Q0,zP2Q0,z −Q1,zP1Q0,z ,

Q3,z = −Q0,zP3Q0,z −Q1,zP2Q0,z −Q2,zP1Q0,z − Cz ,

(3.6)

with
2iCz = ({Q0,z,P1}+ {Q1,z,P0,z}) Q0,z ,
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where we used the classical notation for the Poisson bracket

{Q,P} = ∂ξQ · ∂sP − ∂sQ · ∂ξP .

Then, we have
OpW~ (Q[3]

z )OpW~ (Pz) = Id + ~2O(〈τ〉6) . (3.7)

Moreover, we have the following explicit description. Letting

Q[3]
z =

(
qz q+

z

q−z q±z

)
,

we write
q±z = q±0,z + ~

1
2 q±1,z + ~q±2,z + ~

3
2 q±3,z ,

with

q±0,z = z − µ1(χ1(ξ)) ,

q±1,z = −iϕ′(s)µ1(χ1(·))′(ξ) ,
q±2,z = κ(σ)C1(ξ, µ) + C2(ξ, z)ϕ′2 ,

(3.8)

where

C1(ξ, µ) = 〈
(
cµ∂τ + cµ(χ1(ξ)− τ)τ 2 + 2τcµ(χ1(ξ)− τ)2

)
vξ, vξ〉 − 〈τc′µ(τ)∂τvξ, vξ〉 ,

C2(ξ, z) = 1− 4〈(p0 − z)−1Π⊥(χ1(ξ)− τ)vξ, (χ1(ξ)− τ)vξ〉 .

and when z is real we have
Re q±3,z = 0 .

Moreover, q−z , q+
z , and q±z are uniformly (with respect to µ) bounded symbols.

Remark 3.6. From [6, Prop. A.2] (see also the definition of C1 in (1.2)), we have

C1(ξ0, 0) = C1 ,

and, from the exponential decay of vξ and its derivative (in the τ variable) and
the confinement in τ induced by the truncation cµ, we have, uniformly in ξ,

C1(ξ0, µ) = C1 + O(~∞) , 〈τc′µ(τ)∂τvξ, vξ〉 = O(~∞) .

From [6, Prop. A.3], we have

C2(ξ0,Θ0) =
µ′′(ξ0)

2
.

Remark 3.7. Let us recall here that the bijectivity of OpW~ (p~)−z is related to the
one of OpW~ (q±z ). In this case, we have, modulo some remainders,

(OpW~ (p~)− z)−1 ' OpW~ qz −OpW~ q
−
z [OpW~ q

±
z ]−1OpW~ q

+
z .
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Proof. The proof is constructive. In order to see where the expressions (3.6) are
coming from, let us consider the product

OpW~ (Q[3]
z )OpW~ (P [3]

z ) ,

and its the expansion in half-powers of ~. The symbols Qj,z are chosen so that
(3.7) holds. Let us explain how these choices are made.

Terms of order ~0. The terms of order 1 give

Q0,zP0,z = Id .

Now, one wants to cancel the other terms.

Terms of order ~ 1
2 . Cancelling the terms of order ~ 1

2 , we find

Q1,zP0,z + Q0,zP1 = 0 , (3.9)

or, equivalently,
Q1,z = −Q0,zP1,zQ0,z .

Explicitly,

Q1,z = −
(
q0,zp1q0,z q0,zp1q

+
0

q−0 p1q0,z q−0 p1q
+
0

)
.

Note that
q±1,z = −〈p1vξ, vξ〉 , p1 = 2iϕ′(χ1(ξ)− τ) .

By the Feynman-Hellmann theorem,

q±1,z = −2iϕ′〈(χ1(ξ)− τ)vξ, vξ〉 = −iϕ′(s)µ1(χ1(·))′(ξ) .

Terms of order ~1. Let us cancel the terms of order ~:

Q1,zP1 +
1

2i
{Q0,z,P0,z}+ Q0,zP2 + Q2,zP0,z = 0 .

Since the principal symbol does not depend on s, the Poisson bracket is zero, and
thus

Q1,zP1 + Q0,zP2 + Q2,zP0,z = 0 .

It follows that
Q2,z = −Q1,zP1Q0,z −Q0,zP2Q0,z .

We have

Q0,zP2Q0,z =

(
q0,zp2q0,z q0,zp2q

+
0

q−0 p2q0,z 〈p2vξ, vξ〉

)
,

and from the expression of Q1,z above

Q1,zP1Q0,z = −
(
q0p1q0p1q0 q0p1q0p1q

+
0

q−0 p1q0p1q0 q−0 p1q0p1q
+
0

)
.

In particular, we have

q±2,z = q−0 p1q0p1q
+
0 − 〈p2vξ, vξ〉 = 〈p1(p0 − z)−1Π⊥p1vξ, vξ〉 − 〈p2vξ, vξ〉 .
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With (3.1) and (3.3), we have

〈p1(p0 − z)−1Π⊥p1vξ, vξ〉 = −4ϕ′2〈(p0 − z)−1Π⊥(χ1(ξ)− τ)vξ, (χ1(ξ)− τ)vξ〉 ,
〈p2vξ, vξ〉 = −ϕ′2 + κC1(ξ, µ) .

Terms of order ~ 3
2 . In the same way, we determine Q3,z by solving

Q0,zP3 + Q1,zP2 + Q2,zP1 + Q3,zP0 +
1

2i
({Q0,z,P1}+ {Q1,z,P0,z}) = 0 .

which gives

Q3,z = −Q0,zP3Q0,z + Q1,zP2Q0,z + Q2,zP1Q0,z − Cz (3.10)

which is the last equality in (3.6).
We show now that when z is real, Re (q±3 ) is purely imaginary. For this we notice

that the first term in parenthesis in (3.10) gives rise to a purely imaginary term
in the right bottom of its matrix expression. Then, we show that Cz is actually
skew-self-adjoint. First, since P0,z does not depend on s,

2iCz = ∂ξQ0,z∂sP1Q0,z − ∂sQ1,z∂ξP0,zQ0,z .

Then, recalling that P0,zQ0,z = Id and (3.9) and taking the derivatives of these
formulas with respect to ξ and s, respectively, we get

2iCz = ∂ξQ0,z∂sP1Q0,z + ∂sQ1,zP0,z∂ξQ0,z

= −∂ξQ0,zP0,z∂sQ1,z + ∂sQ1,zP0,z∂ξQ0,z

= (P0,z∂ξQ0,z)
∗(∂sQ1,z)

∗ + ∂sQ1,zP0,z∂ξQ0,z

= (∂sQ1,zP0,z∂ξQ0,z)
∗ + ∂sQ1,zP0,z∂ξQ0,z ,

where we used that P0,z, Q0,z are self-adjoint and P1, Q1,z are skew-self-adjoint.

Remainders and order ~2. Therefore, with the definition of Q[3]
z , and composi-

tion of pseudo-differential operators, the operator symbol of OpW~ (Q[3]
z )OpW~ (P [3]

z )
coincides with Id modulo terms of orders at least O(~2). By the Calderón-
Vaillancourt theorem, this remainder is a bounded operator, but the bound de-
pends on the parameter µ. To avoid this problem, we observe that, by Taylor
expansion, the remainder is of order ~2 in the worse topology of L2(〈τ〉6dτds).
This power 6 comes from the product of the terms of order ~ 3

2 . In the same way,
we see that

OpW~ (Q[3]
z )
(
OpW~ (Pz)−OpW~ (P [3]

z )
)

is again of order ~2 for the topology L2(〈τ〉6dτds). Using that

~2(p0 − z)−1cµτ
2∂τ = ~2O(〈τ〉2), (3.11)

we can get rid of the derivatives in the remainder term involving τ 2∂τ .
The fact that q−z , q+

z , and q±z are bounded comes from their explicit expressions
and the fact that vξ is exponentially decaying uniformly in ξ with respect to τ .
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�

4. Tangential coercivity estimates

We will use Theorem 3.5 for z ∈ C such that

z = Θ0 − C1κmax~ + O(~2) ,

and assume that ϕ is an appropriate sub-solution of the eikonal equation in the
following sense

Assumption 4.1. Let ϕ > 0 be a Lipschitzian function such that, for all M > 0
there exist C,R > 0 such that
(i) for all σ ∈ R, v(σ)− µ′′1 (ξ0)

2
ϕ′(σ)2 > 0,

(ii) for all σ such that |σ − sr| > R~ 1
2 , v(σ)− µ′′1 (ξ0)

2
ϕ′(σ)2 >M~.

Note that ϕ = 0 is such a subsolution (much more useful solutions will be
introduced later) and that for all σ such that |σ−sr| 6 R~ 1

2 , v(σ)− µ′′1 (ξ0)

2
ϕ′(σ)2 6

C~.

Theorem 4.2. Let K > 0. Under Assumption 4.1, there exist ~0, c, R0 > 0 such
that, for all R > R0, there exists CR > 0 such that the following holds. For
all ~ ∈ (0, ~0) and all z ∈ C such that |z − Θ0 + C1κmax~| 6 K~2, and for all
ψ ∈ Dom (OpW~ p~),

cR2~2‖ψ‖ 6 ‖(OpW~ p~ − z)ψ‖+ CR~2‖χ0(~−
1
2R−1(σ − sr))ψ‖+ ~2‖τ 6ψ‖

where χ0 ∈ C∞0 (R) is 1 in a neighborhood of 0.

Remark 4.3. The domain of OpW~ p~ is

Dom (OpW~ p~) = L2(Rσ, B
2
N(R+,τ )) ,

with B2
N(R+) = {u ∈ H2(R+) : τ 2u ∈ L2(R+) , u′(0) = 0}. In Theorem 4.2, we

use the convention that if τ 6ψ does not belong to L2(R2
+), we have ‖τ 6ψ‖ = +∞

in which case the inequality is true. The same kind of convention will be used in
Section 5. Anyway, in the proofs, ψ can be assumed to belong to the Schwartz
class S(R2

+).

4.1. From the effective operator...

Proposition 4.4. Let K > 0. There exist h0, C > 0 such that, for all z ∈ C such
that |z −Θ0 + C1κmax~| 6 K~2,

~
∫
R

(
v(σ)− µ′′1(ξ0)

2
ϕ′2(σ)

)
|ψ|2dσ − C~2‖ψ‖2 6 −Re 〈OpW~ q

±
z ψ, ψ〉 .

In particular, for some c > 0 and all R > 0, there exists CR > 0 such that

cR2~2‖ψ‖ 6 ‖OpW~ q
±
z ψ‖+ CR~2‖χ0(~−

1
2R−1(σ − sr))ψ‖ .
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Proof. Using the assumption on z and (3.8), we have

−Re q±z = µ1(χ1(ξ))−Θ0 + ~
(
−κ(σ)C1(ξ, µ) + C1κmax − C2(ξ,Θ0)ϕ′2

)
+ O(~2) ,

and also

−Re q±z = µ1(χ1(ξ))−Θ0+~
(
−κ(σ)C1(ξ, 0) + C1(ξ0, 0)κmax − C2(ξ,Θ0)ϕ′2

)
+O(~2) .

We write
− Re q±z > ~

(
v(σ)− C2(ξ0,Θ0)ϕ′2(σ)

)
+ r~ , (4.1)

where
r~ = µ1(χ1(ξ))−Θ0 + ~s~ ,

with
|s~| 6 C min(1, |ξ − ξ0|) .

Since
µ1(χ1(ξ))−Θ0 > cmin

(
(ξ − ξ0)2, 1

)
,

we get, from the Young inequality,

r~ > −C~2 . (4.2)

Using (4.1), (4.2), and the standard Fefferman-Phong inequality, the result follows.
�

4.2. ... to the bidimensional operator. We can now establish Theorem 4.2.
Let us recall the relation between OpW~ p~ and OpW~ q

±
z . We have by Theorem 3.5(

OpW~ qz OpW~ q
+
z

OpW~ q
−
z OpW~ q

±
z

)(
OpW~ p~ − z B∗

B 0

)
= Id + OL2(R×R+,〈τ〉6dσdτ)→L2(R×R+)(~2) ,

where B = OpW~ (〈·, vξ〉) . In particular,

OpW~ qz(OpW~ p~ − z) + OpW~ q
+
z B = Id + OL2(R×R+,〈τ〉6dσdτ)→L2(R+)(~2)

OpW~ q
−
z (OpW~ p~ − z) + OpW~ q

±
z B = OL2(R×R+,〈τ〉6dσdτ)→L2(R×R+)(~2) .

(4.3)

Thus,
‖ψ‖ 6 C‖(OpW~ p~ − z)ψ‖+ C‖Bψ‖+ C~2‖〈τ〉6ψ‖ ,

and
‖OpW~ q

±
z (Bψ)‖ 6 C‖(OpW~ p~ − z)ψ‖+ C~2‖〈τ〉6ψ‖ .

From Proposition 4.4, we deduce

cR2~2‖Bψ‖ 6 C‖(OpW~ p~ − z)ψ‖+ CR~2‖χ0(~−
1
2R−1(σ − sr))Bψ‖ ,

and then, choosing R large enough,

c̃R2~2‖ψ‖ 6 C‖(OpW~ p~ − z)ψ‖+ CR~2‖χ0(~−
1
2R−1(σ − sr))Bψ‖+ C~2‖τ 6ψ‖ .

Moreover, by rescaling and using the fact that the symbol of B only depends on
ξ, we have [B,χ0(~− 1

2R−1(σ − sr))] = O(~ 1
2 ), we get

cR2~2‖ψ‖ 6 C‖(OpW~ p~−z)ψ‖+~2‖Bχ0(~−
1
2R−1(σ−sr))ψ‖+C~

5
2‖ψ‖+C~2‖τ 6ψ‖ ,
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and the conclusion follows.

5. Removing the frequency cutoff

Let us now replace in Theorem 4.2 the “truncated” operator OpW~ p~ (defined in
Section 3.1) by the operator without frequency cutoff N ϕ

~ . This can be done up
to convenient additional remainders.

Theorem 5.1. Under Assumption 4.1, there exist c, ~0 > 0 such that for all
~ ∈ (0, ~0) and all ψ ∈ Dom (N ϕ

~ ),

c~2‖ψ‖ 6 ‖〈τ〉6(N ϕ
~ − z)ψ‖+ ~2‖χ0(~−

1
2R−1(σ − sr))ψ‖ ,

and
c~2‖~2D2

σψ‖ 6 ‖〈τ〉6(N ϕ
~ − z)ψ‖+ ~2‖χ0(~−

1
2R−1(σ − sr))ψ‖ .

5.1. Preliminary lemmas. Let us consider a smooth function χ2 = χ2(ξ) equal
to 1 away from a compact and whose support avoids ξ0.

Lemma 5.2. There exist C, ~0 > 0 such that for all ~ ∈ (0, ~0) and all ψ ∈
Dom (N ϕ

~ ),

‖OpW~ χ2ψ‖+ ‖(~Dσ − τ)OpW~ χ2ψ‖+ ‖DτOpW~ χ2ψ‖ 6 C‖(N ϕ
~ − z)OpW~ χ2ψ‖ .

Proof. We write

Re 〈(N ϕ
~ − z)OpW~ χ2ψ,OpW~ χ2ψ〉

> (1 + o(1))〈
(
D2
τ + (~Dσ − τ)2

)
OpW~ χ2ψ,OpW~ χ2ψ〉 − Re z‖OpW~ χ2ψ‖2 . (5.1)

Thus, by using the support of χ2 and the properties of µ1,

Re 〈(N ϕ
~ −z)OpW~ χ2ψ,OpW~ χ2ψ〉 > ((1 + o(1))c1 − Re z) ‖OpW~ χ2ψ‖2 , c1 > Θ0 .

Using again (5.1) and the Cauchy-Schwarz inequality, the conclusion follows.
�

Actually, we have also an “H2-control” with respect to the “magnetic derivatives”.

Lemma 5.3. There exist C, ~0 > 0 such that for all ~ ∈ (0, ~0) and all ψ ∈
Dom (N ϕ

~ ),

‖(~Dσ − τ)2OpW~ χ2ψ‖+ ‖D2
τOpW~ χ2ψ‖ 6 C‖(N ϕ

~ − z)OpW~ χ2ψ‖ .

Proof. This is obtained through standard elliptic estimates by controlling first the
magnetic tangential derivative. �

Lemma 5.4. Let N ∈ N. There exist C, ~0 > 0 such that for all ~ ∈ (0, ~0) and
all ψ ∈ Dom (N ϕ

~ ),

‖OpW~ χ2ψ‖+ ‖DτOpW~ χ2ψ‖+ ‖(~Dσ − τ)OpW~ χ2ψ‖+ ‖D2
τOpW~ χ2ψ‖

+ ‖(~Ds − τ)2OpW~ χ2ψ‖ 6 C‖(N ϕ
~ − z)ψ‖+ O(~N)‖ψ‖ .
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Proof. From Lemmas 5.2 and 5.3, we have

‖OpW~ χ2ψ‖+ ‖(~Dσ − τ)OpW~ χ2ψ‖+ ‖DτOpW~ χ2ψ‖
+ ‖(~Dσ − τ)2OpW~ χ2ψ‖+ ‖D2

τOpW~ χ2ψ‖ 6 C‖(N ϕ
~ − z)OpW~ χ2ψ‖ . (5.2)

Let us deal with the r.h.s. and notice that
‖(N ϕ

~ − z)OpW~ χ2ψ‖ 6 ‖(N ϕ
~ − z)ψ‖+ ‖[N ϕ

~ ,OpW~ χ2]ψ‖ . (5.3)
Let us consider the commutator. One of the terms is

‖[a−1
~ Dτa~Dτ ,OpW~ χ2]ψ‖ = ‖[a−1

~ ∂τa~,OpW~ χ2]Dτψ‖
6 O(~∞)‖Dτψ‖+ ~‖OpW~ χ2Dτψ‖ ,

(5.4)

where χ2 has a support slightly larger than the one of χ2, and where we used
classical results of composition of pseudo-differential operators. The other term is
‖[a−1

~ (~Dσ − τ + ~κτ 2/2)a−1
~ (~Ds − τ + cµ~κτ 2/2),OpW~ χ2]ψ‖

6 O(~∞)(‖(~Dσ − τ)ψ‖+ ‖ψ‖) + C~
(
‖OpW~ χ2(~Dσ − τ)ψ‖+ ‖OpW~ χ2ψ‖

)
.

(5.5)

Using (5.2), (5.3), (5.4), and (5.5), an induction argument (on the size of the
support of χ2) provides us with

‖OpW~ χ2ψ‖+ ‖DτOpW~ χ2ψ‖+ ‖(~Dσ − τ)OpW~ χ2ψ‖+ ‖D2
τOpW~ χ2ψ‖

+‖(~Dσ−τ)2OpW~ χ2ψ‖ 6 C‖(N ϕ
~ −z)ψ‖+O(~N)(‖ψ‖+‖(~Dσ−τ)ψ‖+‖Dτψ‖) .

Noticing that
‖(~Dσ − τ)ψ‖+ ‖Dτψ‖ 6 C‖N ϕ

~ ψ‖+ C‖ψ‖ 6 C‖(N ϕ
~ − z)ψ‖+ C‖ψ‖ ,

the conclusion follows. �

Remark 5.5. The estimates in Lemmas 5.2, 5.3, and 5.4 are also true for ψ satis-
fying the Dirichlet condition (instead of the Neumann condition).

We would like to get a control ~Dσ instead of ~Dσ−τ . In particular, one should
control τ with the normal Agmon estimates.

Proposition 5.6. Let N ∈ N. There exist C, ~0 > 0 such that for all ~ ∈ (0, ~0)
and all ψ ∈ Dom (N ϕ

~ ),

‖OpW~ χ2ψ‖+‖DτOpW~ χ2ψ‖+‖~DsOpW~ χ2ψ‖+‖D2
τOpW~ χ2ψ‖+‖(~Ds)

2OpW~ χ2ψ‖
+‖τ~DsOpW~ χ2ψ‖ 6 C‖(N ϕ

~ −z)ψ‖+‖τ(N ϕ
~ −z)ψ‖+‖τ 2(N ϕ

~ −z)ψ‖+O(~N)‖ψ‖ .

Proof. Let us apply Lemma 5.4 to τψ (recall Remark 5.5). We get

‖τOpW~ χ2ψ‖ 6 C‖(N ϕ
~ − z)τψ‖+ O(~N)‖τψ‖ .

Replacing ψ by OpW~ χ2ψ, commuting N ϕ
~ with τ and using Lemma 5.4, we get

‖τOpW~ χ2ψ‖ 6 C‖τ(N ϕ
~ − z)ψ‖+ O(~N)(‖ψ‖+ ‖τψ‖) .
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With Lemma 5.4, we get

‖(~Ds)OpW~ χ2ψ‖ 6 C‖(N ϕ
~ − z)ψ‖+ C‖τ(N ϕ

~ − z)ψ‖+ O(~N)(‖ψ‖+ ‖τψ‖) .

In the same spirit, we get

‖(~Ds)
2OpW~ χ2ψ‖ 6 C‖(N ϕ

~ − z)ψ‖+ C‖τ(N ϕ
~ − z)ψ‖+ C‖τ 2(N ϕ

~ − z)ψ‖
+ O(~N)(‖(1 + τ + τ 2)ψ‖) ,

‖τ~DsOpW~ χ2ψ‖ 6 C‖(N ϕ
~ − z)ψ‖+ C‖τ(N ϕ

~ − z)ψ‖+ C‖τ 2(N ϕ
~ − z)ψ‖

+ O(~N)(‖(1 + τ + τ 2)ψ‖) .

Due to the Dirichlet condition, we have, for k > 1,

‖τ kψ‖ 6 C‖(N ϕ
~ − z)τ kψ‖ . (5.6)

Computing commutators and controlling them by ‖N ϕ
~ ψ‖, the result follows upon

noticing that
‖N ϕ

~ ψ‖ 6 ‖(N
ϕ

~ − z)ψ‖+ |z|‖ψ‖ .
�

5.2. Proof of Theorem 5.1. With the triangle inequality,

‖(N ϕ
~ − z)ψ‖ > ‖(P~ − z)ψ‖ − ‖(N ϕ

~ −P~)ψ‖ . (5.7)

Using Proposition 5.6 with χ2 such that 1 − χ2 is supported in {χ1(ξ) = ξ} to
control the terms (~Ds)

2 and ~τDσ, we get

‖(N ϕ
~ −P~)ψ‖ 6 C‖(N ϕ

~ − z)ψ‖+ C‖τ(N ϕ
~ − z)ψ‖+ C‖τ 2(N ϕ

~ − z)ψ‖
+ O(~N)‖ψ‖ . (5.8)

Combining (5.7) and (5.8) with Theorem 4.2, provides us with

cR2~2‖ψ‖ 6 ‖〈τ〉2(N ϕ
~ −z)ψ‖+CR~2‖χ0(~−

1
2R−1(σ−sr))ψ‖+~2‖τ 6ψ‖+C~N‖ψ‖ .

(5.9)
By using again (5.6), we get

‖τ 6ψ‖ 6 C‖(N ϕ
~ − z)τ 6ψ‖ 6 C‖τ 6(N ϕ

~ − z)ψ‖+ C‖[N ϕ
~ , τ

6]ψ‖ .

Computing explicitly the commutator, we get, by induction,

‖τ 6ψ‖ 6 C‖〈τ〉6(N ϕ
~ − z)ψ‖+ C‖N ϕ

~ ψ‖
6 C‖〈τ〉6(N ϕ

~ − z)ψ‖+ C‖(N ϕ
~ − z)ψ‖+ C|z|‖ψ‖ .

With (5.9) and choosing R large enough (to absorb the C|z| term), we deduce the
first estimate in Theorem 5.1. Combining this estimate with Proposition 5.6, the
conclusion follows.
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5.3. A slight improvement. The considerations in the previous section give the
following improvement of Theorem 5.1.

Corollary 5.7. Under Assumption 4.1, there exist c, ~0 > 0 such that for all
~ ∈ (0, ~0) and all ψ ∈ Dom (N ϕ

~ ),

c~2‖〈τ〉ψ‖ 6 ‖〈τ〉6(N ϕ
~ − z)ψ‖+ ~2‖χ0(~−

1
2R−1(σ − sr))ψ‖ , (5.10)

and

c~2‖〈τ〉~2D2
σψ‖ 6 ‖〈τ〉6(N ϕ

~ − z)ψ‖+ ~2‖χ0(~−
1
2R−1(σ − sr))ψ‖ . (5.11)

Proof. We recall (5.6), and we use it with k = 1. Estimating a commutator, this
shows that

‖τψ‖ 6 C‖τ(N ϕ
~ − z)ψ‖+ C‖∂τψ‖+ C‖ψ‖ .

We also notice that
‖∂τψ‖2 6 C‖N ϕ

~ ψ‖‖ψ‖ . (5.12)

Then, since z is bounded,

‖∂τψ‖+ ‖τψ‖ 6 C‖〈τ〉(N ϕ
~ − z)ψ‖+ C‖ψ‖ . (5.13)

Applying Theorem 5.1, we get (5.10).
To get (5.11), we apply Proposition 5.6 with ψ replaced by τψ. Then, we

estimate the commutators by using (5.13), (5.12) (with ψ replaced by τ kψ, k = 1, 2)
and (5.6) (with k = 2), and we use (5.10). �

6. Optimal tangential Agmon estimates

6.1. Agmon estimates. Let us discuss here some important consequences of our
elliptic estimates. An immediate corollary of Theorem 5.1 is the following.

Corollary 6.1. Under Assumption 4.1 and with the notation introduced in Sec-
tion 2.4.1, for all K > 0, there exist C, ~0 > 0 such that for all ~ ∈ (0, ~0) and
all λ eigenvalue of N~,r such that |λ− (Θ0 − C1κmax~)| 6 K~2 and all associated
eigenfunction Ψ ∈ Dom (N~,r),∫

R2
+

e2ϕ/~
1
2 |Ψ|2dsdτ 6 C‖Ψ‖2 .

Proof. We apply Theorem 5.1 with z = λ and ψ = eϕ/~
1
2 Ψ. �

Let us now explain how to get tangential Agmon estimates for the two wells
operator N~ from the estimates on the one well operators (acting on L2(R×R+)).
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Let us recall the two Agmon distances

Φr(σ) =

√
2C1

µ′′1(ξ0)

∫
[sr,σ]

√
κmax − κr(σ̃)dσ̃ ,

Φ`(σ) =

√
2C1

µ′′1(ξ0)

∫
[s`,σ]

√
κmax − κ`(σ̃)dσ̃ .

From them, we can construct a weight to estimate the decay of the eigenfunctions
of N~ away from sr and s`. Let us consider some periodic versions of Φr and Φ`.
We let

Φ̃r(σ) =

{
Φr(σ) if − L 6 σ 6 s` − η
Φr(σ − 2L) if s` + η < σ < L

,

Φ̃`(σ) =

{
Φ`(σ + 2L) if − L 6 σ 6 sr − η
Φ`(σ) if sr + η < σ < L

.

The functions Φ̃r and Φ̃` are defined on [−L,L) but not on (s` − η, s` + η] and
(sr − η, sr + η], respectively. Thus, we consider smooth extensions of Φ̃r and Φ̃`

such that Φ̃r > Φ̃` near s` and Φ̃` > Φ̃r near sr. Thus, Φ̃r and Φ̃` can be seen as
2L-periodic functions.

For the following we shall identify functions on Γ with 2L-periodic functions and
mainly consider [−L,L) as interval of integration. The preceding construction of
weights on [−L,L) is adapted to this point of view and will allow to give estimates
on the two-well case in this setting.

Proposition 6.2. Set θ ∈ (0, 1) and consider the 2L-periodic function defined on
[−L,L) by

ϕ =
√

1− θmin(Φ̃r, Φ̃`) .

Let ε > 0 and assume that η is small enough. There exist C, ~0 > 0 such that for
all ~ ∈ (0, ~0) and all λ eigenvalue of N~ such that |λ− (Θ0 − C1κmax~)| 6 K~2

and all associated eigenfunction u ∈ Dom (N~),∫
[−L,L)×R+

e2ϕ/~
1
2 |u|2dsdτ 6 Ceε/~

1
2 ‖u‖2

L2([−L,L)×R+) .

Proof. Consider an eigenfunction u as in the assumptions. Let χr be a smooth
cutoff function equal to 1 near sr and being 0 near s`. Away from the support of
χr, ϕ can be modified and extended to R×R+ so that Assumption 4.1 is satisfied.
We can then consider ψ = χre

iσγ0/~2eϕ/~
1
2 u as a function on R and apply to it

Theorem 5.1 with z = λ. We get then

c~2‖χreϕ/~
1
2 u‖ 6 ‖eϕ/~1/2〈τ〉6(N~−λ)(χru)‖+~2‖χ0(~−

1
2R−1(σ−sr))eϕ/~

1
2 u‖ .
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By using that u is an eigenfunction and by choosing η small enough (and adapting
χr accordingly), we get the following estimate,

c~2‖χreϕ/~
1
2 u‖ 6 eε/2~

1
2 ‖〈τ〉6[N~, χr]u‖L2([−L,L)×R+) + C~2‖u‖L2([−L,L)×R+) .

Thanks to the normal Agmon estimates, we get

‖χreϕ/~
1
2 u‖ 6 Ceε/~

1
2 ‖u‖L2([−L,L)×R+) .

By considering the left well, we get by symmetry

‖χ`eϕ/~
1
2 u‖ 6 Ceε/~

1
2 ‖u‖L2([−L,L)×R+) .

Since the supports of χr and χ` overlap [−L,L), the conclusion follows. �

6.2. WKB approximation in the right well. Let us now discuss a crucial
application of Theorem 5.1. We work here on the real line. Let us apply the
theorem to

ψ = eϕ/~
1
2 (ψ~,r − Πrψ~,r) , (6.1)

where
— ψ~,r(σ, τ) = χη,rΨ~,τ (σ, τ),
— χη,r is a cut-off function supported in Iη,r and such that χη = 1 on I2η,r,
— Ψ~,r is the WKB solution introduced in (2.8) (with n = 1) and scaled so that
‖ψ~,r‖ = 1 (see Remark 2.9),

— Πr is the orthogonal projection on the first eigenspace, spanned by u~,r, of the
operator N~,r.

Theorem 5.1 and Corollary 5.7 yield the following WKB approximations (see,
for instance, [10, Prop. 5.1] in the context of the Robin Laplacian for a similar
estimate).

Proposition 6.3. We have

‖ψ~,r − Πrψ~,r‖L2(R2
+) = O(~∞) , (6.2)

and we can assume that 〈ψ~,r, u~,r〉 = 1 + O(~∞) up to the multiplication of Ψ~,r
by a complex number of modulus 1.

Moreover, let K ⊂ I2η,r be a compact set. The following estimate

〈τ〉eΦr/
√
~(Ψ~,r − u~,r) = O(~∞) , (6.3)

holds in C 1(K;L2(R+)).

Remark 6.4. Note that the choice 〈ψ~,r, u~,r〉 = 1 + O(~∞), in addition to the
normalization of ψ~,r, completely determines the quasimode, especially the value
of α1,0 which was only defined up to an additive constant in (2.13).
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Proof. To get (6.2), we remember that the expansion of the first eigenvalue is
given by δ1(~) in Theorem 2.8, we use the spectral gap of the one well case (see
for instance (1.3)) and we apply the spectral theorem.

To get (6.3), we use our normalization of the WKB Ansatz, and we choose

ϕ(s) = Φ̂r,η,N,~(s) = min

{
Φ̃r,N,~(s),

√
1− θ inf

σ∈I2η,r\Iη,r

(
Φr(σ) +

∫
[s,σ]

√
V (σ̃) dσ̃

)}
,

(6.4)
where

Φ̃r,N,ε(s) = Φr(s)−N
√
~ ln max

(
Φr√
~
, N

)
. (6.5)

Here N ∈ N, 0 < θ < 1. �

7. Interaction matrix and tunneling effect

We now have all the elements in hand to prove Theorem 1.3. Let us consider
the common “single well” groundstate energy µsw

1 (~) of the operators N~,r and
N~,` (it depends on η). It results from the Agmon estimates in Corollary 6.1 and
Proposition 6.2, and the min-max principle that

µsw
1 (~)− Õ(e−S/

√
~) 6 ν1(~) 6 ν2(~) 6 µsw

1 (~) + Õ(e−S/
√
~) , (7.1)

where Õ(e−S/
√
~) means O(e−(S−ε)/

√
~) for all ε > 0.

7.1. WKB quasimodes and approximated basis. In this section, we recall
the main lines of the strategy to reduce the asymptotic study of the spectral gap
ν2(~)−ν1(~) to the study of the two by two interaction matrix. Once the tangential
exponential decay of the eigenfunctions is established (see Proposition 6.2), the
derivation of the interaction matrix can be done as if we were in dimension one.
In this section, one will precisely refer to the estimates obtained in [4, Section 3]
where the strategy has been described in great detail for an electric Hamiltonian in
dimension one (see also the Bourbaki exposé [25, Section 2] describing the Helffer-
Sjöstrand results in [12]).

To construct the interaction matrix, we will use the ground states of the one
well problems and use them to provide an approximate basis of the space

E =
2⊕
i=1

Ker(N~ − νi(~)) .

We will truncate them, project them on E and orthonormalize them.

7.1.1. Truncation. Let χη,r (respectively χη,`) be a cut-off function satisfying χη,r =
1 in {|s − s`| > 2η} (respectively χη,` = 1 in {|s − sr| > 2η}) and χη,r = 0 in
{|s− s`| 6 η} (respectively χη,` = 0 in {|s− sr| 6 η}).

We define, for α ∈ {`, r},
f~,α = χη,αφ~,α , (7.2)
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where the φ~,α are essentially the functions φ̌~,α (see (2.5) and (2.6)) seen on the
circle identified with [−L,L), and precisely defined by

φ~,r(σ, τ) =

{
e−iγ0σ/~

2
u~,r(σ, τ) if − L 6 σ 6 s` − η

2

e−iγ0(σ−2L)/~2u~,r(σ − 2L, τ) if s` + η
2
< σ < L

, (7.3)

φ~,`(σ, τ) =

{
e−iγ0(σ+2L)/~2u~,`(σ + 2L, τ) if − L 6 σ 6 sr − η/2
e−iγ0σ/~

2
u~,`(σ, τ) if sr + η/2 < σ < L

. (7.4)

Note here that, due to the flux term γ0σ/~2, there is no natural extension by
periodicity. In the following, we work on Γ identified with [−L,L).

Thanks to Proposition 6.2, the set {f~,`, f~,r} is quasi-orthonormal in the sense
that

‖f~,α‖2 = 1 + Õ(e−2S/
√
~) and 〈f~,α, f~,β〉 = Õ(e−S/

√
~) for α 6= β .

Furthermore, the function r~,α = (N~ − µsw(~))f~,α, α ∈ {`, r}, satisfies,

‖r~,α‖ = Õ(e−S/
√
~) .

These estimates, in dimension one, are proved, for instance, in [4, Lemma 3.5].

7.1.2. Projection. Since we want to describe the first two eigenvalues of N~, it
is convenient to build a basis of E from the quasimodes f~,r and f~,`. Thus, we
consider the new quasimodes, for α ∈ {`, r},

g~,α = Πf~,α , (7.5)

where Π is the orthogonal projection on E. The following estimate holds, for
α ∈ {`, r},

‖g~,α − f~,α‖+ ‖∂s (g~,α − f~,α)‖ = Õ(e−S/
√
~) ,

and its proof is the same as the one of [4, Lemma 3.8].

7.1.3. Orthonormalization. Starting from the basis {g~,`, g~,r}, we obtain by the
Gram-Schmidt algorithm the orthonormal basis {g̃~,`, g̃~,r}. In other words, we
have g̃ = gG−

1
2 where G is the Gram-Schmidt matrix (〈g~,α, g~,β〉)α,β∈{r,`}.

Let M be the matrix of N~ in the basis {g̃~,`, g̃~,r}. We have

Spec(M) = {ν1(~), ν2(~)}

and, by solving the equation det(M − λId) = 0, we deduce, as in dimension one
(see [4, Proposition 3.11]), that

ν2(~)− ν1(~) = 2|w`,r|+ Õ(e−2S/
√
~) , w`,r = 〈r~,`, f~,r〉 . (7.6)
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7.2. Computing the interaction. We may now estimate the interaction term
w`,r. In contrast with Section 7.1, we provide here more details since the proof
deviates from the usual computation of the interaction in dimension one. Firstly,
the tangential derivative ~Dσ is replaced by the magnetic derivative

D~ = ~Dσ + ~−1γ0 − τ + ~cµ
κ

2
τ 2 . (7.7)

Lemma 7.1 gives an explicit formula for w`,r involving this magnetic derivative.
Secondly, the separation of variables, responsible for the final reduction to an
interaction in dimension one, is explained in Section 7.2.2.

7.2.1. An explicit formula for w`,r. The aim of this section is to prove the following.

Lemma 7.1. We have

w`,r = i~
∫ +∞

0

a−1
~
(
φ`D~φr + D~φ`φr

)
(0, τ)

− a−1
~
(
φ`D~φr + D~φ`φr

)
(−L, τ)dτ . (7.8)

Proof. We have

w`,r = 〈(N~ − µsw
1 (~))f~,`, f~,r〉 = 〈[N~, χη,`]φ~,`, χη,rφ~,r〉 .

For shortness we use in the following the notation χr for χη,r and similarly on the
left-side. We recall that χr and χ` do not depend on τ . Thus

w`,r = 〈[a−1
~ D~a

−1
~ D~, χ`]φ~,`, χrφ~,r〉 . (7.9)

For shortness, we let φ~,α = φα.
In the following we let SL = (−L,L) × (0,+∞). Writing the commutator,

integrating by parts, and using the Leibniz formula, we get

w`,r =

∫
SL

(
D~(a

−1
~ D~(χ`φ`))χrφr − χ`χrφrD~(a

−1
~ D~φ`)

)
dσdτ

=

∫
SL

a−1
~
(
D~(χ`φ`)D~(χrφr)−D~φ`D~(χ`χrφr)

)
dσdτ

=

∫
SL

a−1
~
(
[−i~χ′`φ` + χ`D~φ`] D~(χrφr)−D~φ`

[
χ`D~(χrφr) + i~χ′`χrφr

])
dσdτ

= −i~
∫
SL

a−1
~ χ′`

(
φ`D~(χrφr) + D~φ`

[
χrφr

])
dσdτ

= i~
∫
SL

a−1
~ χ′`χr

(
φ`D~φr + D~φ`φr

)
dσdτ

= i~
∫
SL

a−1
~ χ′`

(
φ`D~φr + D~φ`φr

)
dσdτ ,



PURELY MAGNETIC TUNNELING EFFECT 35

where we have used χ′`χ
′
r = 0 and χ′`χr = χ′`. Note also that χ′` is supported in

(−L, 0). We let φ̃α(σ, τ) = eiγ(σ,τ)/~φα(σ, τ) on SL, where γ satisfies ∂σγ(σ, τ) =

τ − γ0/~− ~cµκ τ
2

2
. Using this change of function, we get

w`,r = −
∫
Sr

a−1
~ ~Dσχ`

(
φ̃`~Dσφ̃r + ~Dσφ̃`φ̃r

)
dσdτ ,

where Sr = (−L, 0)× R+. Then, by integration by parts,

w`,r = w̃`,r + i~
∫ +∞

0

a−1
~

(
φ̃` ~Dσφ̃r + ~Dσφ̃` φ̃r

)
(0, τ)

− a−1
~

(
φ̃` ~Dσφ̃r + ~Dσφ̃` φ̃r

)
(−L, τ)dτ , (7.10)

with
w̃`,r =

∫
Sr

χ`~Dσ

[
a−1
~

(
φ̃` ~Dσφ̃r + ~(Dσφ̃`) φ̃r

)]
dσdτ .

Note that

w̃`,r =

∫
Sr

χ`

(
−φ̃`(~Dσa

−1
~ ~Dσ)φ̃r + (~Dσa

−1
~ ~Dσ)φ̃` φ̃r

)
dσdτ ,

and, coming back to φα,

w̃`,r =

∫
Sr

χ`

(
−φ`D~a

−1
~ D~φr + D~a

−1
~ D~φ` φr

)
dσdτ .

Using the fact that the φα are eigenfunctions associated with the same eigenvalue,
we get w̃`,r = 0. From (7.10), we deduce that

w`,r = i~
∫ +∞

0

a−1
~
(
φ`D~φr + D~φ`φr

)
(0, τ)

− a−1
~
(
φ`D~φr + D~φ`φr

)
(−L, τ)dτ .

�

7.2.2. End of the proof of Theorem 1.3. Let us explain how to analyze the asymp-
totic behavior of the first term, related to the upper part of Γ, in (7.8):

wu`,r =

∫ +∞

0

a−1
~
(
φ`D~φr + D~φ`φr

)
(0, τ)dτ .

Note that a~ = 1 + o(1), |~cµτ 2| = o(~−2η). We also recall that φ~,` and φ~,r are
explicitly described in (7.3) and (7.4). We find that

wu`,r

=

∫ +∞

0

a−1
~

(
u~,`(~Dσ − τ + ~cµ

κ

2
τ 2)u~,r + (~Dσ − τ + ~cµ

κ

2
τ 2)u~,`u~,r

)
(0, τ)dτ .
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Then, we use the uniform approximation given in Proposition 6.3, the explicit
expression of the WKB Ansatz in Theorem 2.8, and the fact that Φr(0)+Φ`(0) = Su

to get

wu`,r =∫ +∞

0

a−1
~

(
Ψ~,`

(
~Dσ − τ + ~cµ

κ

2
τ 2
)

Ψ~,r +
(
~Dσ − τ + ~cµ

κ

2
τ 2
)

Ψ~,`Ψ~,r

)
dτ

+ O(~∞)e−Su/~
1/2

,

where Ψ~,`(0, τ) = UΨ~,r(0, τ) (there is no phase shift since we are at σ = 0).
Using again that Φr(0) + Φ`(0) = Su and the explicit expression of the first term
of Ψ~,r, we get

~
1
4 eSu/~

1/2

wu`,r =

∫ +∞

0

a−1
~ Ub1,~

(
~Dσ + ξ0 − τ + i~ 1

2 Φ′r(0) + ~cµ
κ

2
τ 2
)
b1,~dτ

+

∫ +∞

0

a−1
~

(
~Dσ + ξ0 − τ + i~

1
2 Φ′`(0) + ~cµ

κ

2
τ 2
)
Ub1,~b1,~dτ + O(~∞) .

By using that a~ = 1 + o(1) and the exponential decay of b1,~ with respect to τ ,
we find that

~
1
4 eSu/~

1/2

wu`,r =

∫ +∞

0

(
ξ0 − τ − i~

1
2 Φ′r(0)

)
Ub1,~b1,~(0, τ)dτ

+

∫ +∞

0

(
ξ0 − τ + i~

1
2 Φ′`(0)

)
Ub1,~b1,~(0, τ)dτ + O(~)

=2

∫ +∞

0

(ξ0 − τ)Ub1,~b1,~(0, τ)dτ − 2i~
1
2 Φ′r(0)f̃ 2

1,0(0)e−2iα1,0(0)

+ O(~) ,

where we used the explicit expression of the first term of b1,~ given in (2.9) and
Remark 2.9. Let us now replace b1,~ by its first two terms b1,0 + ~ 1

2 b1,1 (modulo ~)
given in (2.9). We recall the following two formulas (see, for instance, [3, Lemma
5.8]):∫ +∞

0

(ξ0 − τ)u2
ξ0

(τ)dτ = 0 , 1 + 2

∫ +∞

0

(ξ0 − τ)uξ0(τ)(∂ξu)ξ0(τ)dτ =
µ′′1(ξ0)

2
.

With the first formula, we get

2

∫ +∞

0

(ξ0 − τ)Ub1,~b1,~dτ =2~
1
2

∫ +∞

0

(ξ0 − τ)
(
Ub1,0b1,1 + Ub1,1b1,0

)
dτ + O(~)

=− 4if̃ 2
1,0(0)Φ′r(0)e−2iα1,0(0)

∫ +∞

0

(ξ0 − τ)uξ0(τ)vξ0(τ)dτ

+ O(~) .
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With the second formula, we deduce that

~
1
4 eSu/~

1/2

wu`,r = −µ′′1(ξ0)i~
1
2 Φ′r(0)f̃ 2

1,0(0)e−2iα1,0(0) + O(~) . (7.11)

We recognize here the interaction term associated with the effective Hamiltonian
(2.14) (see also (1.7)). Using (2.12), and differentiating at 0 formula (2.7), the
estimate (7.11) becomes

~
1
4 eSu/~

1/2

wu`,r = −i~
1
2µ′′1(ξ0)π−

1
2 g

1
2

√
V (0)Aue

−2iα1,0(0) + O(~) .

In the same way, we can deal with the integral corresponding to the down part of
the boundary in (7.8):

wd`,r = −
∫ +∞

0

a−1
~
(
φ`D~φr + D~φ`φr

)
(−L, τ)dτ ,

and we find that

~
1
4 eSd/~

1/2

wd`,r = −i~
1
2µ′′1(ξ0)π−

1
2 g

1
2

√
V (−L)Ade

−2iα1,0(−L)ei(−2Lγ0/~2+2Lξ0/~)+O(~) ,

where there is an additional phase shift coming from the ±2L-translation in σ
appearing in the second and first expression in (7.3) and (7.4), respectively.

Now recalling that, from (7.8),

w`,r = i~(wu`,r + wd`,r) ,

that ~ = h
1
2 , and multiplying by eiLf(h) in order to have a more symmetric formula

(only the modulus of this quantity is relevant), we get the expression w̃(h) given
in the statement of Theorem 1.3. Then, Theorem 1.3 follows from (7.6) and
Proposition 2.7.
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