
HAL Id: hal-02399059
https://hal.science/hal-02399059v1

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Acoustic cloaking: Geometric transform,
homogenization and a genetic algorithm

Lucas Pomot, Cédric Payan, Marcel Remillieux, Sebastien Guenneau

To cite this version:
Lucas Pomot, Cédric Payan, Marcel Remillieux, Sebastien Guenneau. Acoustic cloaking: Geo-
metric transform, homogenization and a genetic algorithm. Wave Motion, 2020, 92, pp.102413.
�10.1016/j.wavemoti.2019.102413�. �hal-02399059�

https://hal.science/hal-02399059v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Acoustic cloaking: geometric transform,
homogenization and a genetic algorithm

Lucas Pomot1,3 , Cédric Payan1, Marcel Remillieux2, Sébastien Guenneau3

Abstract

A general process is proposed to experimentally design anisotropic inhomoge-

neous metamaterials obtained through a change of coordinates in the Helmholtz

equation. The method is applied to the case of a cylindrical transformation that

allows cloaking to be performed. To approximate such complex metamaterials

we apply results of the theory of homogenization and combine them with a ge-

netic algorithm. To illustrate the power of our approach, we design three types

of cloaks composed of isotropic concentric layers structured with three types

of perforations: curved rectangles, split rings and crosses. These cloaks have

parameters compatible with existing technology and they mimic the behavior of

the transformed material. Numerical simulations have been performed to quali-

tatively and quantitatively study the cloaking efficiency of these metamaterials.

Keywords: Cloaking, homogenization, genetic algorithm, geometric transform,

machine learning

1. Introduction

The geometrical transformation of Maxwell’s equations has been studied the-

oretically back in 1962 by Post [1] and numerically solved with a finite element

method in 1994 by Nicolet et al. [2] and with a finite-difference time-domain

method in 1996 by Ward and Pendry [3], among others. These works were5
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primarily focused on the equations governing electromagnetism. More recently,

Greenleaf et al. [4] (2003) mathematically established that specific geometric

transformations, applied to the conductivity equation, lead to anisotropic het-

erogeneous conductivities giving rise to the same voltage and current measure-

ments, at the boundary of a body, as an isotropic homogeneous conductivity.10

Such anisotropic conductivities, that cannot be detected by electrical impedance

tomography, play a prominent role in cloaking devices whose purpose is to ren-

der an object invisible. Leonhardt [5] (2006) and Pendry et al. [6] (2006)

showed that similar transformations can be used to perform cloaking on elec-

tromagnetic waves i.e. to guide light around some region, rendering it invisible15

over a certain frequency bandwidth. These results have inspired similar studies

in acoustic waves which satisfy an equation of propagation analogous to that

of electromagnetic waves. In acoustics, a geometrical transformation introduces

either an anisotropic mass density (Cummer et al. [7] 2007, Chen et al. [8] 2007,

Cummer et al. [9] 2008) or an anisotropic inertia (Milton et al. [10] 2007). Such20

medium properties can arise from microstructures as discussed in Mei et al. [11]

(2007) and Torrent et al. [12] (2008). A challenge for any experimental appli-

cation is then to find the appropriate microstructure that properly mimics the

transformed parameters. In this article we propose a process to efficiently de-

termine this microstructure. The article is organized as follows: after recalling25

some elementary results on geometrical transformations (Section 2) and homog-

enization (Section 3.1) in the context of the Helmholtz equation, we explain in

Section 3.2 how a genetic algorithm can be used to design the microstructure

associated with a given geometrical transformation. This process is illustrated

in Section 4, which starts by a conformal mapping between Cartesian and polar30

coordinates (Section 4.1), which is combined with a non-linear transformation

mapping a disc on an annulus; two cylindrical cloaks are then designed, with an

alternation of isotropic homogeneous layers (Section 4.2) and same with ellipti-

cal perforations (Section 4.3); additional cloak’s designs are also proposed with

complex microstructures in Section 5; some of these microstructures seem to35

be more suited for experimental application as they require a smaller range of
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elastic parameters. We finally discuss some perspectives on our work in Section

6.

2. Elementary results on geometrical transformation

In this section, we recall some elementary results on a geometrical transfor-

mation applied to a time-harmonic wave equation of the form:

∇ · a(X)∇u(X) + b(X)ω2u(X) = 0 (1)

with a and b the spatially varying parameters that describe the medium of

propagation. This Helmholtz equation appears in various fields of physics such

as acoustic propagation and electromagnetism. For instance, if we consider anti-

plane shear waves propagating within a solid elastic medium invariant along the

anti-plane direction, then a represents the shear modulus and b stands for the

mass density of the medium [13]; likewise if we consider transverse magnetic

waves in a dielectric medium invariant along the anti-plane direction, a gives

the inverse of electric permittivity and b is the magnetic permeability [14]; if

we consider water waves, a can stand for water depth, in which case b = 1 [15],

or a stands for the product of the phase and group density while b is then the

ratio of the group and phase velocities in the context of the mild-slope equation

[16]. Here, we choose to study pressure acoustic waves propagating within a

non-viscous fluid, and so a is the inverse of mass density and b is the inverse

of bulk modulus but our results can be easily translated to the fore mentioned

wave areas.In the following a and b are supposed to be constant parameters.

We now apply a coordinate transformation of the form φ : X→ x on the domain

of propagation. Using results in [17] it is a straightforward matter to obtain the

governing equation:

∇ · α∇u(x) + βω2u(x) = 0 (2)

where α = aJ−1J−TdetJ is now a matrix valued spatially varying parameter

that depends on the Jacobian Jij = ∂xi/∂Xj of the geometrical transformation

φ and where β = b detJ is a spatially varying scalar parameter. J−1 denotes the
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inverse of J and J−T the inverse of the transpose of J . Our main observation

here is that the equation of propagation is form invariant meaning that the

transformed equation still describes the same physical phenomena but not in

the same medium of propagation. Let us focus our analysis on the following

non-linear geometrical transformation which is written in polar coordinates:

φ : X→ (r, θ)→ (r′ =

√
R2

2 −R2
1

R2
2

r2 +R2
1, θ′ = θ)→ x. (3)

This geometrical transformation introduces an annulus of anisotropic inhomo-

geneous material of internal radius R1 and external radius R2 (see figure 1b) in

the propagation domain. In theory this transformation sends a point to a disk

of radius R1, however this approach introduces a divergence in the properties

of the transformed medium. In practice it is thus preferable to send a disk of

radius ε very small in comparison with the other characteristic lengths onto a

disk of radius R1. If the initial disk of size ε is composed of the same mate-

rial as the surrounding medium we call this transformation non-linear Kohn’s

transformation. If the initial disk is empty, meaning it is a perforation in the

medium of propagation with homogeneous Neumann boundary condition (i.e.

zero normal derivative corresponding to zero flux at the boundary), we call the

transformation non-linear Pendry’s transformation. Let us note that such Neu-

mann boundary conditions hold in our acoustic case for rigid cylinders [18], as

well as in the water wave case [16]. However, this model holds for void cylindri-

cal inclusions in the context of anti-plane shear waves, and infinite conducting

cylinders for the context of transverse magnetic waves. From now on, we de-

note by perforations such types of inclusions. It is useful to consider three com-

pound geometric transforms: first mapping Cartesian coordinates onto polar

coordinates with Jacobian Jxr = ∂(r,θ)
∂(x1,x2)

, then performing the transformation

introduced in equation 3 with Jacobian Jrr′ = ∂(r′,θ′)
∂(r,θ) and finally mapping back

from stretched polar coordinates to stretched Cartesian coordinates with Jaco-

bian Jr′x′ = ∂(x′,y′)
∂(r′,θ′) . The total Jacobian Jxx′ and its determinant are given
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by:

Jxx′ = JxrJrr′Jr′x′ (4)

= R(θ)diag(1,r)Jrr′diag(1,1/r’)R(θ′) (5)

= R(θ)

 r′

R2
2−R2

1
R2

2
r

0

0 r
r′

R(θ′) (6)

detJ =
R2

2

R2
2 −R2

1

(7)

R(θ) being the rotation matrix through an angle θ. The main advantage of this

non-linear geometrical transformation in comparison with Pendry’s or Kohn’s

transformation is that the determinant of the Jacobian is constant thus the

transformed medium parameter β = b detJ is constant. The new medium

parameters derived from transformation (3) are

α = aJ−1J−TdetJ = aR(−θ′)

 r′2−R2
1

r′2 0

0 r′2

r′2−R2
1

R(θ′) (8)

β = b detJ = b
R2

2

R2
2 −R2

1

. (9)

(10)

We implement these anisotropic inhomogeneous medium parameters in COM-40

SOL numerical simulation software. Results are shown in figure 1c, 1d. Control

of wave propagation achieved here could have several applications in various

fields of physics. However, considering the characteristics of the transformed

material, such medium would be difficult to create in practice. What we sug-

gest instead is to structure the medium of propagation on a microscopic level45

(according to the field of physics that we consider) and to use classical re-

sults of homogenization theory to determine and tune effective properties of the

medium.
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Figure 1: a) Propagation of a monochromatic wave from left to right in an homogeneous

medium defined by a = 1 and b = 4.45 10−7 with PML at x = 0.5m and x = −0.5m. b)

Schematic representation of geometrical transformation applied to an homogeneous medium

sending a disk of radius ε to a disk of radius Rint. c) and d) Numerical results obtained for

both the non-linear Pendry’s (c) and the non-linear Kohn’s (d) transformation. The form

invariant property of the equation of propagation is clearly visible as the wavefield is distorted

only in the region affected by the transformation. Note the presence of perfectly matched

layers on the left and right hand sides.

3. Inverse homogenization using a genetic algorithm

3.1. Homogenization of the Helmholtz equation50

In order to mimic these anisotropic inhomogeneous materials mathematically

introduced in the previous section we apply classical results of homogenization

theory in order to determine effective parameters of a complex medium with

small perturbations. The aim of this approach is to perform what we wish to

call an inverse homogenization (or retrieval method [19], [20], [15], [21]), where55

characteristics of the small perforations are tuned to obtain an effective medium

that corresponds to the medium given by the change of variable. Homogeniza-

tion results used here were derived using asymptotic expansions as in [22] and
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thus only the main results are recalled here for two different cases.

Homogenization of a 1D laminar lattice60

A canonical example consists of an alternation of two isotropic propagation

media (see figure 2a). Analytical formulae can then be deduced to determine

properties of the effective anisotropic medium [22]:

α =

〈a−1〉−1 0

0 〈a〉


β = 〈b〉

(11)

where 〈a〉 = L0a0 + L1a1, L0 and L1 being the thickness of the two layers that

compose the microstructure (see figure 2a). In this configuration the tuning

parameters are defined by the homogeneous isotropic media characterized by

the parameters (ai, bi), i ∈ 0, 1. Possible additional tuning parameters are sizes

L0 and L1 of layers. In the following numerical results we choose to set L0 = L1.

To derive numerical values of a1 and a2 we solve the following system [23]:
αrr = 〈a−1〉−1 = a0a1

a1L0+a0L1

αθθ = 〈a〉 = L0a0 + L1a1

β = 〈b〉 = L0b0 + L1b1

(12)

When L0 = L1 = 0.5, expressions for αθθ and αrr reduce to:a0 = αθθ −
√
α2
θθ − αθθαrr

a1 = αθθ +
√
α2
θθ − αθθαrr

(13)
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Figure 2: a) Schematic representation of 1D laminar lattice defined by 6 parameters if L0 6= L1

and 4 parameters if L0 = L1 . b) Schematic representation of 2D periodic rectangular lattice

defined by 6 parameters. We use those two lattices to mimic the desired medium through

homogenization.

We note here that we can solve this system in the (r, θ) domain if we then

map the obtained microstructure to the (x, y) domain using a conformal map, a

point we will develop in section (4.1). The only terms in this system of equations

13 that are dependent on the geometrical transformation are on the left hand

side of the equations. Previously we justified the choice of our transformation

(3) by arguing that the determinant of the associated Jacobian is constant and

thus we have a constant β. However we did not take into account the influence

of this transformation on values of the homogenized elastic parameters a0, a1,

b0, b1. Some transformations may be more suitable for experimental realizations

depending on these homogenized elastic parameters they require. We discuss

here values taken by such parameters for different transformations defined by:

φn : (r, θ)→ (r′ =
(Rn2 −Rn1

Rn2
rn +Rn1

) 1
n

, θ′ = θ) (14)

where n is a positive integer. n = 1 is the classic linear Pendry’s transfor-

mation, and n = 2 is the quadratic transformation defined in equation (3).

We then compute parameters a0(r′) and a1(r′) for n = 1, 2, 3, 10. Results are
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Figure 3: Variation of homogenized parameters a0 (a) and a1 (b) depending on the order n

of the transformation. Note that the higher the order of the transformation the faster the

homogenized parameters (a0, a1) approach the parameter a. Note also the larger the varia-

tion for r close to Rint. Regarding experimental applications, the high order transformations

should be considered when it is doable to create an intense and localized change in the prop-

erties of the medium propagation. On the other hand, if it is easier to create a slow gradient

in the propagation medium properties one should consider a low order transformation.

shown in figure 3 and we observe that the homogenized parameters do not re-65

quire the same variation for each order n of the transformation. This can be of

paramount importance when considering experimental realization. In the fol-

lowing we consider the case n = 2. To choose parameters b0 and b1 we consider

an under-determined system, meaning that we have an extra degree of freedom

in their choice. The simplest solution would be to take b0 = b1 = β but depend-70

ing on experimental realization this may not be the best choice as we will see

in the sequel.

Homogenization of a 2D periodic rectangular lattice

We consider here a complex medium made of identical elementary cells reg-

ularly spaced, see figure 2b. This periodic structure is similar to that in [24],

which proposes a combination of a geometric transformation, a homogenization

theory called the Integral Equation method [25] and an optimization algorithm

to design an acoustic metamaterial with an emphasis on perfect sound absorp-

9



tion at deep subwvalengths. In a similar way, to model this type of periodic

medium we make use of two-scale homogenization theory [22] and for this pur-

pose we introduce a microscopic scale described by the variable y in addition

to the macroscopic scale described by x. The effective parameters of such a

medium can be numerically calculated. We recall here the expressions of these

effective parameters [22], [26]:

αH =

〈a〉 − 〈a∂y1w1〉 −〈a∂y1w2〉

−〈∂y2w1〉 〈a〉 − 〈a∂y2w2〉


βH = 〈b〉

(15)

where 〈·〉 is the mean operator over an elementary cell, ∂yiwj denotes the partial

derivative of wi with respect to yj and (w1, w2) are the solutions defined up to

an additional constant of the annex problem solved on only one elementary cell

with periodic boundary conditions

∇y ·
(
a(∇ywj(y) + ej)

)
= 0 (16)

with e1 = (1, 0) and e2 = (0, 1) the vectors of the basis. In this case the effec-

tive properties of the medium can be tuned using several parameters such as75

the perforation geometry (elliptical in our case), medium properties or the size

of the elementary cell. All these parameters are described in figure 2b. Our

objective is now to find the correct set of parameters that makes it possible

to properly mimic the medium of propagation. We called this process inverse

homogenization: we tune the elementary cell to obtain the desired homogenized80

medium of propagation. Considering the number of tuning parameters and the

lack of completely analytical formula we implement a genetic algorithm that is

well suited to solve such inverse problems.

3.2. Genetic algorithm85

The inverse problem is solved using a genetic algorithm (GA) proposed in

[27]. The main advantage of GA over other optimization process is its efficiency
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to find a global minimum within a large and discrete solution space. In our case

we try to minimize the following cost function:

γ(αH) = max
{ij}

|αij − αHij |
|αij |

(17)

for various sets of parameters defined in figure 2). In this formula α defines

the characteristics of the medium to be approximated and αH the homogenized

medium for a particular set of parameters. The GA will be used to perform

stochastic search based on the principles of natural selection and evolution.

An initial population N of individuals is generated, with each individual being90

defined by its set of parameters. For the initial iteration the parameters are

chosen randomly. Homogenization is then performed for each set of param-

eters (meaning that we solve the annex problem for each set of parameters)

and evaluated using the cost function γ defined in equation (17). The closer

the homogenized medium to the desired medium, the smaller the cost function.95

Individuals who did poorly at this iteration are then eliminated and new sets

of parameters are determined based on individuals that survived the previous

iteration. Each parameter can be compared to a gene and the set of parameters

to a DNA (which takes its name from biology). To determine the DNA of the

next generation we take the arithmetic means of the parents’ genes, meaning100

that if parent i is defined as pi = {ai, bi, Lix, Ljy, rix, riy} = DNA(pi) and par-

ent i + 1 as pi+1 = DNA(pi+1), then the genes of children ci are defined as

DNA(ci) = µDNA(pi) + (1− µ)DNA(pi+1) where µ is an arbitrary real num-

ber between 0 and 1. To avoid being trapped in local minima we add a mutation

factor which takes a chosen percentage of genes picked randomly and attribute105

them random values. Thus, if the algorithm converges to a minimum that is

not a global minimum a random mutation can still create an individual with a

better performing DNA. This individual can then influence further generations.

There can be a lot of tweaking in GA to choose the ideal population number,

mutation rate or other parameters that we did not introduce here for sake of110

simplicity. However the GA performed adequately in our case and allowed us to

determine quickly a large number of elementary cells that properly mimic our
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transformed medium after approximately 15 iterations.

4. Illustrative numerical results115

4.1. Conformal mapping

In section 3.1 we quickly introduced the fact that the microstructures are

designed in (r, θ) coordinates whereas we want to obtain a final microstructure

in (x, y) coordinates. In fact the inverse homogenization will take place in (r, θ)

coordinates before being mapped on (x, y) coordinates using a conformal map,

a geometrical transformation that does not impact the medium properties. The

conformal map we consider maps a rectangular domain [R1, R2] × [−π/η, π/η]

onto an annular domain [R1, R2]× [0, 2π] [16]:

w = ψeη(x+iy), with η =
ln(R2/R1)

R2 −R1
ψ =

R2 +R1

eηR2 + eηR1
(18)

It is important to note here that the medium given by the change of variable is

inhomogeneous in addition to being anisotropic whereas homogenization theory

can only achieve homogeneous anisotropic media. To achieve the required inho-

mogeneity we approximate the inhomogeneous anisotropic medium by several120

homogeneous anisotropic media. The impact of this approximation is quantita-

tively studied in figure 4. Based on these results we choose to divide our medium

into M = 20 homogeneous anisotropic media. However it is important to notice

that this approximation can be effective for M = 5. A similar question arises

when choosing the number N of elementary cells needed to properly describe a125

homogeneous anisotropic material. In our case we find that N = 3 elementary

cells for the laminar case and only N = 1 elementary cell for the periodic rect-

angular lattice give quantitatively good results.

12



M = 5

M = 20 M = 40

Homogeneous medium
1

0

-1

Figure 4: Qualitative results for various choices of subdivision M of the anisotropic inhomoge-

neous medium into anisotropic homogeneous medium. Note the visually good results obtained

from M = 20 but note also that M = 5 gives already a noticeable reduction of scattering in

comparison with the obstacle in the homogeneous medium.

4.2. 1D laminar case130

Calculation was performed using the acoustic module of Comsol which solves

the following equation: Calculation was performed using the acoustic module

of Comsol which solves the following equation:

∇ · (1

ρ
∇p) +

1

ρc2
ω2p = 0, (19)

with p the acoustic pressure, ρ the mass density and c the velocity. In fact, one

could have alternatively introduced the bulk modulus B = ρc2 to describe the

medium. However since we address here the wave community we find it more

natural to consider medium density and wave velocity as parameters. We also

stress that this acoustic module does not take into account the effect of material

losses. Upon inspection of equation 1 we have:

ρ = a−1

c =

√
a

b

(20)

We perform a study in the frequency domain and stress that the developed the-

ory holds so long as the wavelength is large in comparison with the dimensions
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of the elementary cell. We consider a 2D problem as the geometrical transfor-

mation is 2D. Boundary conditions at left-most and right-most extremities of

the medium are absorbing layers (Perfectly Matched Layers, PMLs) to mimic135

an infinite medium in x direction of wave propagation. In the y direction we

implement periodic boundary conditions to mimic an infinite medium in y direc-

tion. We can now use the entire method described above to design an invisibility

cloak for acoustic wave propagating in water (ρ0 = 1000kg/m3,c0 = 1500m/s)

for example. To show the generality of the method we assume that a and b can140

take any value. It is of course not the case in practice (we do not have a full

control of the spatial variation of velocity for example) but depending on the

tuning parameters approximations are possible. One of the compromises made

is due to the fact that we have an extra degree of freedom on the choice of the

parameters (b0, b1) which are not entirely defined by the system 13. Thus we145

can use this extra degree of freedom to tune the velocity in order to approach

more realistic materials. We consider the geometrical transformation (3) with

R1 = 0.05 and R2 = 0.15. The anisotropic inhomogeneous medium is first

divided into 20 anisotropic homogeneous media. Properties of each of these

anisotropic media are mimicked by using two homogeneous isotropic media and150

the relation (11). Elementary cells, defined by the alternation of two homoge-

neous isotropic media, are repeated 3 times in each anisotropic homogeneous

concentric layer along the radial direction. In summary the cloak is made of 40

different media, each of them repeated three times for an overall structure con-

sisting of an alternation of 120 homogeneous isotropic rings. Complete design155

of the cloak is shown in figure 5a and values of the media parameters are given

in table A.2. We stress that the extreme values of the elastic parameters are

needed here for a cloak of very high efficiency. As a comparison we show in table

A.1 values needed for a cloak made of M = 5 layers, which are more realistic

in terms of existing media. An example numerical result is shown in figure 5b160

for a frequency of 15kHz although we stress that this design is available for any

frequency providing the size of an elementary cell is small in comparison to the

wavelength.
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Figure 5: a) Schematic of a 1D laminar lattice made of M = 20 anisotropic homogeneous

media, each of them consisting of 3 alternations of homogeneous isotropic media. In total,

the cloak is made of 120 alternations of homogeneous isotropic rings made of 40 different

media. b) Numerical result: Propagation of a monochromatic acoustic wave of frequency

f = 15 kHz through the homogenized cloak designed using the 1D laminar lattice, surrounded

by water. We observe that the process of inverse homogenization we developed allows us

to mimic properly the inhomogeneous anisotropic medium introduced through geometrical

transformation, using only homogeneous isotropic media.

4.3. 2D rectangular lattice165

In a similar way we can work out a design using a different microstructure.

In the following we still consider propagation of a pressure wave in water for

the non transformed part of propagation medium. The transformed medium

is composed of several concentric media with rigid elliptical-like perforations.

Once again the elliptical-like perforations are designed in (r, θ) coordinates and170

then mapped onto (x, y) coordinates using the conformal map introduced in

equation (18). Perforation shape is obtained using the genetic algorithm. The

stopping criterion is a relative error of less than 5%, meaning γ(αH) < 0.05 with

input parameters identical to those introduced in figure 2b. Output parameters

given by the GA for different layers are summarized in table A.3 and the ge-175

ometry of the cloak is displayed in figure 6a. A qualitative numerical result is
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shown in figure 6b for a representative frequency f = 13kHz. When compar-

ing tables A.3 and A.2 we notice that the rectangular lattice is less demanding

with respect to changes in mass density and velocity. In fact, mass density for

the laminar lattice goes from 47kg/m3 to 21466kg/m3, which seems unachiev-180

able in practice, whereas in the rectangular lattice case it goes from 37kg/m3 to

717kg/m3. A similar observation can be done for velocity (from 831 m/s to 4654

m/s in laminar case, from 1495 m/s to 4734 m/s for rectangular case). When

considering an experimental realization the rectangular lattice would then be

more appropriate.185
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Figure 6: a) Design of the microstructure of the cloak in (r, θ) domain, before the application

of the conformal map defined by equation (18). b) Design of the microstructure of the cloak in

(x, y) domain, after the conformal mapping. c) Numerical result: propagation of a monochro-

matic acoustic wave of frequency f = 13 kHz through the homogenized cloak designed with

the 2D rectangular lattice, and surrounded by water. Once again we mimic properly the

inhomogeneous anisotropic medium introduced through geometrical transformation.

4.4. Quantitative measure of the efficiency of the cloaks

In this section we describe the quantitative method that we choose to mea-

sure the efficiency of the cloaks depending on the frequency. To do so we com-

pare the value of the total pressure field between homogeneous and transformed190

cases under study at over 5000 points located outside the region of the cloak.

At a given point, we perform a ratio between the two field values (see figure

7) and we further average all the ratios. We repeat this procedure for each

frequency. Obviously the closer the ratio to 1 the better the efficiency of the

cloak. To complete the study we also consider an efficiency criterion defined by195
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Figure 7: Illustration of procedures followed to measure efficiency. First the pressure field in

the transformed medium (upper left) is divided by same in the reference homogeneous medium

(upper right). The result (bottom left) expresses the cloak efficiency at each points for a given

frequency (f = 8800 Hz here). The closer the ratios to 1 the better the cloak efficiency. We

then average the ratios computed at each point to obtain the overall efficiency at one frequency,

and repeat this procedure for each frequency. We stress that due to resonance phenomena,

meshing approximation or numerical approximation (for value very close to zero) artifacts can

appear as we can see here on the rightmost side of the bottom left figure. The second criterion

performs the difference between transformed and homogeneous media, the result is shown in

the bottom left panel of the figure. We can already observe that this criterion smooths out

the artifacts and reveals some resonance pattern.

the difference between the two fields which is such that the closer the difference

to 0 the better the efficiency.

As a benchmark we use the anisotropic inhomogeneous cloak presented in

figure 1d (ie the transformed medium without any approximation). We then200

compare the homogeneous case with the case introduced in figure 4 for M = 0

in order to show the impact of the various cloak designs. We then compare the

1D laminar case (fig5) and the 2D rectangular lattice (fig6) against these two

benchmarks. All the results are summarized in figure 8a. It should be noted that

the black curve should in theory be equal to 1 at every frequency. However, with205
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Figure 8: The crosses show the value in the case without cloak (for comparison) as shown in

figure 4, the black line is the anisotropic cloak given by the transformation (figure 1d), the blue

line the cloak homogenized with the rectangular lattice, the red line the cloak homogenized

with the laminar lattice. a) Quantitative measure of the efficiency of each cloak for a large band

of frequencies with a difference criterion defined by the ratio between the transformed case

and the homogeneous case. A ratio close to one indicates a strong efficiency. b) Quantitative

measure of the efficiency of each cloak for a large band of frequencies with a difference criterion

defined by the difference between the transformed case and the homogeneous case. A ratio

close to zero indicates a strong efficiency.

the chosen criterion singularities can occur due to vanishing denominator. Thus

we give an alternative criterion in figure 8b replacing a ratio by a difference.

This has the advantage of removing the imperfections of the reference curve but

can none the less hide meaningful observations on cloak’s efficiency.

210

We observe from these quantitative results that the efficiency of all cloaks is

extremely satisfactory on the low frequency range, but this efficiency decreases

at higher frequencies for the homogenized cloaks (blue and red lines). We also

note that the efficiency of the cloak made of a 2D rectangular lattice decreases

faster than the 1D laminar case. This can be attributed to the fact that the215

elementary cells are smaller for the 1D laminar ( 0.8mm) case than for the 2D

rectangular lattice (5 mm), and moreover in the 2D case the Neumann (rigid)

inclusions can introduce multiple scattering. Furthermore if we look at the

results given by the second criterion we observe the presence of resonant modes
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for the perforated medium that do not appear in the other cases. If the 2D220

rectangular lattice seems easier to reproduce in practice, one should also take

into account the loss of efficiency due to the presence of resonant modes and the

faster decrease in efficiency for higher frequency.

5. Additional micro-structures with exotic elementary cell

To challenge the efficiency of the method, we further design several mi-225

crostructures with more exotic elementary cells. The first one to consider is

a microstructure consisting of split ring resonators as in [28], which seems to

be both appropriate to obtain strong anisotropy, and also is reminiscent of the

design of the first electromagnetic cloak [29]. The elementary cell of this struc-

ture and its geometric parameters are introduced in figure 9. We note that this230

elementary cell is defined by 9 parameters, whereas the elementary cell with an

elliptic perforation was defined by 6 parameters only (and the elementary cell

for homogeneous layers required only 4 parameters). Thus, it seems to us that

the genetic algorithm is absolutely necessary in the present case. The resulting

microstructure before and after the conformal map is shown on figure 9 and all235

the geometrical and physical parameters are summarized in table A.4.

We then perform numerical simulations of this microstructure. The result for

one frequency and the efficiency curves for both criteria (ratio and difference be-

tween pressure fields in homogeneous and microstructured media, respectively)

are shown on figure 10. We observe from the reading of figure 10 and figure 8240

that the overall cloak’s efficiency is not as good as for the previous microstruc-

tures which we studied. This can be attributed to the form of the inclusions

that are more prone to collective resonant behavior. As we have seen before for

the elliptic microstructure, resonance phenomena decrease the efficiency of the

cloak. In actuality, upon inspection of figure 10b, it can be seen that the cloak245

only functions properly at frequencies lower than 7000 Hz (and similarly for

figure 8a): clearly, the homogenization theory breaks down at frequencies above

7000 Hz. The worsening of the cloak efficiency in the split ring case can be
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Figure 9: Left panel: the elementary cell, defined by 9 parameters. Middle panel: the mi-

crostructure before the conformal mapping, η is defined in equation (18). Right panel: the

microstructure after the conformal mapping.

easily explained by the fact that the homogenization method which we consider

here does not take into account local resonance phenomena, thus the elementary250

cells mimic properly the transformed medium at all frequencies except for the

resonant ones, as long as the ratio of unit cell size to wave wavelength remains

small enough.

We continue to challenge our method with a new design of elementary cell

defined again by 9 parameters. We choose this design as it seems unlikely an255

effective medium approach could be applied to the Celtic cross within the el-

ementary cell (shown on figure 11): we call it a Celtic cross elementary cell.

Once again the elementary cell is defined by 9 parameters. We display the mi-

crostructured design before and after the geometric transformation on figure 11.

All the parameters of this microstructure are summarized in table A.5.260

We again perform numerical simulations on this microstructure and determine

the efficiency curves depending on the frequency. We show the results on figure

12. We observe that the qualitative and quantitative results decline in com-

parison with our previous designs. On the positive side, we observe that the

cloak does not produce any reflections (see leftmost side of figure 12a and red265

curves in figures 12b,12c). On the negative side, the wavefront is more distorted

after the cloak than it used to be in the previous designs, so the overall cloak’s

efficiency worsens. The poor cloaking efficiency can be explained by the fact
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Figure 10: a) Numerical result at a given frequency (f = 8000 Hz) . b) Quantitative efficiency

obtained with the ratio criterion. c) Quantitative efficiency obtained with the difference

criterion. We can observe the drop in the efficiency attributed to the resonance phenomena.
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Figure 11: Left panel: the elementary cell, defined by 9 parameters. Middle panel: the

microstructure before the conformal mapping. Right panel: the microstructure after the

conformal mapping, see Eq. (18), where the parameter η is defined.
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that the perimeters of the various circular homogeneous anisotropic layers are

not an integer multiple of the associated elementary cells, as can be observed270

in the inset showing a magnified view in figure 12a. The salient consequence is

a default in the microstructure. This default was also present in the previous

design but had less influence. By comparing the qualitative result of figure 12a

and the qualitative result in the case with no cloak (see figure 4, upper right)

we still observe a clear reduction of scattering due to the cloak.275
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Figure 12: a) Numerical result at a given frequency (f = 8000 Hz). Looking at the zoom

on the microstructure we observe some design imperfections as the perimeters of the layers

are not a multiple of the size of the associated elementary cell. The left part of the design

being not influenced by the design imperfections the cloak does not produce any reflections.

The right part introduces a distortion in the wavefront as it contains the imperfections. b)

Quantitative efficiency obtained with the ratio criterion. c) Quantitative efficiency obtained

with the difference criterion. We observe the drop in the efficiency attributed to the resonance

phenomena and the imperfections in the microstructure.
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6. Concluding remarks

In this paper we describe a general method to mimic complex anisotropic

inhomogeneous media obtained through geometrical transformation using clas-

sical homogenization results combined with a genetic algorithm in the case of the

Helmholtz equation. First the complex medium is created mathematically using280

the form invariance property of the Helmholtz equation, then this theoretical

material is approximated by performing what we call inverse homogenization

as a reference to [20]. This method can be easily adapted to several areas of

wave physics such as acoustics or electromagnetism, where governing equations

are form invariant. A notable constraint is that one cannot use the conformal285

mapping for 3D cloaks, and thus the mapping in Eq. (18), would need to be

replaced by another, more complicated, one [30]. Indeed, in dimension 3, the

desired conformal map should be a compound transform deduced from a ho-

mothetic transformation, an isometry and a special conformal transform (the

latter being the composition of a reflection and the inversion of a sphere, such290

as a Moebius transform).

Our method would require further generalization to tackle elasticity cases, for

which the form invariance of the governing equations is less obvious [31, 32, 33].

Considering the versatility and the room for further improvement of our method

(e.g. multiphase/multiscale media and 3D designs), we believe that our ap-295

proach will pave the way to further numerical studies as well as foster efforts

into experimental realizations.
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Appendix A. Tables of parameters for the various microstructures

ith layer ρ1i [kg/m3] c1i [m/s] ρ2i [kg/m3] c2i [m/s]

1 (r = R1) 6389 559 156 3575

2 2942 824 340 2426

3 2215 950 451 2105

4 1891 1028 528 1945

5 (r = R2) 1706 1083 586 1847

Table A.1: Numerical values of the mass density and velocity used in the design of a cloak made

of 5 homogeneous anisotropic layers, each of them made of 3 alternations of two homogeneous

isotropic layers.
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ith ρ1i c1i ρ2i c2i

layer [kg/m3] [m/s] [kg/m3] [m/s]

1 (r = R1) 21466 2261 47 4654

2 8080 2145 124 2881

3 5369 2034 186 2371

4 4193 1930 238 2117

5 3531 1831 283 1964

6 3104 1737 322 1864

7 2805 1648 356 1797

8 2582 1563 387 1752

9 2411 1483 415 1724

10 2274 1407 440 1710

11 2162 1335 462 1709

12 2069 1266 483 1721

13 1990 1201 502 1747

14 1922 1140 520 1791

15 1863 1081 537 1856

16 1811 1026 552 1952

17 1766 973 566 2096

18 1725 923 580 2323

19 1689 876 592 2722

20 (r = R2) 831 1099 604 3639

Table A.2: Numerical values of the mass density and velocity used in the design of the cloak

introduced in figure 5.
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ith layer ρi [kg/m3] ci [m/s] Lix [mm] Liy[mm] rix [mm] riy [mm]

1 (r = R1) 37 4734 8.7 76.9 2.9 38

2 182 2623 7.9 5.9 1.5 2.9

3 338 2156 7.3 103.7 0.7 42.8

4 422 1919 6.7 8.3 0.6 3.9

5 376 1912 6.3 25.9 1.1 10.7

6 205 1944 5.9 6.6 2.2 3.1

7 298 1782 5.5 7.3 1.7 3.4

8 414 1701 5.2 6.8 1.2 3

9 597 1588 4.9 7 0.6 2.7

10 548 1604 4.7 4.3 0.7 1.8

11 473 1592 4.4 3.3 1.1 1.4

12 625 1544 4.2 6.4 0.6 2.2

13 306 1686 4 5.9 1.5 2.6

14 608 1519 3.9 1.2 0.6 0.5

15 548 1535 3.7 3.8 0.9 1.4

16 717 1495 3.6 3.3 0.3 1.1

17 260 1736 3.4 2.7 1.4 1.2

18 468 1574 3.3 2.2 0.9 0.8

19 480 1564 3.2 3.2 0.9 1.2

20 (r = R2) 446 1605 3.1 2.7 0.9 1.1

Table A.3: Numerical values of the mass density, velocity and parameters of the elementary

cells used in the design of the cloak introduced in figure 6. The comparison with table A.2

show that the rectangular lattice would be experimentally less demanding than the laminar

lattice.
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ith ρi ci Lix Liy Rix Riy εi rix riy

layer [kg/m3] [m/s] [mm] [mm] [mm] [mm] [mm] [mm]

2 137 3664 7.9 5.6 2.4 2.8 2.9 0.5 2.1

3 320 2458 7.3 21.8 0.7 10.5 3.6 0.3 6.2

4 313 2485 6.7 11.9 1.7 5.7 4.5 0.3 2.6

5 292 2451 6.3 6.8 1.8 3.2 2.1 1.2 1.3

6 349 2193 5.9 6.1 1.6 2.9 2 0.9 2

7 572 1832 5.5 18.1 0.6 6.9 5.4 0.5 2.4

8 380 2214 5.2 11.2 1.6 4.6 2 0.8 1.6

9 501 1951 4.9 7.2 1.1 2.8 1.4 0.3 1.7

10 321 2308 4.7 12.4 1.7 5.2 2.2 0.7 3.7

11 409 2104 4.4 7.3 1.5 3 2.8 0.5 2

12 571 1828 4.2 4.9 0.8 1.9 0.8 0.3 0.9

13 490 2002 4.0 3.6 1.1 1.4 0.9 0.1 1.1

14 468 1918 3.9 3.6 1.2 1.4 1.3 0.6 1

15 722 1655 3.7 9.9 0.5 2.6 1.7 0.2 0.6

16 699 1621 3.6 22.5 0.9 4.7 3.7 0.7 3

17 750 1611 3.4 21.1 0.5 4.2 1.8 0.4 1.8

18 655 1675 3.3 12.9 0.9 3.2 2.8 0.7 1.7

19 761 1598 3.2 2.8 0.3 0.9 0.5 0.2 0.4

20 (r = R2) 511 1965 3.1 8.7 0.1 2.8 1.2 0.1 1.1

Table A.4: Numerical values of the mass density, velocity and parameters of the elementary

cells used in the design of the cloak introduced in figure 9
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ith layer ρi [kg/m3] ci [m/s] Lix [mm] Liy [mm] rix [mm] riy [mm] εix [mm] εiy [mm] Rc

1 (r = R1) 107 3990 8.7 56.8 0.9 24.6 0.08 1.3 1

2 248 2537 6.3 142.7 0.9 61.3 0.07 3.5 1.8

3 379 2231 7.3 37.3 0.3 16.1 0.06 0.5 0.7

4 449 2051 6.7 28.2 0.3 12.1 0.12 0.3 0.3

5 488 1814 6.3 27.2 0.9 11.6 0.08 0.7 0.8

6 520 1664 5.9 10.5 1.2 4.5 0.08 0.3 0.3

7 621 1633 5.5 9.1 0.7 3.8 0.05 0.1 0.4

8 577 1549 5.2 9.1 1.3 3.6 0.1 0.2 0.5

9 536 1480 4.9 13 1.7 5 0.09 0.4 0.5

10 675 1586 4.7 5.9 0.6 2.2 0.05 0.1 0.6

11 563 1428 4.4 8.5 1.6 3.3 0.12 0.1 0.7

12 666 1455 4.2 5.4 1 2.1 0.09 0.03 0.3

13 788 1538 4 4.1 0.2 1.5 0.07 0.02 0.3

14 733 1468 3.9 4.5 0.7 1.6 0.05 0.1 0.3

15 685 1459 3.7 11.1 1.2 3 0.06 0.3 0.7

16 690 1442 3.6 6.6 1 2.1 0.09 0.2 0.3

17 826 1437 3.4 5.4 0.6 1.5 0.04 0.04 0.4

18 678 1458 3.3 2.1 0.7 0.9 0.06 0.02 0.2

19 786 1490 3.2 1 0.3 0.4 0.02 0.05 0.2

20 560 1494 3.1 4.2 1 1.5 0.08 0.2 0.9

Table A.5: Numerical values of the mass density, velocity and parameters of the elementary

cells used in the design of the cloak introduced in figure 11
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