
HAL Id: hal-02399024
https://hal.science/hal-02399024

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static chiral Willis continuum mechanics for
three-dimensional chiral mechanical metamaterials

Muamer Kadic, Andre Diatta, Tobias Frenzel, Sebastien Guenneau, Martin
Wegener

To cite this version:
Muamer Kadic, Andre Diatta, Tobias Frenzel, Sebastien Guenneau, Martin Wegener. Static chiral
Willis continuum mechanics for three-dimensional chiral mechanical metamaterials. Physical Review
B, 2019, 99 (21), �10.1103/PhysRevB.99.214101�. �hal-02399024�

https://hal.science/hal-02399024
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW B 99, 214101 (2019)

Static chiral Willis continuum mechanics for three-dimensional chiral mechanical metamaterials

Muamer Kadic,1,2,* André Diatta,2 Tobias Frenzel,3 Sebastien Guenneau,4 and Martin Wegener2,3

1Institut FEMTO-ST, UMR 6174, CNRS, Université de Bourgogne Franche-Comté, 25000 Besançon, France
2Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
3Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

4Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France

(Received 21 December 2018; revised manuscript received 25 April 2019; published 4 June 2019)

Recent static experiments on twist effects in chiral three-dimensional mechanical metamaterials have been
discussed in the context of micropolar Eringen continuum mechanics, which is a generalization of linear Cauchy
elasticity. For cubic symmetry, Eringen elasticity comprises nine additional parameters with respect to linear
Cauchy elasticity, of which three directly influence chiral effects. Here, we discuss the behavior of the static
case of an alternative generalization of linear Cauchy elasticity, the Willis equations. We show that in the
homogeneous static cubic case, only one additional parameter with respect to linear Cauchy elasticity results,
which directly influences chiral effects. We show that the static Willis equations qualitatively describe the
experimentally observed chiral twist effects, too. We connect the behavior to a characteristic length scale.
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I. INTRODUCTION

In one dimension, the scalar spring constant in Hooke’s
law connects forces and displacements. As a generalization to-
wards three-dimensional continuum mechanics [1], the rank-4
linear Cauchy elasticity tensor C connects the rank-2 stress
tensor σ and the rank-2 strain tensor ε. In general, linear
Cauchy elasticity comprises up to 21 independent nonzero
parameters describing possible linear deformations of elastic
bodies in three dimensions [2–6]. For cubic crystals, which
are characterized by four threefold rotational axes, only three
parameters remain [3].

However, linear Cauchy elasticity essentially only grasps
the displacements u(r) of infinitesimally small volume el-
ements (of “points,” associated with position vectors r)
within a fictitious continuum. Linear Cauchy elasticity there-
fore misses certain degrees of freedom in artificial three-
dimensional periodic microlattices or metamaterials, for
which the unit cell has a finite extent rather than being
approximately pointlike such as atoms in an ordinary crystal
of macroscopic size [7,8]. Such missed degrees of freedom
have recently become particularly obvious in chiral three-
dimensionally periodic mechanical metamaterial structures
[see Fig. 1(a)] for which linear Cauchy elasticity fails to de-
scribe any effect of chirality, whereas prominent twist effects
have been observed experimentally in the static case [7]. In
contrast, micropolar Eringen elasticity [see Fig. 1(b)] has been
able to describe these experimental findings [7] as well as
others for achiral media [8]. Cosserat elasticity [9] can be seen
as a special case of Eringen micropolar elasticity.

Cosserat elasticity and micropolar Eringen elasticity
[9,10], micromorphic Eringen elasticity [9,11], strain-gradient
theories [12–14], and yet more advanced approaches [15]
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are not the only possible generalizations of linear Cauchy
elasticity though. It is therefore interesting and relevant to ask
which generalizations other than Eringen’s can describe the
effects of chirality observed in recent experiments [7].

In this paper, in Sec. II, we start with the static version of
a generalization of linear Cauchy elasticity following Willis
[16,17]. Aiming at describing recent experiments [7], we
focus on the case of three-dimensional homogeneous cubic
crystals without centrosymmetry, in which case the terms
beyond linear Cauchy elasticity can be parameterized by a
single scalar parameter. In Sec. III, we discuss numerical
solutions. We find that the resulting behavior qualitatively
describes the push-to-twist conversion effects observed in
recent experiments [see Fig. 1(c)] and that it can be connected
to a characteristic length scale. We conclude in Sec. IV.

II. GENERALIZED STATIC LINEAR CAUCHY
ELASTICITY

In the static case, all forces must balance. For simplicity,
we omit external forces in all formulas throughout this paper.
Hence, the divergence of the stress tensor σ = C : ε is zero,
∇ · σ = 0. The colon symbol : denotes a double contraction;
the dot · denotes a contraction between two tensors. Linear
Cauchy elasticity reduces to the compact equation

∇ · (C : ε ) = 0, (1)

where C is the rank-4 elasticity tensor, with components
Ci jkl (i, j, k, l = 1, 2, 3) in Cartesian coordinates and SI units
of Pa, and ε is the dimensionless symmetric rank-2 strain
tensor with components εi j = ε ji [2]. The strain tensor can
be connected to the gradient of the displacement vector field
u = u(r) with components ui (i = 1, 2, 3) via [2]

ε = 1
2 [∇u + (∇u)T], (2)
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FIG. 1. Cuboid beams with volume L × L × 2L, with side length
L = 500 μm, are subject to uniaxial loading along the negative z
direction. In linear Cauchy elasticity, the beam compresses and can
expand or contract laterally, depending on its Poisson ratio (not
depicted). However, a twist is forbidden in linear Cauchy elasticity,
even if the underlying crystal symmetry would allow for a twist.
(a) Finite-element calculation for a chiral metamaterial microstruc-
ture exhibiting a twist behavior [7]. (b) Same as (a), but calculated
using chiral micropolar Eringen elasticity [7]. (a) and (b) are taken
with permission from [7]. (c) Numerical calculations based on gener-
alized linear Cauchy elasticity following Willis. For all three panels,
the effects are calculated within the linear elastic regime and are
magnified tenfold for clarity. The modulus of the displacement vector
field is superimposed on a false-color scale. Parameters in (c) are
C11 = 32.8 MPa, C12 = −6.1 MPa, C44 = 19.4 MPa (in Voigt nota-
tion), and α = 3 GPa/m.

where the superscript T refers to the transposed quantity.
The linear Cauchy elasticity tensor obeys the minor symme-
tries (Ci jkl = Cjikl = Ci jlk) and the major symmetries (Ci jkl =
Ckli j) [2]. As a result, the strain tensor ε in (1) can equivalently
be replaced by the gradient of the displacement vector ∇u,
i.e.,

∇ · (C : ∇u ) = 0 . (3)

Linear Cauchy elasticity does not describe effects of chi-
rality at all [9]. This fact can immediately be seen by recalling
that all even-rank tensors (such as the rank-2 stress tensor, the
rank-4 elasticity stress tensor, and the rank-2 strain tensor) are
invariant under space inversion operations, r → −r [9]. Thus,
(3) does not change under space inversion, which brings one
from a left-handed to a right-handed medium (or vice versa).

Here, we consider Willis elasticity [16,17] as a candidate
for describing chiral effects. Willis elasticity has been around
for many years [16,17]. The Willis continuum-mechanics
equations have mostly been used in the context of dynamic
effects (or elastic waves) [16–28]. We will use them in the
static regime. We mention in passing that Milton, Briane, and
Willis have proven mathematically in 2006 that the Willis
equations are form invariant under general curvilinear spatial
coordinate transformations [29,30]. However, their discussion
concerning the form invariance of linear Cauchy elasticity
has raised some controversy in the literature [31–33]. Com-
pletely independent of this controversy, linear Willis elasticity

remains an interesting generalization of linear Cauchy elastic-
ity. In the static limit, i.e., for angular frequency ω = 0 and
finite static mass density ρ, Willis elasticity reduces [30] to

∇ · (C : ∇u + S · u) − D : ∇u = 0, (4)

where C = C(r) and the two additional rank-3 tensors S =
S(r) and D = D(r) generally depend on the spatial position r.

In the case of a homogeneous material or homogenized
structure with ∇Si jk = ∇Di jk = 0, which is the focus of
interest in this paper, Eq. (4) reduces to

∇ · (C : ∇u + W · u) = 0, (5)

with the rank-3 tensor W defined by

W = S − DT, (6)

where the components of the “transposed” tensor are given by

DT
i jk = Djik . (7)

Broken centrosymmetry is a necessary requirement for chi-
rality [3,7,9]. If we nevertheless consider an isotropic medium
or a cubic crystal with centrosymmetry, it follows that W ≡ 0,
just like for any homogeneous rank-3 tensor [3]. W ≡ 0 also
holds true for an isotropic medium without centrosymmetry.

For a cubic crystal without centrosymmetry, we find that the
tensor W , such as any rank-3 tensor [3], reduces to the rank-3
Levi-Civita tensor ε (with components ε123 = ε231 = ε312 =
−ε132 = −ε213 = −ε321 = 1, all other components are zero)
times a scalar factor α, i.e.,

W = α ε. (8)

Here, α has SI units of Pa/m. This allows us to rewrite Willis
elasticity (5) to

∇ · (C : ∇u) − α ∇ × u = 0. (9)

It is instructive to investigate the behavior of (9) under
a space-inversion operation, r → −r. As argued below (3),
C : ∇u = C : ε does not change sign, but the ∇ in front does.
In the second term in (9), both ∇ and u do change sign, and
hence the exterior product does not change sign. Therefore,
the relative sign of the first and second term in (9) changes
when performing a space inversion. Thus, (9) is different for a
left- and a right-handed medium, respectively. This behavior
is a necessary condition for a continuum formulation to be
able to describe the effects of chirality in mechanics. Clearly,
if the single parameter beyond linear Cauchy elasticity is zero,
α = 0, Eq. (9) reduces to linear Cauchy elasticity (3). As
usual [1,3], for cubic symmetry (with or without a center of
inversion), the linear Cauchy elasticity tensor C contains three
independent nonzero scalar parameters [3].

We will use (9) for the numerical calculations presented in
Sec. III. To be unambiguous and clear for experimentalists,
we therefore write Eq. (9) out into its three components and
explicitly write out all involved sums, leading to

3∑
i,k,l=1

[
∂

∂xi

(
Ci1kl

∂ul

∂xk

)]
− α

(
∂u3

∂x2
− ∂u2

∂x3

)
= 0, (10)

3∑
i,k,l=1

[
∂

∂xi

(
Ci2kl

∂ul

∂xk

)]
− α

(
∂u1

∂x3
− ∂u3

∂x1

)
= 0, (11)
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and

3∑
i,k,l=1

[
∂

∂xi

(
Ci3kl

∂ul

∂xk

)]
− α

(
∂u2

∂x1
− ∂u1

∂x2

)
= 0. (12)

III. NUMERICAL CALCULATIONS

In what follows, we illustrate the generalized static ho-
mogeneous equation (9) for a cubic three-dimensional chiral
medium by example numerical calculations. To allow for
a direct comparison with micropolar Eringen elasticity, we
reproduce previous continuum results [7] and results of meta-
material microstructure calculations [7] at selected points for
convenience of the reader. To ease this comparison, we also
choose similar parameters as much as possible.

A. Numerical approach

In our numerical calculations, we consider cuboid-shaped
samples with volume L × L × 2L. We apply uniaxial loading
by a rigid stamp along the negative z direction with sliding
boundary conditions at the top, i.e., at the top surface we
have a predescribed and fixed nonzero z component of the
displacement vector, uz �= 0. The components ux and uy can
change freely. The axial strain results from ε = ε33 = −uz/L.
The uniaxial pressure P exerted at the top is given by P =
n · (C : ∇u − α ∇ × u), where n is the normal vector point-
ing into the negative z direction. On the four sides, we use
open boundary conditions, i.e., n ·(C : ∇u − α ∇ × u)= 0,
with the respective normal vectors n of the four side facets.
On the bottom of the cuboid, we use fixed boundary condi-
tions with u = (0, 0, 0)T, describing that the sample cuboid
is clamped to a substrate. We have used the same conceptual
boundary conditions in our previous work on static Eringen
elasticity [7].

We solve Eq. (9) by using a finite-element approach via
the partial-differential equation (PDE) module of the com-
mercial software package COMSOL MULTIPHYSICS. Herein,
the homogeneous sample cuboid is typically discretized into
104 tetrahedra, corresponding to about 5 × 104 degrees of
freedom. Finer discretization has led to negligible changes
with respect to the results outlined in the following.

In Sec. III B, we will discuss the behavior of the twist
angle and the axial strain of the cuboid sample under uniaxial
loading. The axial strain is defined as the z component of the
displacement vector at the top surface [which is the same for
all positions (x, y, 2L)T], divided by the sample length 2L, i.e.,
by uz(x, y, 2L)/(2L).

The twist angle is defined via the displacement of the
equivalent four corners at the top of the sample cuboid in the
xy plane, which are at positions (±L/2,±L/2, 2L)T before
loading, with respect to the sample center at (0, 0, 2L)T. For
pure twists without further deformations, this definition grasps
the entire sample behavior. If deformations that are more
complex occur in addition, the twist angle resulting from our
definition should be seen as merely a parameter representing
part of the overall behavior.

FIG. 2. (a) Same as Fig. 1(c) with parameter α = 3 GPa/m and
all other parameters fixed as in Fig. 1(c). (b) α → 3.3 α. (c) α →
33 α. From such raw data, the twist angle at the top per axial strain
can be deduced and plotted vs α (see Fig. 3). All deformations are
magnified twofold for clarity.

B. Results and discussion

Figure 1 shows the modulus of the displacement vec-
tor field (on a false-color scale) for uniaxial loading along
the negative z axis of a cuboid-shaped sample with volume
L × L × 2L. All results shown are within the linear elastic
regime, i.e., for axial strains <1%. We choose L = 500 μm
(see N = 1 in [7]), C11 = C22 = C33 (in standard Voigt nota-
tion [9]), C12 = C13 = C21 = C23 = C31 = C32, C44 = C55 =
C66 (all other elements of the elasticity tensor are zero), and
α = 3 GPa/m. The latter value has been chosen to match the
experiments (and hence also the results of the microstructure
calculations and those of Eringen continuum elasticity; cf.
[7]).

The results of Willis generalized linear Cauchy elasticity
in Fig. 1(c) are compared with those of micropolar Eringen
elasticity [7] in Fig. 1(b) and finite-element metamaterial
microstructure calculations [7] in Fig. 1(a). For the details
underlying Figs. 1(a) and 1(b), we refer the reader to the
extensive discussion in [7] and the corresponding supporting
online material. Obviously, Willis generalized linear Cauchy
elasticity, micropolar Eringen elasticity, and the finite-element
microstructure calculations exhibit the same qualitative be-
havior. When replacing α → −α, the direction of the twist
changes from clockwise to counterclockwise in Figs. 1(b)
and 1(c) (not depicted), corresponding to the behavior of the
mirror image of the three-dimensional (3D) microstructure
shown in Fig. 1(a).

In Fig. 2(a), the parameters are the same as in Fig. 1(c),
except that we consider the three choices (a) α = 3 GPa/m,
(b) α → 3.3 α, and (c) α → 33 α. In Fig. 2(b), the twist effect
is simply larger than that in Fig. 2(a). In Fig. 2(c), however,
unusual additional substructures appear in the displacement
field.

Figure 3 emphasizes essentially the same aspect as Fig. 2;
however, we do not depict displacement fields of a sample but
rather plot the calculated twist/strain (defined in Sec. III A)
versus the parameter α for fixed sample side length L. For
small values of α, the twist/strain increases monotonously.
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FIG. 3. Twist/strain vs parameter α (lower horizontal scale) as
deduced from raw data such as the ones shown in Fig. 2. The dots
are calculated; the curve is a guide to the eye. Parameters are as
in Fig. 1(c). The upper horizontal scale shows the characteristic
length lc normalized to the sample side length L, lc

L = β/C44
L = α L

C44
,

according to (15). Here, C44 is an element of the elasticity tensor in
Voigt notation, namely, the shear modulus C2323.

However, for larger values of α, we find an unusual non-
monotonous resonancelike behavior (compare [19]), which is
connected to the behavior shown in Fig. 2(c).

This behavior versus the parameter α for fixed sample
side length L is connected to the behavior versus L for fixed
α. Following Refs. [7,9], the effects beyond static linear
Cauchy elasticity should decrease with increasing L. More
specifically, the twist/strain should decrease proportionally
to the surface-to-volume ratio, i.e., decrease ∝1/L. What one
gets from (9) versus L for fixed α is the polar opposite of this
behavior. This can be seen as follows: If we replace the spatial
components xi → ζxi in (9), with some dimensionless scaling
factor ζ , the ratio of the second and first terms in (9) increases
by a factor ζ . This means that the effects beyond linear
Cauchy elasticity would increase with increasing sample side
length L if α was constant. We conclude that α must not
be considered as a constant material parameter, but rather as
an effective continuum-model parameter. We can equivalently
say that the tensor W can be constant and nonzero for a (very)
large homogeneous material, but it is zero in the limit of an
infinitely large homogeneous material.

To arrive at a meaningful material parameter β, we make
the ansatz

α = β

L2
. (13)

The parameter β has SI units of Pa m. Thus, the ratio

lc = β

C
(14)

has units of a length. Here, C is a nonzero element of the
elasticity tensor C or a combination of elements. As the twist
effect mainly changes the shape of the specimen but not its
volume, we choose the shear modulus C = C44 = C2323. The

length lc is obviously zero in the Cauchy limit of α = β = 0.
Therefore, it is tempting to interpret lc as a characteristic
length scale in the same spirit as characteristic length scales
in micropolar Eringen elasticity [9]. There, one gets several
different characteristic length scales, all of which are zero in
the Cauchy limit.

To test this ansatz for the characteristic length scale, we
depict as the upper horizontal scale in Fig. 3 the normalized
characteristic length lc/L, which follows from

lc
L

= β/C44

L
= α

L

C44
. (15)

We find that nonmonotonous behavior in Fig. 3 occurs when
lc becomes comparable to or even exceeds the sample side
length L. Likewise, the characteristic length lc = 1275 μm
in Fig. 2(c) is also larger than the sample side length of
L = 500 μm, whereas lc is smaller by factor of 33 and 10,
respectively, in Figs. 3(a) and 3(b).

FIG. 4. (a) Twist/strain vs sample side length L normalized
by the characteristic length lc on a double-logarithmic scale. The
dependence on the parameter β is implicitly contained in this nor-
malization. The dashed straight line has a slope of −1, corresponding
to the expected asymptotic scaling of the twist angle ∝1/L for fixed
parameter β. (b) Same as in (a), but for the effective Young’s modulus
E on a semilogarithmic scale. All other parameters are as in Fig. 1(c).
The dots are calculated; the curves are guides to the eye.
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Finally, we study the dependence of the behavior on the
sample side length L for fixed parameter β and fixed elements
of the linear Cauchy elasticity tensor C (hence, fixed lc) in
Fig. 4. In Fig. 4(a), we plot the twist/strain versus sample side
length L on a double-logarithmic scale and in Fig. 4(b) the
effective Young’s modulus E versus L on a semilogarithmic
scale. The twist/strain in Fig. 4(a) decreases inversely propor-
tional to L in the limit L � lc (compare dashed straight line).
The Young’s modulus in Fig. 4(b) initially increases until it
reaches a constant level for large values of L. Thereby, linear
Cauchy elasticity, for which the twist is zero and the Young’s
modulus is independent on sample side length, is recovered in
the large-sample limit of L → ∞ in Figs. 4(a) and 4(b)—as it
should.

This overall behavior is qualitatively closely similar to the
one which we have recently found in numerical calculations
on chiral micropolar Eringen elasticity [9] as well as in our
experiments on chiral three-dimensional metamaterials [7], all
of which have been performed under static conditions. How-
ever, the quantitative agreement with experiments is worse
for Willis elasticity than for Eringen elasticity. For example,
the effective Young’s modulus E versus sample side length
L increased by about a factor of ten in [7] before it reached
a constant value, whereas it only increases by about 10%
before it reaches a constant value in Fig. 4(b). Moreover, the
displacement field for the three-dimensional microstructure in
Fig. 1(a), which agrees quantitatively with Eringen elasticity
in Fig. 1(b), shows a somewhat more pronounced minimum
in the middle of the sample top facet for Willis elasticity in
Fig. 1(c).

IV. CONCLUSION

In conclusion, we have considered the static version of
a generalized form of linear Cauchy elasticity, the Willis
equations, for the case of three-dimensional homogeneous

chiral noncentrosymmetric cubic media, which have been
the subject of recently published experimental and numerical
work on mechanical metamaterials. We have found that this
form of generalized static linear Cauchy elasticity grasps the
quintessential qualitative features of recent experiments and
of chiral micropolar Eringen elasticity; however, with just
a single additional parameter. Under the same conditions,
Eringen elasticity comprises nine additional parameters with
respect to linear Cauchy elasticity, three of which directly
influence chiral effects.

Such nonuniqueness of effective medium models is com-
mon for advanced continuum descriptions of materials in
mechanics [34], but also in electromagnetism and optics. It
will be interesting to see in the future inasmuch as Willis elas-
ticity is able to describe more advanced static experiments or
aspects of dynamic wave propagation in experiments on three-
dimensional chiral mechanical metamaterials, and whether or
not distinct qualitative differences with respect to micropolar
Eringen elasticity arise.
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