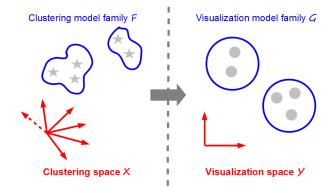
Gaussian Based Visualization of Gaussian and Non-Gaussian Based Clustering

C. Biernacki, M. Marbac-Lourdelle, V. Vandewalle

EcoSta 2019 25-27 June 2019, National Chung Hsing University, Taiwan



Take home message

Traditionally: spaces for visualizing clusters are fixed for their user-convenience Natural extension: models for visualizing clusters should follow the same principle!

Outline

- 1 Clustering: from modeling to visualizing
- 2 Mapping clusters as spherical Gaussians

3 Numerical illustrations for complex data

4 Discussion

Model-based clustering: pitch¹

- Data set: $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$, each $\mathbf{x}_i \in \mathcal{X}$ with d_X variables
- Partition (unknown): $\mathbf{z} = (z_1, \dots, z_n)$ with binary notation $z_i = (z_{i1}, \dots, z_{iK})$
- lacktriangle Statistical model: couples (x_i, z_i) independently arise from the parametrized pdf

$$\underbrace{f(\mathbf{x}_i, \mathbf{z}_i)}_{\in \mathcal{F}} = \prod_{k=1}^K \left[\pi_k f_k(\mathbf{x}_i)\right]^{\mathbf{z}_{ik}}$$

- **Estimating** f: implement the MLE principle through an EM-like algorithm
- Estimating K: use some information criteria as BIC, ICL,...
- Estimating z: use the MAP principle $\hat{z}_{ik} = 1$ iif $k = \arg \max_{\ell} t_{i\ell}(\hat{f})$ where

$$t_{ik}(f) = \mathsf{p}(z_{ik} = 1 | \pmb{x}_i; f) = \underbrace{\frac{\pi_k f_k(\pmb{x}_i)}{\kappa}}_{f(\pmb{x}_i)}.$$

¹See for instance [McLachlan & Peel 2004], [Biernacki 2017]

Model-based clustering: flexibility of ${\mathcal F}$ for complex ${\mathcal X}$

- Continuous data ($\mathcal{X} = \mathbb{R}^{d_X}$): multivariate Gaussian/t distrib. [McNicholas 2016]
- Categorical data: product of multinomial distributions [Goodman 1974]
- Mixing cont./cat.: product Gaussian/multinomial [Moustaki & Papageorgiou 2005]
- Functional data: the discriminative functional mixture [Bouveyron et al. 2015]
- Network data: the Erdös Rényi mixture [Zanghi et al. 2008]
- Other kinds of data, missing data, high dimension,...

Model-based clustering: poor user-friendly understanding

- \blacksquare n or K large: poor overview of partition $\hat{\mathbf{z}}$
- **d**_X large: too many parameters to embrace as a whole in \hat{f}_k
- lacksquare Complex \mathcal{X} : specific and non trivial parameters involved in \hat{f}_k

Visualization procedures

Aim at proposing user-friendly understanding of the mathematical clustering results

Overview of clustering visualization: mapping vs. drawing

Visualization is the achievement of two different successive steps:

- The mapping step:
 - Performs a transformation, typically space dimension reduction of a data set or of a pdf
 - It produces no graphical output at all (deliver just a mathematical object)
- The drawing step:
 - Provides the final graphical display from the output of the previous mapping step
 - Usually involves classical graphical toolboxes and tunes any graphical parameters

Mathematician is first concerned by the more challenging mapping step

Overview of clustering visualization: individual mapping

- \blacksquare Aims at visualizing simultaneously the data set x and its estimated partition \hat{z}
- Transforms \mathbf{x} , defined on \mathcal{X} , into $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$, defined on a new space \mathcal{Y}

$$M^{\text{ind}} \in \mathcal{M}^{\text{ind}}: \mathbf{x} \in \mathcal{X}^n \mapsto \mathbf{y} = M^{\text{ind}}(\mathbf{x}) \in \mathcal{Y}^n$$

- \blacksquare Many methods, depending on $\mathcal X$ definition: PCA, MCA, MFA, FPCA, MDS...
- Some of them use $\hat{\mathbf{z}}$ in M^{ind} : LDA, mixture entropy preservation [Scrucca 2010]
- Nearly always, $\mathcal{Y} = \mathbb{R}^2$

Model \hat{f} is is not taken into account through this approach which is focused on x

Overview of clustering visualization: pdf mapping

- Aims at displaying information relative to the mapping of the f distribution
- lacksquare Transforms $f=\sum_k \pi_k f_k \in \mathcal{F}$, into a new mixture $g=\sum_k \pi_k g_k \in \mathcal{G}$

$$M^{\mathsf{pdf}} \in \mathcal{M}^{\mathsf{pdf}}: \ f \in \mathcal{F} \mapsto g = M^{\mathsf{pdf}}(f) \in \mathcal{G}$$

- lacksquare $\mathcal G$ is a pdf family defined on the space $\mathcal Y$
- lacksquare M^{pdf} is often obtained as a by product of M^{ind} (tedious outside linear mappings)
- For large n, M^{ind} finally displays M^{pdf}
- \blacksquare Often, both \mathbf{y} and \mathbf{g} are overlaid

Summary of traditional visualization strategies²

Controlling the mapping family \mathcal{M}^{pdf}

$$\boxed{\mathsf{Strategy}_{\mathcal{M}}}: \qquad \underbrace{\mathcal{G}(\mathcal{M}^{\mathsf{pdf}})}_{\mathsf{uncontrolled}} = \left\{ g: g = \mathit{M}^{\mathsf{pdf}}(f), f \in \mathcal{F}, \mathit{M}^{\mathsf{pdf}} \in \underbrace{\mathcal{M}^{\mathsf{pdf}}}_{\mathsf{controlled}} \right\}$$

- lacksquare Nature of ${\cal G}$ can dramatically depend on the choice of ${\cal M}^{
 m pdf}$
- It can potentially lead to very different cluster shapes!
- \blacksquare Arguments for traditional $\mathcal{M}^{pdf}:$ user-friendly, easy-to-compute
- Examples: linear mappings in all PCA-like methods

New visualization strategy

Controlling the pdf family ${\cal G}$

$$\boxed{\mathsf{Strategy}_{\mathcal{G}}}: \qquad \underbrace{\mathcal{M}^{\mathsf{pdf}}(\mathcal{G})}_{\mathsf{uncontrolled}} = \left\{ M^{\mathsf{pdf}}: g = M^{\mathsf{pdf}}(f), f \in \mathcal{F}, g \in \underbrace{\mathcal{G}}_{\mathsf{controlled}} \right\}$$

- It is the reversed situation where \mathcal{G} is defined instead of \mathcal{M}^{pdf}
- lacksquare Offer opportunity to impose directly ${\cal G}$ to be a user-friendly mixture family
- Strategy $_{\mathcal{M}}$ and Strategy $_{\mathcal{G}}$ are both valid but Strategy $_{\mathcal{G}}$ is rarely explored!

This work: explore Strategy $_{\mathcal{G}}$

Outline

- 1 Clustering: from modeling to visualizing
- 2 Mapping clusters as spherical Gaussians

3 Numerical illustrations for complex data

4 Discussion

Spherical Gaussians as candidates

- lacksquare Users are usually familiar with multivariate spherical Gaussians on $\mathcal{Y}=\mathbb{R}^{d_Y}$
- lacktriangle Thus a simple and "user-friendly" candidate g is a mixture of spherical Gaussians

$$g(\mathbf{y}; \boldsymbol{\mu}) = \sum_{k=1}^{K} \underbrace{\pi_{k}}_{\text{from } f} \phi_{d\mathbf{y}}(\mathbf{y}; \underbrace{\boldsymbol{\mu}_{k}}_{?}, \boldsymbol{I})$$

where $\mu = (\mu_1, \dots, \mu_K)$ and $\phi_{d_Y}(.; \mu_k, I)$ the pdf of the Gaussian distribution

- lacksquare with mean $oldsymbol{\mu}_k = (\mu_{k1}, \dots, \mu_{kd_Y}) \in \mathbb{R}^{d_Y}$
- with covariance matrix equal to identity I

 $g(\cdot; \mu)$ should be then linked with f in order to define a sensible \mathcal{G}

$$\mathcal{G} = \{g : g(\cdot; \mu), \mu \in \arg\min \delta(f, g(\cdot; \mu)), f \in \mathcal{F}\}$$

g as the "clustering twin" of f

Question: how to choose δ since generally $\mathcal{X} \neq \mathcal{Y}$?

Answer: in our clustering context, δ should measure the clustering ability difference

Kullback-Leibler divergence of clustering ability between both f and $g(\cdot; \mu)^3$

$$\delta_{\mathsf{KL}}(f, g(\cdot; \boldsymbol{\mu})) = \int_{\mathcal{T}} \mathsf{p}_f(\boldsymbol{t}) \ln \frac{\mathsf{p}_f(\boldsymbol{t})}{\mathsf{p}_g(\boldsymbol{t}; \boldsymbol{\mu})} d\boldsymbol{t}$$

where

- \mathbf{p}_f : pdf of proba. of classification $\mathbf{t}(f) = (\mathbf{t}_i(f))_{i=1}^n$, with $\mathbf{t}_i(f) = (t_{ik}(f))_{k=1}^{K-1}$
- $\mathbf{p}_g(\cdot; \boldsymbol{\mu})$: pdf of proba. of classif. $\mathbf{t}(g) = (\boldsymbol{t}_i(g))_{i=1}^n$, with $\boldsymbol{t}_i(g) = (t_{ik}(g))_{k=1}^{K-1}$
- **T** = { $t : t = (t_1, ..., t_{K-1}), t_k > 0, \sum_k t_k < 1$ }

³p_f is the reference measure

${\cal G}$ reduced to a unique distribution

- lacksquare A natural requirement: $p_g(\cdot; \mu)$ and g should be linked by a one-to-one mapping
- Currently not true since rotations and/or translations are possible
- lacksquare It means: for one distribution f, there is a unique optimal distribution $g(\cdot;\mu)$
- Additional constraints on $g(\cdot; \mu)$: $d_Y = K 1$, $\mu_K = 0$, $\mu_{kh} = 0$ (h > k), $\mu_{kk} \ge 0$

Estimating the Gaussian centers (pitch)

- $lackrel{\bullet}$ The Kullback-Leibler divergence δ_{KL} has generally no closed-form
- Estimate it by the following consistent (in S) Monte-Carlo expression

$$\hat{\delta}_{\mathsf{KL}}(f,g(\cdot;\boldsymbol{\mu})) = \underbrace{\frac{1}{S} \sum_{s=1}^{S} \ln \mathsf{p}_g(\boldsymbol{t}^{(s)};\boldsymbol{\mu})}_{L(\boldsymbol{\mu};\mathsf{t})} + \mathsf{cst}$$

with S independent draws of conditional proba. $\mathbf{t} = (\boldsymbol{t}^{(1)}, \dots, \boldsymbol{t}^{(S)})$ from p_f

- It is the normalized (observed-data) log-likelihood function of a mixture model
- But, by construction, all the conditional probabilities are fixed in this mixture
- Thus, just maximize the normalized complete-data log-likelihood $L_{comp}(\mu; t)$:
 - K = 2: this maximization is straightforward
 - K > 2: use a standard Quasi-Newton algorithm with different random initializations, for avoiding possible local optima

From a multivariate to a bivariate Gaussian mixture

- lacksquare g is defined on \mathbb{R}^{K-1} but it is more convenient to be on \mathbb{R}^2
- lacksquare Just apply LDA on g to display this distribution on its most discriminative map
- lacksquare It leads to the bivariate spherical Gaussian mixture $ilde{g}$

$$\tilde{\mathbf{g}}(\tilde{\mathbf{y}}; \tilde{\boldsymbol{\mu}}) = \sum_{k=1}^{K} \pi_k \phi_2(\tilde{\mathbf{y}}; \tilde{\boldsymbol{\mu}}_k, \boldsymbol{I}),$$

where $ilde{\pmb{y}} \in \mathbb{R}^2$, $ilde{\pmb{\mu}} = (ilde{\pmb{\mu}}_1, \dots, ilde{\pmb{\mu}}_K)$ and $ilde{\pmb{\mu}}_k \in \mathbb{R}^2$

lacksquare Use the % of inertia of LDA to measure the quality of the mapping from g to $ilde{g}$

Remark

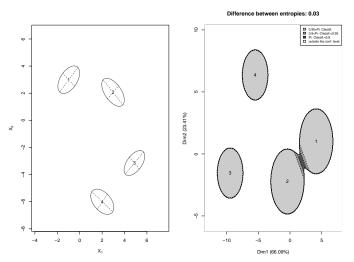
If $\mathcal{X}=\mathbb{R}^d$ and f is a Gaussian mixture with isotropic covariance matrices, then the proposed mapping is equivalent to applying a LDA to the centers of f

Overall accuracy of the mapping between f and $ilde{g}$

Use the following difference between the normalized entropies of f and $ilde{g}$

$$\delta_{\mathsf{E}}(f,\tilde{\mathbf{g}}) = -\frac{1}{\ln K} \sum_{k=1}^{K} \left\{ \int_{\mathcal{X}} t_k(\mathbf{x};f) \ln t_k(\mathbf{x};f) d\mathbf{x} - \int_{\mathbb{R}^2} t_k(\tilde{\mathbf{y}};\tilde{\mathbf{g}}) \ln t_k(\tilde{\mathbf{y}};\tilde{\mathbf{g}}) d\tilde{\mathbf{y}} \right\}$$

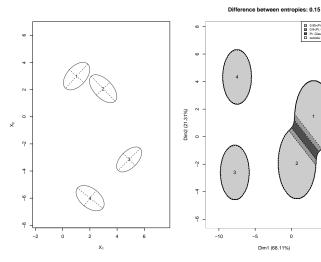
- Such a quantity can be easily estimated by empirical values
- Its meaning is particularly relevant:
 - \bullet $\delta_{\mathsf{E}}(f,\tilde{g}) \approx 0$: the component overlap conveyed by \tilde{g} (over f) is accurate
 - $\delta_{\rm E}(f,\tilde{g}) \approx 1$: \tilde{g} strongly underestimates the component overlap of f
 - lacksquare $\delta_{\mathsf{E}}(f, ilde{g})pprox -1$: $ilde{g}$ strongly overestimates the component overlap of f


 $\delta_{\rm E}(f,\tilde{g})$ permits to evaluate the bias of the visualization

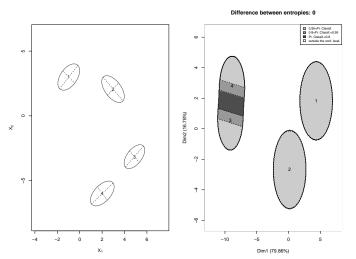
Drawing \tilde{g}

- lacktriangle Cluster centers: the locations of $ilde{\mu}_1,\ldots, ilde{\mu}_K$ are materialized by vectors
- Cluster spread: the 95% confidence level displayed by a black border
- Cluster overlap: iso-probability curves of the MAP classification for different levels
- Mapping accuracy: $\delta_{E}(f, \tilde{g})$ and also % of inertia by axis

Tutorial with four bivariate Gaussians: scenario 1


$$\pi_1 = \pi_2 = 0.4, \quad \pi_3 = \pi_4 = 0.1$$

0.95<Pr. Classif.
 0.8<Pr. Classif.<0.95
 Pr. Classif.<0.8
 outside the conf. level


Tutorial with four bivariate Gaussians: scenario 2

Scenario 1 where clusters 1 and 2 are closer through their centers.

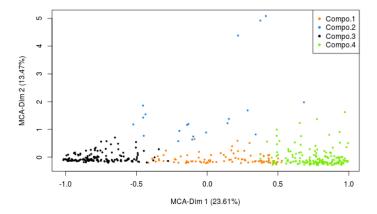
Tutorial with four bivariate Gaussians: scenario 3

Scenario 1 where clusters 3 and 4 are closer through their covariance matrices.

Outline

1 Clustering: from modeling to visualizing

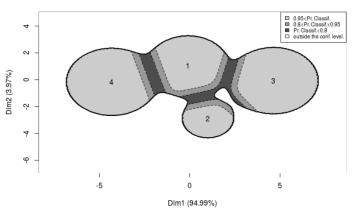
- 3 Numerical illustrations for complex data


4 Discussion

Numerical illustrations for complex data

House of Representatives Congressmen: data⁴ and model

- Votes of the n = 435 U.S. Congressmen on the $d_X = 16$ key votes
- Categorical data: for each vote, three levels are considered (yea, nay, ?)
- Data clustered by a mixture of product of multinomial distributions [Goodman 1974]
- K = 4 selected by BIC [Schwarz 1974]
- Use the R package Rmixmod [Lebret et al. 2015]
- Complex output: 435 individual memberships, $192 = 16 \times 3 \times 4$ parameters


First map of the MCA (R package FactoMineR [Lê et al. 2008]): difficult to interpret

Numerical illustrations for complex data

House of Representatives Congressmen: Gaussian visualization

Difference between entropies: 0.01

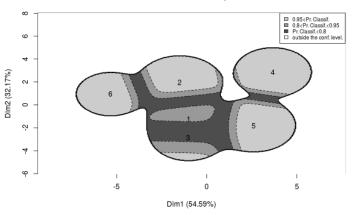
Mapping of f on this graph is accurate because $\delta_{\rm E}(f,\tilde{g})=0.01$

Contraceptive method choice: data⁵ and model

- Subset of the 1987 National Indonesia Contraceptive Prevalence Survey
- Mixed data: 1473 Indian women with two numerical variables (age and number of children) and eight categorical variables (education level, education level of the husband, religion, occupation, occupation of the husband, standard-of-living index and media exposure)
- Clustered by a mixture f assuming that variables are independent within components
- Model selection is done by the BIC criterion which detects six components
- Use the R package Rmixmod [Lebret et al. 2015]

Contraceptive method choice: estimated parameters

	Age		Number of children		
	Mean	Variance	Mean	Variance	
Component 1	35	30	4	4	
Component 2	35	22	3	2	
Component 3	40	42	5	9	
Component 4	25	10	1	1	
Component 5	24	13	2	1	
Component 6	45	7	5	8	

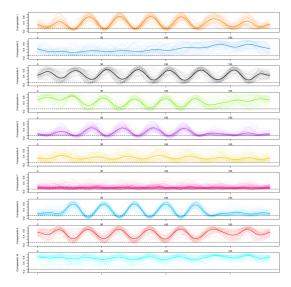

Table: Parameters of the continuous variables for the Contraceptive method choice.

	education	husband's	religion	occupation	husband's	standard-of-	media
	level	education level			occupation	living index	exposure
Component 1	3	3	2	2	3	4	1
Component 2	4	4	2	2	1	4	1
Component 3	1	2	2	2	3	3	1
Component 4	4	4	2	2	1	4	1
Component 5	3	3	2	2	3	3	1
Component 6	4	4	2	2	1	4	1

Table: Modes of the categorical variables for the Contraceptive method choice.

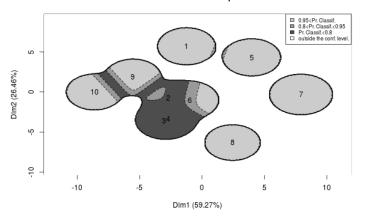
Contraceptive method choice: Gaussian visualization

Difference between entropies: 0.04



Mapping of f on this graph is accurate because $\delta_{\rm E}(f,\tilde{g})=0.04$

- Station occupancy data collected over the course of one month on the bike sharing system in Paris
- Data collected over 5 weeks, between February, 24 and March, 30, 2014, on 1189 hike stations
- Functional data: station status information (available bikes/docks) downloaded every hour from the open-data APIs of JCDecaux company
- The final data set contains 1189 loading profiles, one per station, sampled at 1448 time points
- Model: profiles of the stations were projected on a basis of 25 Fourier functions
- Model-based clustering of these functional data [Bouveyron et al. 2015] with the R package FUNFEM [Bouveyron 2015]
- Retain 10 clusters


Numerical illustrations for complex data

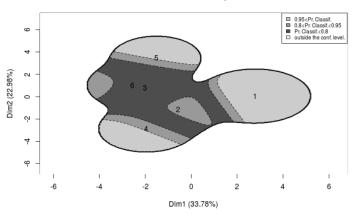
Bike sharing system: cluster of curves visualization

Numerical illustrations for complex data

Difference between entropies: -0.03

Mapping of f on this graph is accurate because $\delta_{\rm E}(f,\tilde{g})=-0.03$

- Not oriented network data: a single day snapshot of over 1100 political blogs automatically extracted the October, 14th, 2006 and manually classified by the "Observatoire Présidentielle" project.
- Nodes represent hostnames (= a set of pages) and edges represent hyperlinks between different hostnames
- Gather different communities organization due to the existence of several political parties and commentators
- Assumption: authors of these blogs tend to link, by political affinities, blogs with similar political positions
- Use the graph clustering via Erdös-Rényi mixture proposed by [Zanghi et al. 2008]
- Use the R package MIXER
- As proposed by these authors, we consider K=6 components


French political blogosphere: confusion matrix

Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	Comp. 6
2	0	0	0	0	0
10	0	0	1	0	0
2	0	0	0	0	0
7	0	0	0	0	0
7	0	0	0	0	0
31	0	0	0	26	0
11	0	0	0	0	0
1	1	0	30	0	0
2	25	11	2	0	0
0	1	0	0	0	24
	2 10 2 7 7	2 0 10 0 2 0 7 0 7 0 31 0 11 0	2 0 0 0 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 1 1 2 0 0 0 7 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Table: Confusion matrix between the component memberships and the political party memberships.

French political blogosphere: Gaussian visualization

Difference between entropies: -0.21

The graph slightly over-represents the component overlaps: $\delta_{\rm E}(f,\tilde{g})=-0.216$

Outline

1 Clustering: from modeling to visualizing

2 Mapping clusters as spherical Gaussians

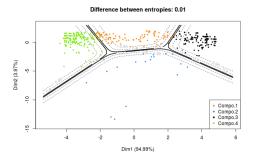
3 Numerical illustrations for complex data

4 Discussion

Conclusion

- Generic method for visualizing the results of a model-based clustering
- Very easy to understand output since "Gaussian-like"
- Permits visualization for any type of data, because only based on proba. of classif.
- Can be used after any existing package of model-based clustering
- The overall accuracy of the visualization is also provided

Extensions


- Possibility to explore other pdf visualizations than Gaussians
- However, should keep in mind simple visualizations are targeted
- lacksquare Possibility to compare pdf candidates through $\delta \mbox{\tiny KL}$ or $\delta \mbox{\tiny E}$

About individual visualization

- Theoretically, impossible to obtain individual visualization from pdf visualization
- lacktriangle However, we can propose a pseudo scatter plot of ${\bf x}$ as follows

$$\mathbf{x}_i \longmapsto \mathbf{t}_i(f) = \mathbf{t}_i(g) \stackrel{\text{bijection}}{\longmapsto} \mathbf{y}_i \in \mathbb{R}^{K-1} \stackrel{\text{LDA}}{\longmapsto} \tilde{\mathbf{y}}_i \in \mathbb{R}^2$$

- \blacksquare $\tilde{\mathbf{y}}$ allows only to visualize the classification position of \mathbf{x}
- Example for the congressmen data set

■ Caution: do not overlay pdf and individual plots since $\tilde{\mathbf{y}} = (\tilde{\mathbf{y}}_1, \dots, \tilde{\mathbf{y}}_n)$ is not necessarily drawn from a Gaussian mixture