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Clustering: from modeling to visualizing Mapping clusters as spherical Gaussians Numerical illustrations for complex data Discussion

Take home message

Traditionally: spaces for visualizing clusters are fixed for their user-convenience
Natural extension: models for visualizing clusters should follow the same principle!

Clustering model family F Visualization model family &

Clustering space X Visualization space Y
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Model-based clustering: pitch?

Data set: x = (x1,...,Xpn), each x; € X with dx variables

Partition (unknown): z = (z1,...,z,) with binary notation z; = (z1, ..., zik)

m Statistical model: couples (x;, z;) independently arise from the parametrized pdf

K
f(xi,z;) = [ fi (x;)] 5
[0,2) = [T

eF

Estimating f: implement the MLE principle through an EM-like algorithm

Estimating K: use some information criteria as BIC, ICL,. ..

m Estimating z: use the MAP principle 2j = 1 iif k = argmax, t,-g(f) where

T fr (i
t,'k(f) = p(Z,'k = l‘X,'; f) = Kkk#

> mofe(xi)
=1

—_——
f(xi)

1See for instance

)
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Model-based clustering: flexibility of F for complex X’

Continuous data (X = R9): multivariate Gaussian/t distrib. [McNicholas 2016]
Categorical data: product of multinomial distributions [Goodman 1974]

Mixing cont./cat.: product Gaussian/multinomial [Moustaki & Papageorgiou 2005]
Functional data: the discriminative functional mixture [Bouveyron et al. 2015]
Network data: the Erdos Rényi mixture [Zanghi et al. 2008]

Other kinds of data, missing data, high dimension,. ..
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Model-based clustering: poor user-friendly understanding

m nor K large: poor overview of partition 2
m dx large: too many parameters to embrace as a whole in fk

m Complex X': specific and non trivial parameters involved in ﬂ

Visualization procedures

Aim at proposing user-friendly understanding of the mathematical clustering results
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Overview of clustering visualization: mapping vs. drawing

Visualization is the achievement of two different successive steps:
m The mapping step:

m Performs a transformation, typically space dimension reduction of a data set or of a pdf
m It produces no graphical output at all (deliver just a mathematical object)

m The drawing step:

m Provides the final graphical display from the output of the previous mapping step
m Usually involves classical graphical toolboxes and tunes any graphical parameters

Mathematician is first concerned by the more challenging mapping step
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Overview of clustering visualization: individual mapping

Aims at visualizing simultaneously the data set x and its estimated partition 2

m Transforms x, defined on X, intoy = (y1,...,¥n), defined on a new space )

M e MM x € X" y=M"(x) €Y

m Many methods, depending on X definition: PCA, MCA, MFA, FPCA, MDS. ..

Some of them use 2 in M™: LDA, mixture entropy preservation [Scrucca 2010]

Nearly always, Y = R?

Discussion

Model £ is is not taken into account through this approach which is focused on x
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Overview of clustering visualization: pdf mapping

Aims at displaying information relative to the mapping of the f distribution

m Transforms f = 3, mifi € F, into a new mixture g = Y, 8k € G
MP e MP: f e F s g=MP(F)eG

G is a pdf family defined on the space Y
MP4f is often obtained as a by product of M™ (tedious outside linear mappings)

For large n, M™ finally displays MP9f

Often, both y and g are overlaid
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Summary of traditional visualization strategies?

Controlling the mapping family MP¥

[Strategyad|: G = {g Lg = MP(F),f € F MM e M }
NG S~

uncontrolled controlled

Nature of G can dramatically depend on the choice of MPdf

It can potentially lead to very different cluster shapes!

Arguments for traditional MPY: user-friendly, easy-to-compute
g Y, Y P

Examples: linear mappings in all PCA-like methods

2¢: P : ind
10730 Similar thinking with M
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New visualization strategy

Discussion

Controlling the pdf family G

S gy { e e i remee
—_—— ~~

uncontrolled controlled

m It is the reversed situation where G is defined instead of MPf
m Offer opportunity to impose directly G to be a user-friendly mixture family

m Strategyn and Strategyg are both valid but Strategyg is rarely explored!

This work: explore Strategyg
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Spherical Gaussians as candidates

m Users are usually familiar with multivariate spherical Gaussians on ) = R

m Thus a simple and “user-friendly” candidate g is a mixture of spherical Gaussians

K
glyim) = Tk ay (¥i 1k, 1)
Eg;; from f Y ?

where p = (p1, ..., k) and ¢q, (i pi, I) the pdf of the Gaussian distribution

. d
m with mean g = (fk1, - - -5 fidy ) € RYY
m with covariance matrix equal to identity /

g(+; i) should be then linked with f in order to define a sensible G

G={g:g(ip),pncargmind(f,g(-;p)),f € F}
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g as the “clustering twin” of f

Question: how to choose ¢ since generally X # )7
Answer: in our clustering context, é should measure the clustering ability difference

Kullback-Leibler divergence of clustering ability between both f and g(-; ut)3

Pf( )
pg(t 1)

dt

5 (Fr (1 12) =/ (£ In P

where
m ps: pdf of proba. of classification t(f) = (t:(f))"_,, with &:(f) = (ta(f))r '
m p,(+; 1) pdf of proba. of classif. t(g) = (ti(g));. with ti(g) = (1:,-k(g))kK;11
7T ={t:t=(t1,...,tk—1),t >0,> , tx <1}

3pf is the reference measure
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G reduced to a unique distribution

A natural requirement: pg(-; p) and g should be linked by a one-to-one mapping
Currently not true since rotations and/or translations are possible
It means: for one distribution f, there is a unique optimal distribution g(+; p)

Additional constraints on g(-; pu): dy = K—1, ux =0, pxpn =0 (h > k), pgx >0
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Estimating the Gaussian centers (pitch)

m The Kullback-Leibler divergence k. has generally no closed-form

m Estimate it by the following consistent (in S) Monte-Carlo expression

S (f,g(pm) = Z'"Pg(t(s ) F-cst

L(pit)
with S independent draws of conditional proba. t = (t(l) ,t(s)) from p,
m It is the normalized (observed-data) log-likelihood function of a mixture model
m But, by construction, all the conditional probabilities are fixed in this mixture
m Thus, just maximize the normalized complete-data log-likelihood Lcomp(ts; t):
m K = 2: this maximization is straightforward

m K > 2: use a standard Quasi-Newton algorithm with different random initializations
for avoiding possible local optima

)
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From a multivariate to a bivariate Gaussian mixture

m g is defined on RX~1 but it is more convenient to be on R?

m Just apply LDA on g to display this distribution on its most discriminative map
m It leads to the bivariate spherical Gaussian mixture g

K
B(Fi i) =D mido (i i, 1),
k=1

where § € R?, ji = (fi1, ..., fix) and fix € R?
m Use the % of inertia of LDA to measure the quality of the mapping from g to g

Remark

If ¥ = R9 and f is a Gaussian mixture with isotropic covariance matrices,
then the proposed mapping is equivalent to applying a LDA to the centers of f
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Overall accuracy of the mapping between f and g

Use the following difference between the normalized entropies of f and g

1 K

5(f,8) = ik {/X ti(x; £) In tie(x; £)dx — /R2 te(¥: &) In fk(Y:E)dY}
k=1

m Such a quantity can be easily estimated by empirical values
m Its meaning is particularly relevant:

m Jg(f, &) ~ 0: the component overlap conveyed by g (over f) is accurate
m 0g(f, &) ~ 1: g strongly underestimates the component overlap of f
m 6e(f,g) = —1: g strongly overestimates the component overlap of f

de(f, &) permits to evaluate the bias of the visualization
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Drawing g

Cluster centers: the locations of fi1,..., fix are materialized by vectors
Cluster spread: the 95% confidence level displayed by a black border

Cluster overlap: iso-probability curves of the MAP classification for different levels

Mapping accuracy: 6e(f, &) and also % of inertia by axis
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Tutorial with four bivariate Gaussians: scenario 1

m =mp =04, w3 =m=0.1

Difference between entropies: 0.03
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Tutorial with four bivariate Gaussians: scenario 2

Scenario 1 where clusters 1 and 2 are closer through their centers.

Difference between entropies: 0.15
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Tutorial with four bivariate Gaussians: scenario 3

Scenario 1 where clusters 3 and 4 are closer through their covariance matrices.

Difference between entropies: 0
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House of Representatives Congressmen: data* and model

Votes of the n = 435 U.S. Congressmen on the dx = 16 key votes

Categorical data: for each vote, three levels are considered (yea, nay, ?)

Data clustered by a mixture of product of multinomial distributions
K = 4 selected by BIC
m Use the R package Rmixmod

m Complex output: 435 individual memberships, 192 = 16 x 3 X 4 parameters
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House of Representatives Congressmen: standard MCA visualization

First map of the MCA (R package FactoMineR [L& et a/. 2008]): difficult to interpret
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House of Representatives Congressmen: Gaussian visualization

Difference between entropies: 0.01
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Mapping of f on this graph is accurate because d¢(f,g) = 0.01
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Contraceptive method choice: data® and model

m Subset of the 1987 National Indonesia Contraceptive Prevalence Survey

m Mixed data: 1473 Indian women with two numerical variables (age and number of
children) and eight categorical variables (education level, education level of the
husband, religion, occupation, occupation of the husband, standard-of-living
index and media exposure)

m Clustered by a mixture f assuming that variables are independent within
components

m Model selection is done by the BIC criterion which detects six components

m Use the R package Rmixmod
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Contraceptive method choice: estimated parameters

Table :

Age Number of children

Mean Variance Mean Variance
Component 1 35 30 4 4
Component 2 35 22 3 2
Component 3 40 42 5 9
Component 4 25 10 1 1
Component 5 24 13 2 1
Component 6 45 7 5 8

Parameters of the continuous variables for the Contraceptive method choice.

education husband's religion occupation husband’s standard-of- media
level education level occupation living index exposure
Component 1 3 3 2 2 3 4 1
Component 2 4 4 2 2 1 4 1
Component 3 1 2 2 2 3 3 1
Component 4 4 4 2 2 1 4 1
Component 5 3 3 2 2 3 3 1
Component 6 4 4 2 2 1 4 1

Table :

Modes of the categorical variables for the Contraceptive method choice.

Discussion
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Mapping clusters as spherical Gaussians Numerical illustrations for complex data

Contraceptive method choice: Gaussian visualization

Difference between entropies: 0.04
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Mapping of f on this graph is accurate because ¢ (f, g) = 0.04
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Bike sharing system: data® and model

Station occupancy data collected over the course of one month on the bike
sharing system in Paris

Data collected over 5 weeks, between February, 24 and March, 30, 2014, on 1189
bike stations

Functional data: station status information (available bikes/docks) downloaded
every hour from the open-data APIs of JCDecaux company

The final data set contains 1189 loading profiles, one per station, sampled at
1448 time points

Model: profiles of the stations were projected on a basis of 25 Fourier functions

Model-based clustering of these functional data with the r
package FUNFEM

Retain 10 clusters
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Bike sharing system: cluster of curves visualization
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Difference between entropies: -0.03
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Mapping of f on this graph is accurate because §¢(f,g) = —0.03
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French political blogosphere: data’ and model

Not oriented network data: a single day snapshot of over 1100 political blogs
automatically extracted the October, 14th, 2006 and manually classified by the
"Observatoire Présidentielle” project.

Nodes represent hostnames (= a set of pages) and edges represent hyperlinks
between different hostnames

Gather different communities organization due to the existence of several political
parties and commentators

Assumption: authors of these blogs tend to link, by political affinities, blogs with
similar political positions

Use the graph clustering via Erdos—Rényi mixture proposed by

Use the R package MIXER

As proposed by these authors, we consider K = 6 components
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French political blogosphere: confusion matrix

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

Cap21 2 0 0 0 0 0

Commentateurs Analystes 10 0 0 1 0 0
FN - MNR - MPF 2 0 0 0 0 0

Les Verts 7 0 0 0 0 0

PCF - LCR 7 0 0 0 0 0

PS 31 0 0 0 26 0

Parti Radical de Gauche 11 0 0 0 0 0
UDF 1 1 0 30 0 0

UMP 2 25 11 2 0 0

liberaux 0 1 0 0 0 24

Table : Confusion matrix between the component memberships and the political party
memberships.

34 /30



Clustering: from modeling to visualizing Mapping clusters as spherical Gaussians Numerical illustrations for complex data

35 /30

Dim2 (22.98%)

O 0.85<Pr. Classil.
B 08¢Pr.Classit<093
- B Pr Clazsi <08
O outside fhe cani level.
-~
oy
o -
o
-
@ -

French political blogosphere: Gaussian visualization

Difference between entropies: -0.21
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The graph slightly over-represents the component overlaps: 6 (f,g) = —0.216
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Discussion

Conclusion

Generic method for visualizing the results of a model-based clustering
Very easy to understand output since “Gaussian-like”
Permits visualization for any type of data, because only based on proba. of classif.

Can be used after any existing package of model-based clustering

The overall accuracy of the visualization is also provided
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Extensions

m Possibility to explore other pdf visualizations than Gaussians
m However, should keep in mind simple visualizations are targeted

m Possibility to compare pdf candidates through dkL or e

38/30
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About individual visualization

m Theoretically, impossible to obtain individual visualization from pdf visualization

m However, we can propose a pseudo scatter plot of x as follows
bijecti §
X; t,(f) _ t,(g) ijection yi RK 1 LDA yi € R2

m y allows only to visualize the classification position of x

m Example for the congressmen data set
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m Caution: do not overlay pdf and individual plots since § = (¥1,...,¥n) is not
necessarily drawn from a Gaussian mixture
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